1
|
Giri P, Yadav D, Mishra B, Gupta MK, Verma D. Robust tissue adhesion in biomedical applications: enhancing polymer stability in an injectable protein-based hydrogel. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:273-295. [PMID: 39259660 DOI: 10.1080/09205063.2024.2398888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Protein-based hydrogels are appealing materials for a variety of therapeutic uses because they are compatible, biodegradable, and adaptable to biological and chemical changes. Therefore, adherent varieties of hydrogels have received significant study; nevertheless, the majority of them show weak mechanical characteristics, transient adherence, poor biocompatibility activity, and low tensile strength. Here we are reporting, a two-component (BSA-gelatin) protein solution crosslinked with Tetrakis (hydroxymethyl) phosphonium chloride (THPC) to form a novel hydrogel. Compared with classical adhesive hydrogels, this hydrogel showed enhanced mechanical properties, was biocompatible with L929 cells, and had minimal invasive injectability. A considerable, high tensile strength of 73.33 ± 11.54 KPa and faultless compressive mechanical properties of 173 KPa at 75% strain were both demonstrated by this adhesive hydrogel. Moreover, this maximum tissue adhesion strength could reach 18.29 ± 2.22 kPa, significantly higher than fibrin glue. Cell viability was 97.09 ± 6.07%, which indicated that these hydrogels were non-toxic to L929. The fastest gelation time of the BSA-gelatin hydrogel was 1.25 ± 0.17 min at physiological pH and 37 °C. Therefore, the obtained novel work can potentially serve as a tissue adhesive hydrogel in the field of biomedical industries.
Collapse
Affiliation(s)
- Pijush Giri
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Daman Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
2
|
Najafloo R, Milan PB, Karimi A, Bagher Z, Kalmer RR, Ghasemian M, Faridi-Majidi R. Crosslinking gelatin with robust inherent antibacterial natural polymer for wound healing. Int J Biol Macromol 2024; 280:136144. [PMID: 39353527 DOI: 10.1016/j.ijbiomac.2024.136144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Gelatin-based biomaterials are widely acknowledged as a promising choice for wound dressings, given their similarity to the extracellular matrix and biocompatibility. However, the challenge of cross-linking gelatin while preserving its biocompatibility and cost-effectiveness persists. This study aimed to enhance the properties of gelatin by incorporating the oxidized lignosulfonate (OLS) biopolymer as an inexpensive and biocompatible natural material. The polyphenolic structure of OLS acts as both a cross-linking agent and an antibacterial component. The OLS/gelatin films were prepared using a casting method with varying weight ratios (0.1, 0.2, 0.3, 0.4, and 0.5 w/w). FTIR analysis confirmed the formation of Schiff-base and hydrogen bonds between gelatin and OLS. The resulting films exhibited enhanced mechanical properties (Young's modulus ∼40 MPa), no cytotoxicity, and excellent cell adhesion and morphology. Antimicrobial tests showed significant activity against Escherichia coli and Staphylococcus aureus, with higher activity against S. aureus (17 mm inhibition zone and 99 % bactericidal rate). In vivo studies in a mouse model demonstrated that the gelatin/0.2OLS dressing significantly improved wound healing, including re-epithelialization, collagen formation, inflammation reduction, and blood vessel density, compared to untreated wounds. These findings suggest that the synthesized novel gelatin/OLS wound dressing has promising healing and antibacterial properties.
Collapse
Affiliation(s)
- Raziyeh Najafloo
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran.
| | - Afzal Karimi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran.
| | - Zohreh Bagher
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran; ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran 1445613131, Iran
| | | | - Melina Ghasemian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Raheleh Faridi-Majidi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1417935840 Tehran, Iran
| |
Collapse
|
3
|
Krishna DV, Sankar MR, Sarma PVGK, Samundeshwari EL. Copper nanoparticles loaded gelatin/ polyvinyl alcohol/ guar gum-based 3D printable multimaterial hydrogel for tissue engineering applications. Int J Biol Macromol 2024; 276:133866. [PMID: 39009268 DOI: 10.1016/j.ijbiomac.2024.133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Hydrogels are becoming increasingly significant in tissue engineering because of their numerous benefits, including biocompatibility, biodegradability, and their ability to provide a supportive structure for cell proliferation. This study presents the synthesis and characterization of a new multimaterial hydrogel with 3D-printing capabilities composed of copper nanoparticle-reinforced gelatin, polyvinyl alcohol (PVA), and guar gum-based biomaterials intended for tissue engineering applications. Combining CuNPs aims to enhance the hydrogel's antibacterial properties, mechanical strength, and bioactivity, which are essential for successful tissue regeneration. Hydrogels are chemically cross-linked with glyoxal and analyzed through different assessments to examine the compressive behavior, surface morphology, sorbing capacity, biocompatibility, thermal stability, and degradation properties. The results demonstrated that including CuNPs significantly improved the hydrogel's compressive modulus (4.18 MPa) for the hydrogel with the CuNPs and provided better antibacterial activity against common pathogens with controlled degradation. All the hydrogels exhibited a lower coefficient of friction, which was below 0.1. In vitro cell culture studies using chondrocytes indicated that the CuNPs-loaded hydrogel supported cell proliferation and growth of chondrogenic genes such as collagen type II (COL2) and aggrecan (ACAN). The biocompatibility and enhanced mechanical properties of the multimaterial hydrogel make it a promising candidate for developing customized, patient-specific tissue engineering scaffolds.
Collapse
Affiliation(s)
- D V Krishna
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India
| | - M R Sankar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India.
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| | - E L Samundeshwari
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| |
Collapse
|
4
|
Sharifisistani M, Khanmohammadi M, Badali E, Ghasemi P, Hassanzadeh S, Bahiraie N, Lotfibakhshaiesh N, Ai J. Hyaluronic acid/gelatin microcapsule functionalized with carbon nanotube through laccase-catalyzed crosslinking for fabrication of cardiac microtissue. J Biomed Mater Res A 2022; 110:1866-1880. [PMID: 35765200 DOI: 10.1002/jbm.a.37419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Carbon nanotube (CNT) and gelatin (Gela) molecules are effective substrates in promoting engineered cardiac tissue functions. This study developed a microfluidic-based encapsulation process for biomimetic hydrogel microcapsule fabrication. The hydrogel microcapsule was produced through a coaxial double orifice microfluidic technique and a water-in-oil emulsion system in two sequential processes. The phenol (Ph) substituted Gela (Gela-Ph) and CNT (CNT-Ph), respectively as cell-adhesive and electrically conductive substrates were incorporated in hyaluronic acid (HA)-based hydrogel through laccase-mediated crosslinking. The Cardiomyocyte-enclosing microcapsule fabricated and cellular survival, function, and possible difference in the biological activity of encapsulated cells within micro vehicles were investigated. The coaxial microfluidic method and Lac-mediated crosslinking reaction resulted in spherical vehicle production in 183 μm diameter at 500 capsules/min speed. The encapsulation process did not affect cellular viability and harvested cells from microcapsule proliferated well likewise subcultured cells in tissue culture plate. The biophysical properties of the designed hydrogel, including mechanical strength, swelling, biodegradability and electroconductivity upregulated significantly for hydrogels decorated covalently with Gela-Ph and CNT-Ph. The tendency of the microcapsule for the spheroid formation of cardiomyocytes inside the proposed microcapsule occurred 3 days after encapsulation. Interestingly, immobilized Gela-Ph and CNT-Ph promote cellular growth and specific cardiac markers. Overall, the microfluidic-based encapsulation technology and synthesized biomimetic substrates with electroconductive properties demonstrate desirable cellular adhesion, proliferation, and cardiac functions for engineering cardiac tissue.
Collapse
Affiliation(s)
- Maryam Sharifisistani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Badali
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Chemistry Department, Kharazmi University, Tehran, Iran
| | - Pouya Ghasemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, Iran
| | - Sajad Hassanzadeh
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Nafiseh Bahiraie
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Fu A, Yang Y, Wu J, Li S, Fan Y, Yau TM, Li R. Bio-Conductive Polymers for Treating Myocardial Conductive Defects: Long-Term Efficacy Study. Adv Healthc Mater 2022; 11:e2101838. [PMID: 34704404 DOI: 10.1002/adhm.202101838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Indexed: 01/23/2023]
Abstract
Following myocardial infarction (MI), the resulting fibrotic scar is nonconductive and leads to ventricular dysfunction via electrical uncoupling of the remaining viable cardiomyocytes. The uneven conductive properties between normal myocardium and scar tissue result in arrhythmia, yielding sudden cardiac death/heart failure. A conductive biopolymer, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), is able to resynchronize myocardial contractions in vivo. Intravenous PAMB-G injections into mice show that it does not cause any acute toxicity, up to the maximum tolerated dose (1.6 mL kg-1 ), which includes the determined therapeutic dose (0.4 mL kg-1 ). There is also no short- or long-term toxicity when PAMB-G is injected into the myocardium of MI rats, with no significant changes in body weight, organ-brain ratio, hematologic, and histological parameters for up to 12 months post-injection. At the therapeutic dose, PAMB-G restores electrical conduction in infarcted rat hearts, resulting in lowered arrhythmia susceptibility and improved cardiac function. PAMB-G is also durable, as mass spectrometry detected the biopolymer for up to 12 months post-injection. PAMB-G did not impact reproductive organ function or offspring characteristics when given intravenously into healthy adult rats. Thus, PAMB-G is a nontoxic, durable, and conductive biomaterial that is able to improve cardiac function for up to 1 year post-implantation.
Collapse
Affiliation(s)
- Anne Fu
- Toronto General Hospital Research Institute Division of Cardiovascular Surgery University Health Network TorontoM5G 1L7 Canada
- Department of Laboratory Medicine and Pathology University of Toronto TorontoM5G 1L7 Canada
| | - Yahan Yang
- Toronto General Hospital Research Institute Division of Cardiovascular Surgery University Health Network TorontoM5G 1L7 Canada
| | - Jun Wu
- Toronto General Hospital Research Institute Division of Cardiovascular Surgery University Health Network TorontoM5G 1L7 Canada
| | - Shu‐Hong Li
- Toronto General Hospital Research Institute Division of Cardiovascular Surgery University Health Network TorontoM5G 1L7 Canada
| | - Yunfei Fan
- Toronto General Hospital Research Institute Division of Cardiovascular Surgery University Health Network TorontoM5G 1L7 Canada
| | - Terrance M Yau
- Toronto General Hospital Research Institute Division of Cardiovascular Surgery University Health Network TorontoM5G 1L7 Canada
- Division of Cardiac Surgery Department of Surgery University of Toronto TorontoM5G 1L7 Canada
| | - Ren‐Ke Li
- Toronto General Hospital Research Institute Division of Cardiovascular Surgery University Health Network TorontoM5G 1L7 Canada
- Department of Laboratory Medicine and Pathology University of Toronto TorontoM5G 1L7 Canada
- Division of Cardiac Surgery Department of Surgery University of Toronto TorontoM5G 1L7 Canada
| |
Collapse
|
6
|
El-Habashy SE, El-Kamel AH, Essawy MM, Abdelfattah EZA, Eltaher HM. 3D printed bioinspired scaffolds integrating doxycycline nanoparticles: Customizable implants for in vivo osteoregeneration. Int J Pharm 2021; 607:121002. [PMID: 34390809 DOI: 10.1016/j.ijpharm.2021.121002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
3D printing has revolutionized pharmaceutical research, with applications encompassing tissue regeneration and drug delivery. Adopting 3D printing for pharmaceutical drug delivery personalization via nanoparticle-reinforced hydrogel scaffolds promises great regenerative potential. Herein, we engineered novel core/shell, bio-inspired, drug-loaded polymeric hydrogel scaffolds for pharmaceutically personalized drug delivery and superior osteoregeneration. Scaffolds were developed using biopolymeric blends of gelatin, polyvinyl alcohol and hyaluronic acid and integrated with composite doxycycline/hydroxyapatite/polycaprolactone nanoparticles (DX/HAp/PCL) innovatively via 3D printing. The developed scaffolds were optimized for swelling pattern and in-vitro drug release through tailoring the biphasic microstructure and wet/dry state to attain various pharmaceutical personalization platforms. Freeze-dried scaffolds with nanoparticles reinforcing the core phase (DX/HAp/PCL-LCS-FD) demonstrated favorably controlled swelling, preserved structural integrity and controlled drug release over 28 days. DX/HAp/PCL-LCS-FD featured double-ranged pore size (90.4 ± 3.9 and 196.6 ± 38.8 µm for shell and core phases, respectively), interconnected porosity and superior mechanical stiffness (74.5 ± 6.8 kPa) for osteogenic functionality. Cell spreading analysis, computed tomography and histomorphometry in a rabbit tibial model confirmed osteoconduction, bioresorption, immune tolerance and bone regenerative potential of the original scaffolds, affording complete defect healing with bone tissue. Our findings suggest that the developed platforms promise prominent local drug delivery and bone regeneration.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, 21500 Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt
| | | | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| |
Collapse
|
7
|
La Gatta A, Tirino V, Cammarota M, La Noce M, Stellavato A, Pirozzi AVA, Portaccio M, Diano N, Laino L, Papaccio G, Schiraldi C. Gelatin-biofermentative unsulfated glycosaminoglycans semi-interpenetrating hydrogels via microbial-transglutaminase crosslinking enhance osteogenic potential of dental pulp stem cells. Regen Biomater 2021; 8:rbaa052. [PMID: 34211725 PMCID: PMC8240633 DOI: 10.1093/rb/rbaa052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering, and proved high potential in bone regeneration. This study aimed to evaluate, for the first time, the combination of enzymatically crosslinked gelatin with hyaluronan and the newly developed biotechnological chondroitin in enhancing osteogenic potential. Gelatin enzymatic crosslinking was carried out in the presence of hyaluronan or of a hyaluronan–chondroitin mixture, obtaining semi-interpenetrating gels. The latter proved lower swelling extent and improved stiffness compared to the gelatin matrix alone, whilst maintaining high stability. The heteropolysaccharides were retained for 30 days in the hydrogels, thus influencing cell response over this period. To evaluate the effect of hydrogel composition on bone regeneration, materials were seeded with human dental pulp stem cells and osteogenic differentiation was assessed. The expression of osteocalcin (OC) and osteopontin (OPN), both at gene and protein level, was evaluated at 7, 15 and 30 days of culture. Scanning electron microscopy (SEM) and two-photon microscope observations were performed to assess bone-like extracellular matrix (ECM) deposition and to observe the cell penetration depth. In the presence of the heteropolysaccharides, OC and OPN expression was upregulated and a higher degree of calcified matrix formation was observed. Combination with hyaluronan and chondroitin improved both the biophysical properties and the biological response of enzymatically crosslinked gelatin, fastening bone deposition.
Collapse
Affiliation(s)
- Annalisa La Gatta
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Virginia Tirino
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marcella Cammarota
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marcella La Noce
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Antonietta Stellavato
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Anna Virginia Adriana Pirozzi
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Nadia Diano
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Luigi Laino
- Dipartimento Multidisciplinare di Specialita' Medico-Chirurgiche e Odontoiatriche, via Luigi De Crecchio, 6, Napoli 80138, Italy
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| | - Chiara Schiraldi
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", via L. De Crecchio 7, Naples 80138, Italy
| |
Collapse
|
8
|
Abid U, Gill YQ, Irfan MS, Umer R, Saeed F. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers. Int J Biol Macromol 2021; 181:1-29. [PMID: 33744249 DOI: 10.1016/j.ijbiomac.2021.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Renewable resources including polycarbohydrates, lignin, proteins, and polyacids are the intrinsically valuable class of materials that are naturally available in great quantities. Their utilization as green additives and reinforcing bio-fillers, in substitution of environmentally perilous petroleum-based fillers, for developing high-performance green rubber blends and composites is presently a highly tempting option. Blending of these renewable materials with elastomers is not straight-forward and research needs to exploit the high functionality of carbohydrates and other natural materials as proper physicochemical interactions are essential. Correlating and understanding the structural properties of lignin, carbohydrates, polyacids, and other biopolymers, before their incorporation in elastomers, is a potential approach towards the development of green elastomers for value-added applications. Promising properties i.e., biodegradability, biocompatibility, morphological characteristics, high mechanical properties, thermal stability, sustainability, and various other characteristics along with recent advancements in the development of green elastomers are reviewed in this paper. Structures, viability, interactions, properties, and use of most common natural polycarbohydrates (chitosan and starch), lignin, and proteins (collagen and gelatin) for elastomer modification are extensively reviewed. Challenges in commercialization, applications, and future perspectives of green elastomers are also discussed. Sustainability analysis of green elastomers is accomplished to elaborate their cost-effectiveness and environmental friendliness.
Collapse
Affiliation(s)
- Umer Abid
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Yasir Qayyum Gill
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Muhammad Shafiq Irfan
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan; Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Farhan Saeed
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| |
Collapse
|
9
|
Tsanaktsidou E, Kammona O, Kiparissides C. On the synthesis and characterization of biofunctional hyaluronic acid based injectable hydrogels for the repair of cartilage lesions. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Zhang T, Chen H, Zhang Y, Zan Y, Ni T, Liu M, Pei R. Osteogenic differentiation of BMSCs in collagen-based 3D scaffolds. NEW J CHEM 2019. [DOI: 10.1039/c8nj04100h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Collagen-based scaffolds was fabricated through covalent crosslinking, and used as 3D scaffolds for promoting the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Tingting Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Hong Chen
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Yue Zan
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| |
Collapse
|
11
|
Awasthi MK, Pandey AK, Bundela PS, Wong JWC, Li R, Zhang Z. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. BIORESOURCE TECHNOLOGY 2016; 213:181-189. [PMID: 26897474 DOI: 10.1016/j.biortech.2016.02.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
This work illustrates the co-composting of gelatin industry sludge (GIS) combined with organic fraction of municipal solid waste (OFMSW) and poultry waste (PW) employing 10% zeolite mixed with enriched nitrifying bacteria consortium (ENBC). Five piles of GIS were prepared mixed with OFMSW and PW at 2:1:0.5, 4:1:0.5, 6:1:0.5 and 8:1:0.5 and without GIS 0:1:0.5 (dry weight basis) served as control, while 10% zeolite mixed with ENBC was inoculated in all piles and composted for 42days. The Pile-4 with GIS, OFMSW and PW ratio 6:1:0.5 and 10% zeolite+ENBC were drastically reduced the nitrogen loss and enhance the mineralization rate as compare to other piles. The co-amendment of 6% GIS effectively buffered the pH between ∼7.5 to 8.0 and shortened the compost maturity period, while lower concentration of GIS was comparatively delayed the early decomposition. Therefore, our results suggested that suitability of 10% zeolite+ENBC with initial feedstock ratio 6:1:0.5 as the best formulation for the composting of GIS into value-added stable product.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India; Regional Office, Madhya Pradesh Pollution Control Board, Jabalpur, India
| | | | | | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | - Ronghua Li
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
12
|
Xie L, Yu H, Deng Y, Yang W, Liao L, Long Q. Preparation andin vitrodegradation study of the porous dual alpha/beta-tricalcium phosphate bioceramics. ACTA ACUST UNITED AC 2016. [DOI: 10.1179/1433075x15y.0000000079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- L. Xie
- State Key Laboratory of Oral Diseases, West China College of stomatology, Sichuan University, Chengdu 610065, China
| | - H. Yu
- State Key Laboratory of Oral Diseases, West China College of stomatology, Sichuan University, Chengdu 610065, China
| | - Y. Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - W. Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - L. Liao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Q. Long
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Controlled release in vitro of icariin from gelatin/hyaluronic acid composite microspheres. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1534-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Martucci JF, Ruseckaite RA. Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Zhou Z, He S, Huang T, Peng C, Zhou H, Liu Q, Zeng W, Liu L, Huang H, Xiang L, Yan H. Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1300-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Xiong L, He Z. Fabrication and Properties of Porous Collagen/Hyaluronic Composite Scaffolds Containing Nano-Bioactive Glass for Tissue Engineering. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.953372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Zhou Z, Chen J, Peng C, Huang T, Zhou H, Ou B, Chen J, Liu Q, He S, Cao D, Huang H, Xiang L. Fabrication and Physical Properties of Gelatin/Sodium Alginate/Hyaluronic Acid Composite Wound Dressing Hydrogel. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.882693] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|