1
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Bustamante-Marin XM, Capel B. Oxygen availability influences the incidence of testicular teratoma in Dnd1Ter/+ mice. Front Genet 2023; 14:1179256. [PMID: 37180974 PMCID: PMC10169730 DOI: 10.3389/fgene.2023.1179256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Testicular teratomas and teratocarcinomas are the most common testicular germ cell tumors in early childhood and young men, and they are frequently found unilaterally in the left testis. In 129/SvJ mice carrying a heterozygous copy of the potent modifier of tumor incidence Ter, a point mutation in the dead-end homolog one gene (Dnd1 Ter/+), ∼70% of the unilateral teratomas arise in the left testis. We previously showed that in mice, left/right differences in vascular architecture are associated with reduced hemoglobin saturation and increased levels of the hypoxia inducible factor-1 alpha (HIF-1α) in the left compared to the right testis. To test the hypothesis that systemic reduction of oxygen availability in Dnd1 Ter/+ mice would lead to an increased incidence of bilateral tumors, we placed pregnant females from 129/SvJ Dnd1 Ter/+ intercross matings in a hypobaric chamber for 12-h intervals. Our results show that in 129/SvJ Dnd1 Ter/+ male gonads, the incidence of bilateral teratoma increased from 3.3% to 64% when fetuses were exposed to acute low oxygen conditions for 12-h between E13.8 and E14.3. The increase in tumor incidence correlated with the maintenance of high expression of pluripotency genes Oct4, Sox2 and Nanog, elevated activity of the Nodal signaling pathway, and suppression of germ cell mitotic arrest. We propose that the combination of heterozygosity for the Ter mutation and hypoxia causes a delay in male germ cell differentiation that promotes teratoma initiation.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Departamento Biomédico, Facultad de Ciencias De La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
3
|
Shen X, Li M, Wang C, Liu Z, Wu K, Wang A, Bi C, Lu S, Long H, Zhu G. Hypoxia is fine-tuned by Hif-1α and regulates mesendoderm differentiation through the Wnt/β-Catenin pathway. BMC Biol 2022; 20:219. [PMID: 36199093 PMCID: PMC9536055 DOI: 10.1186/s12915-022-01423-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxia naturally happens in embryogenesis and thus serves as an important environmental factor affecting embryo development. Hif-1α, an essential hypoxia response factor, was mostly considered to mediate or synergistically regulate the effect of hypoxia on stem cells. However, the function and relationship of hypoxia and Hif-1α in regulating mesendoderm differentiation remains controversial. Results We here discovered that hypoxia dramatically suppressed the mesendoderm differentiation and promoted the ectoderm differentiation of mouse embryonic stem cells (mESCs). However, hypoxia treatment after mesendoderm was established promoted the downstream differentiation of mesendoderm-derived lineages. These effects of hypoxia were mediated by the repression of the Wnt/β-Catenin pathway and the Wnt/β-Catenin pathway was at least partially regulated by the Akt/Gsk3β axis. Blocking the Wnt/β-Catenin pathway under normoxia using IWP2 mimicked the effects of hypoxia while activating the Wnt/β-Catenin pathway with CHIR99021 fully rescued the mesendoderm differentiation suppression caused by hypoxia. Unexpectedly, Hif-1α overexpression, in contrast to hypoxia, promoted mesendoderm differentiation and suppressed ectoderm differentiation. Knockdown of Hif-1α under normoxia and hypoxia both inhibited the mesendoderm differentiation. Moreover, hypoxia even suppressed the mesendoderm differentiation of Hif-1α knockdown mESCs, further implying that the effects of hypoxia on the mesendoderm differentiation were Hif-1α independent. Consistently, the Wnt/β-Catenin pathway was enhanced by Hif-1α overexpression and inhibited by Hif-1α knockdown. As shown by RNA-seq, unlike hypoxia, the effect of Hif-1α was relatively mild and selectively regulated part of hypoxia response genes, which fine-tuned the effect of hypoxia on mESC differentiation. Conclusions This study revealed that hypoxia is fine-tuned by Hif-1α and regulates the mesendoderm and ectoderm differentiation by manipulating the Wnt/β-Catenin pathway, which contributed to the understanding of hypoxia-mediated regulation of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01423-y.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| |
Collapse
|
5
|
Večeřa J, Procházková J, Šumberová V, Pánská V, Paculová H, Lánová MK, Mašek J, Bohačiaková D, Andersson ER, Pacherník J. Hypoxia/Hif1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Res 2020; 45:101770. [PMID: 32276221 DOI: 10.1016/j.scr.2020.101770] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Embryonic neural stem cells (NSCs), comprising neuroepithelial and radial glial cells, are indispensable precursors of neurons and glia in the mammalian developing brain. Since the process of neurogenesis occurs in a hypoxic environment, the question arises of how NSCs deal with low oxygen tension and whether it affects their stemness. Genes from the hypoxia-inducible factors (HIF) family are well known factors governing cellular response to hypoxic conditions. In this study, we have discovered that the endogenous stabilization of hypoxia-inducible factor 1α (Hif1α) during neural induction is critical for the normal development of the NSCs pool by preventing its premature depletion and differentiation. The knock-out of the Hif1α gene in mESC-derived neurospheres led to a decrease in self-renewal of NSCs, paralleled by an increase in neuronal differentiation. Similarly, neuroepithelial cells differentiated in hypoxia exhibited accelerated neurogenesis soon after Hif1α knock-down. In both models, the loss of Hif1α was accompanied by an immediate drop in neural repressor Hes1 levels while changes in Notch signaling were not observed. We found that active Hif1α/Arnt1 transcription complex bound to the evolutionarily conserved site in Hes1 gene promoter in both neuroepithelial cells and neural tissue of E8.5 - 9.5 embryos. Taken together, these results emphasize the novel role of Hif1α in the regulation of early NSCs population through the activation of neural repressor Hes1, independently of Notch signaling.
Collapse
Affiliation(s)
- Josef Večeřa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Veronika Šumberová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Veronika Pánská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Martina Kohutková Lánová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Mašek
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Emma Rachel Andersson
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden; Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, SE-171 65 Solna, Sweden
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
6
|
An SY, Heo JS. Low oxygen tension modulates the osteogenic differentiation of mouse embryonic stem cells. Tissue Cell 2018; 52:9-16. [PMID: 29857833 DOI: 10.1016/j.tice.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
This study examined the effects of low oxygen tension on the osteogenic differentiation of embryonic stem cells (ESCs) in a three-dimensional culture system. The high expression levels of hypoxia-related proteins hypoxia-inducible factor-1α and vascular endothelial growth factor were first validated in ESCs subjected to hypoxic conditions compared with normoxic controls. The osteogenic differentiation of hypoxic ESCs with either osteogenic or osteogenic factor-free media was subsequently evaluated by measuring alkaline phosphatase activity, intracellular calcium levels, matrix mineralization, and the protein levels of osteogenic markers Runt-related transcription factor 2 and osterix. We confirmed that hypoxia significantly stimulated ESC osteogenic activity; the strongest stimulation of ESC osteogenesis was exerted when cells were grown in osteogenic media. To identify differentially expressed genes associated with hypoxia-induced ESC differentiation, we performed microarray analysis of ESCs cultured in osteogenic media under normoxic and hypoxic conditions. This study demonstrated that differences in oxygen tension induced the differential expression of genes known to play roles in such processes as skeletal system development and signaling pathways for bone morphogenetic protein, Wnt, Notch, mitogen-activated protein kinase, and integrin. These findings reveal the effects of low oxygen tension on osteogenic progression in ESCs and provide insight into the molecular pathways that regulate ESC differentiation following exposure to hypoxia.
Collapse
Affiliation(s)
- Seong Yeong An
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Jung Sun Heo
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, South Korea.
| |
Collapse
|
8
|
Garreta E, Melo E, Navajas D, Farré R. Low oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells. Physiol Rep 2014; 2:2/7/e12075. [PMID: 25347858 PMCID: PMC4187564 DOI: 10.14814/phy2.12075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whole-organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging from 1 to 5%. By contrast, in vitro ESC and iPSC differentiation protocols are usually carried out at room-air oxygen tension. Here, we sought to determine the role played by oxygen tension on the derivation of Nkx2.1+ lung/thyroid progenitor cells from mouse ESC and iPSC. A step-wise differentiation protocol was used to generate Nkx2.1+ lung/thyroid progenitors under 20% and 5% oxygen tension. On day 12, gene expression analysis revealed that Nkx2.1 and Foxa2 (endodermal and early lung epithelial cell marker) were significantly upregulated at 5% oxygen tension in ESC and iPSC differentiated cultures compared to 20% oxygen conditions. In addition, quantification of Foxa2+Nkx2.1+Pax8- cells corresponding to the lung field, with exclusion of the potential thyroid fate identified by Pax8 expression, confirmed that the low physiologic oxygen tension exerted a significant positive effect on early pulmonary differentiation of ESC and iPSC. In conclusion, we found that 5% oxygen tension enhanced the derivation of lung progenitors from mouse ESC and iPSC compared to 20% room-air oxygen tension.
Collapse
Affiliation(s)
- Elena Garreta
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centre de Medicina Regenerativa de Barcelona (CMRB), Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader88 7ª Planta, Barcelona, 08003, Spain
| | - Esther Melo
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain F. Hoffmann-La Roche, AG, NORD DTABldg. 69/331, Basel, CH-4070, Switzerland
| | - Daniel Navajas
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- Facultat de Medicina, Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain Institut Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|