1
|
Sun R, Gu Q, Zhang X, Zeng R, Chen D, Yao J, Min J. Protective effect of cilostazol on vascular injury in rats with acute ischemic stroke complicated with chronic renal failure. Toxicol Res 2024; 40:189-202. [PMID: 38525134 PMCID: PMC10959867 DOI: 10.1007/s43188-023-00217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 03/26/2024] Open
Abstract
Chronic renal failure (CRF) resulting in vascular calcification, which does damage to blood vessels and endothelium, is an independent risk factor for stroke. It has been reported that cilostazol has a protective effect on the focal cerebral ischemic infarct. However, its impact on vascular injury in CRF combined stroke and its molecular protection mechanism have not been investigated. In this study, we carried out the effect of cilostazol on CRF combined stroke rats, and the results confirmed that it improved the neurobehavior, renal function as well as pathologic changes in both the kidney and brain. In addition, the inflammation and oxidative stress factors in the kidney and brain were suppressed. Moreover, the rates of brain edema and infarction were decreased. The injured brain-blood barrier (BBB) was recovered with less Evans blue extravasation and more expressions of zonula occludens-1(ZO-1) and occludin. More cerebral blood flow (CBF) in the ipsilateral hemisphere and more expression of CD31 and vascular endothelial growth factor (VEGF) in brain and kidney were found in the cilostazol group. Furthermore, cell apoptosis and cell autophagy became less, on the contrary, proteins of vascular endothelial growth factor receptor 2 (VEGFR2) after the cilostazol treatment were increased. More importantly, this protective effect is related to the pathway of Janus Kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and the hypoxia inducible factor-1α (HIF-1α). In conclusion, our results confirmed that cilostazol exerted a protective effect on the brain and kidney function, specifically in vascular injury, oxidative stress, cell apoptosis, cell autophagy, and inflammation response in CRF combined with stroke rats which were related to the upregulation of JAK/STAT3/mTOR signal pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00217-w.
Collapse
Affiliation(s)
- Ru Sun
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Qun Gu
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Xufeng Zhang
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Ruiqi Zeng
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Dan Chen
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Jingjing Yao
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Jingjing Min
- Department of Neurology, the First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Qureshi AI, Akhtar IN, Ma X, Lodhi A, Bhatti I, Beall J, Broderick JP, Cassarly CN, Martin RH, Sharma R, Thakkar M, Suarez JI. Effect of Cilostazol in Animal Models of Cerebral Ischemia and Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Neurocrit Care 2023; 38:698-713. [PMID: 36450971 DOI: 10.1007/s12028-022-01637-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cilostazol, a phosphodiesterase III inhibitor, appears to be a promising agent for preventing cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Here, the authors perform a systematic review and meta-analysis to quantitatively assess the effects of cilostazol on brain structural and functional outcomes in animal models of cerebral ischemia and subarachnoid hemorrhage-induced cerebral vasospasm. METHODS By using the PRISMA guidelines, a search of the PubMed, Scopus, and Web of Science was conducted to identify relevant studies. Study quality of each included study for both systematic reviews were scored by using an adapted 15-item checklist from the Collaborative Approach to Meta-Analysis of Animal Data from Experimental Studies. We calculated a standardized mean difference as effect size for each comparison. For each outcome, comparisons were combined by using random-effects modeling to account for heterogeneity, with a restricted maximum likelihood estimate of between-study variance. RESULTS A total of 22 (median [Q1, Q3] quality score of 7 [5, 8]) and 6 (median [Q1, Q3] quality score of 6 [6, 6]) studies were identified for cerebral ischemia and subarachnoid hemorrhage-induced cerebral vasospasm, respectively. Cilostazol significantly reduced the infarct volume in cerebral ischemia models with a pooled standardized mean difference estimate of - 0.88 (95% confidence interval [CI] [- 1.07 to - 0.70], p < 0.0001). Cilostazol significantly reduced neurofunctional deficits in cerebral ischemia models with a pooled standardized mean difference estimate of - 0.66 (95% CI [- 1.06 to - 0.28], p < 0.0001). Cilostazol significantly improved the basilar artery diameter in subarachnoid hemorrhage-induced cerebral vasospasm with a pooled standardized mean difference estimate of 2.30 (95% CI [0.94 to 3.67], p = 0.001). Cilostazol also significantly improved the basilar artery cross-section area with a pooled standardized mean estimate of 1.88 (95% CI [0.33 to 3.43], p < 0.05). Overall, there was between-study heterogeneity and asymmetry in the funnel plot observed in all comparisons. CONCLUSIONS Published animal data support the overall efficacy of cilostazol in reducing infarct volume and neurofunctional deficits in cerebral ischemia models and cerebral vasospasm in subarachnoid hemorrhage models.
Collapse
Affiliation(s)
- Adnan I Qureshi
- Department of Neurology, University of Missouri, Columbia, MO, USA.
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA.
| | - Iqra N Akhtar
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Xiaoyu Ma
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Abdullah Lodhi
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Ibrahim Bhatti
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | | | - Christy N Cassarly
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Renee H Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rishi Sharma
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Mahesh Thakkar
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhou L, Ao LY, Yan YY, Li WT, Ye AQ, Li CY, Shen WY, Liang BW, Xiong-Zhu, Li YM. JLX001 Ameliorates Ischemia/Reperfusion Injury by Reducing Neuronal Apoptosis via Down-Regulating JNK Signaling Pathway. Neuroscience 2019; 418:189-204. [PMID: 31487541 DOI: 10.1016/j.neuroscience.2019.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023]
Abstract
JLX001, a novel compound with similar structure with cyclovirobuxine D (CVB-D), has been proved to exert therapeutical effects on permanent focal cerebral ischemia. However, the protective effects of JLX001 on cerebral ischemia/reperfusion (I/R) injury and its anti-apoptotic effects have not been reported. We investigated the efficacy of JLX001 in two pharmacodynamic tests (pre-treatment test and post-treatment) with rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The pharmacodynamic tests demonstrated that JLX001 ameliorated I/R injury by reducing infarct sizes and brain edema. The results of Morris water maze, neurological scores, cylinder test and posture reflex test implied that JLX001 improved the learning, memory and motor ability after MCAO/R in the long term. Anti-apoptotic effects of JLX001 and its regulation of cytosolic c-Jun N-terminal Kinases (JNKs) signal pathway were confirmed in vivo by co-immunofluorescence staining and western immunoblotting. Furthermore, primary cortical neuron cultures were prepared and exposed to oxygen glucose deprivation/reoxygenation (OGD/R) for in vitro studies. Cytotoxicity test and mitochondrial membrane potential (MMP) test showed that JLX001 enhanced cell survival rate and maintained MMP. Flow cytometry and TdT-mediated dUTP-X nick end labeling (TUNEL) staining demonstrated the anti-apoptotic effects of JLX001 in vitro. Likewise, JLX001 regulated JNK signal pathway in vivo, which was also confirmed by western immunoblotting. Collectively, this study presents the first evidence that JLX001 exerted protective effects against I/R injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wan-Ting Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - An-Qi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Yang Shen
- School of Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing-Wen Liang
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China
| | - Xiong-Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China; Medicine & Chemical Institute, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Li X, Guo H, Zhao L, Wang B, Liu H, Yue L, Bai H, Jiang H, Gao L, Feng D, Qu Y. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3265-3276. [DOI: 10.1016/j.bbadis.2017.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/12/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
5
|
Abstract
Vascular cognitive impairment (VCI) is the second most common type of dementia after Alzheimer's disease (AD). Stroke and cardiovascular risk factors have been linked to both AD and VCI and potentially can affect cognitive function in mid and later life. Various pharmacological agents, including donepezil, galantamine, and memantine, approved for the treatment of AD have shown modest cognitive benefits in patients with vascular dementia (VaD). However, their functional and global benefits have been inconsistent. Donepezil has shown some cognitive benefit in patients with VaD only, and galantamine has shown some benefit in mixed dementia (AD/VaD). The benefits of other drugs such as rivastigmine, memantine, nimodipine, and piracetam are not clear. Some other supplements and herbal therapies, such as citicoline, actovegin, huperzine A, and vinpocetine, have also been studied in patients with VaD, but their beneficial effects are not well established. Non-drug therapies and lifestyle modifications such as diet, exercise, and vascular risk factor control are important in the management of VCI and should not be ignored. However, there is a need for more robust clinical trials focusing on executive function and other cognitive measures and incorporation of newer imaging modalities to provide additional evidence about the utility of these strategies in patients with VCI.
Collapse
Affiliation(s)
- Muhammad U Farooq
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA.
| | - Jiangyong Min
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA
| | - Christopher Goshgarian
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA
| | - Philip B Gorelick
- Division of Stroke and Vascular Neurology, Mercy Health Hauenstein Neurosciences, 200 Jefferson Street SE, Grand Rapids, MI, 49503, USA.,Department Translational Science and Molecular Medicine, Michigan State University College of Human Medicine, 220 Cherry Street SE Room H 3037, Grand Rapids, MI, 49503, USA
| |
Collapse
|
6
|
Ohnuki Y, Ohnuki Y, Kohara S, Shimizu M, Takizawa S. Dual Therapy with Aspirin and Cilostazol May Improve Platelet Aggregation in Noncardioembolic Stroke Patients: A Pilot Study. Intern Med 2017; 56:1307-1313. [PMID: 28566591 PMCID: PMC5498192 DOI: 10.2169/internalmedicine.56.7760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective Some previous studies have found clinical benefit of dual antiplatelet therapy with aspirin and cilostazol for prevention of secondary stroke, but the physiological mechanism involved remains unknown. We aimed to clarify the effects of aspirin/cilostazol therapy on the platelet and endothelial functions of patients with acute noncardioembolic ischemic stroke, in comparison to patients who were treated with aspirin alone. Methods The present randomized prospective pilot study enrolled 24 patients within a week after the onset of noncardioembolic ischemic stroke. The patients were randomly allocated to receive aspirin (100 mg/day) (A group; 11 patients) or cilostazol (200 mg/day) plus aspirin (100 mg/day) (CA group; 13 patients). We measured platelet aggregation, platelet activation, and the thrombomodulin (TM), highly sensitive C-reactive protein (hs-CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and von Willebrand (vWF) antigen levels and vWF activity over a 4-week period after enrollment. Results There was no significant difference in the platelet functions of the A and CA groups. However, the platelet aggregation induced by adenosine diphosphate (ADP) was decreased at 2 and 4 weeks (p<0.05) after treatment in comparison to the pre-treatment values in the CA group, but not in the A group. Platelet activation, and the hs-CRP, TM, ICAM-1, VCAM-1 and vWF values did not significantly decrease after treatment in either group. Conclusion Although there were no significant differences in platelet aggregation, platelet activation or the endothelial biomarker levels of the A and CA groups, dual therapy with aspirin and cilostazol inhibited platelet aggregation in comparison to the pre-treatment values, similarly to patients who received aspirin alone. This may suggest the clinical usefulness of dual therapy with aspirin and cilostazol in the treatment of patients with noncardioembolic ischemic stroke.
Collapse
Affiliation(s)
- Yoichi Ohnuki
- Division of Neurology, Department of Internal Medicine, Tokai University School of Medicine, Japan
| | - Yuko Ohnuki
- Department of Molecular Life Science, Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Japan
| | - Saori Kohara
- Division of Neurology, Department of Internal Medicine, Tokai University School of Medicine, Japan
| | - Mie Shimizu
- Division of Neurology, Department of Internal Medicine, Tokai University School of Medicine, Japan
| | - Shunya Takizawa
- Division of Neurology, Department of Internal Medicine, Tokai University School of Medicine, Japan
| |
Collapse
|
7
|
El-Dessouki AM, Galal MA, Awad AS, Zaki HF. Neuroprotective Effects of Simvastatin and Cilostazol in L-Methionine-Induced Vascular Dementia in Rats. Mol Neurobiol 2016; 54:5074-5084. [PMID: 27544235 DOI: 10.1007/s12035-016-0051-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Vascular dementia (VaD) is a degenerative cerebrovascular disorder that leads to progressive decline in cognitive abilities and memory. Several reports demonstrated that oxidative stress and endothelial dysfunction are principal pathogenic factors in VaD. The present study was constructed to determine the possible neuroprotective effects of simvastatin in comparison with cilostazol in VaD induced by L-methionine in rats. Male Wistar rats were divided into four groups. Group I (control group), group II received L-methionine (1.7 g/kg, p.o.) for 32 days. The remaining two groups received simvastatin (50 mg/kg, p.o.) and cilostazol (100 mg/kg, p.o.), respectively, for 32 days after induction of VaD by L-methionine. Subsequently, rats were tested for cognitive performance using Morris water maze test then sacrificed for biochemical and histopathological assays. L-methionine induced VaD reflected by alterations in rats' behavior as well as the estimated neurotransmitters, acetylcholinesterase activity as well as increased brain oxidative stress and inflammation parallel to histopathological changes in brain tissue. Treatment of rats with simvastatin ameliorated L-methionine-induced behavioral, neurochemical, and histological changes in a manner comparable to cilostazol. Simvastatin may be regarded as a potential therapeutic strategy for the treatment of VaD. To the best of our knowledge, this is the first study to reveal the neuroprotective effects of simvastatin or cilostazol in L-methionine-induced VaD. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Mai A Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6-October, 4th Industrial Area, Giza, 12566, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
8
|
Protective effects of cilostazol against hemorrhagic stroke: Current and future perspectives. J Pharmacol Sci 2016; 131:155-61. [DOI: 10.1016/j.jphs.2016.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
|
9
|
Kim HN, Kim TY, Yoon YH, Koh JY. Pyruvate and cilostazol protect cultured rat cortical pericytes against tissue plasminogen activator (tPA)-induced cell death. Brain Res 2015; 1628:317-326. [PMID: 26111647 DOI: 10.1016/j.brainres.2015.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/19/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Since even a brief ischemia can cause permanent brain damage, rapid restoration of blood flow is critical to limiting damage. Although intravenous tPA during the acute stage is the treatment of choice for achieving reperfusion, this treatment is sometimes associated with brain hemorrhage. Agents that reduce tPA-related bleeding risk may help expand its therapeutic window. This study assessed whether zinc dyshomeostasis underlies the toxic effect of tPA on brain vascular pericytes; whether pyruvate, an inhibitor of zinc toxicity, protects pericytes against tPA-induced cell death; and whether cilostazol, which protects pericytes against tPA-induced cell death, affects zinc dyshomeostasis associated with tPA toxicity. Cultured pericytes from newborn rat brains were treated with 10-200 μg/ml tPA for 24 h, inducing cell death in a concentration-dependent manner. tPA-induced cell death was preceded by increases in intracellular free zinc levels, and was substantially attenuated by plasminogen activator inhibitor-1 (PAI-1) or TPEN. Pyruvate completely blocked direct zinc toxicity and tPA-induced pericyte cell death. Both cAMP and cilostazol, a PDE3 inhibitor that attenuates tPA-induced pericyte cell death in vitro and tPA-induced brain hemorrhage in vivo, reduced zinc- and tPA-induced pericyte cell death, suggesting that zinc dyshomeostasis may be targeted by cilostazol in tPA toxicity. These findings show that tPA-induced pericyte cell death may involve zinc dyshomeostasis, and that pyruvate and cilostazol attenuate tPA-induced cell death by reducing the toxic cascade triggered by zinc dyshomeostasis. Since pyruvate is an endogenous metabolite and cilostazol is an FDA-approved drug, in vivo testing of both as protectors against tPA-induced brain hemorrhage may be warranted. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Ha Na Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Tae-Youn Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jae-Young Koh
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Department of Neurology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
10
|
Horie N, Kaminogo M, Izumo T, Hayashi K, Tsujino A, Nagata I. Cilostazol may prevent cardioembolic stroke in patients undergoing antiplatelet therapy. Neurol Res 2015; 37:619-23. [DOI: 10.1179/1743132815y.0000000021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Neuroprotective effects of cilostazol are mediated by multiple mechanisms in a mouse model of permanent focal ischemia. Brain Res 2015; 1602:53-61. [DOI: 10.1016/j.brainres.2015.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
|