1
|
Malik RN, Marigold DS, Chow M, Eginyan G, Lam T. Lower limb pointing to assess intersegmental dynamics after incomplete spinal cord injury and the associated role of proprioceptive impairments. J Neuroeng Rehabil 2025; 22:28. [PMID: 39955608 PMCID: PMC11829519 DOI: 10.1186/s12984-025-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/03/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Disorders in the recovery of gait strategies in individuals with incomplete spinal cord injury (SCI) suggest difficulties in controlling lower limb intersegmental dynamics, which could relate to proprioceptive impairments. To probe discrete aspects of lower limb interjoint coordination, we present here a novel protocol to assess lower limb motor strategies and evaluate the influence of proprioceptive impairments following SCI. METHODS Twelve able-bodied controls and 16 participants with SCI performed lower limb pointing to three targets that involved combined hip and knee flexion, or hip or knee flexion only while standing, with either full or obstructed visual feedback. We quantified lower limb proprioceptive sense in individuals with SCI using a robotic gait device. We used motion analysis to determine lower limb joint angles and foot trajectory, computed inverse dynamics to quantify joint and intersegmental dynamics, and derived muscle torque as an indicator of the motor strategies produced to control the motion to each target. We used linear mixed-effects models to assess differences between the control and SCI groups on end-point performance and muscle torque, and to assess the relationship of muscle torque with end-point performance and proprioceptive sense. RESULTS Groups differed in motor strategies, but not end-point performance, when pointing to all three targets. Compared to controls, the SCI group had difficulty controlling knee muscle torque when performing the hip-flexion-only target (p = 0.008) or when flexing the hip and knee simultaneously (p = 0.0004). To complete the knee-flexion-only target, the SCI group had difficulties generating the required hip extensor muscle torque to maintain the thigh in neutral (p = 0.0001). These altered motor strategies in individuals with SCI were associated with proprioceptive impairments and end-point performance. CONCLUSION This novel lower limb pointing task can identify disordered motor strategies in individuals with SCI, especially at the knee, and are associated with proprioceptive impairment. Variations of this paradigm can be employed to further understand differences in motor strategies between controls and individuals with SCI, and the impact of proprioceptive deficits.
Collapse
Affiliation(s)
- Raza N Malik
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
| | - Daniel S Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
| | - Mason Chow
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Gevorg Eginyan
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Tania Lam
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Santamaria AJ, Benavides FD, Saraiva PM, Anderson KD, Khan A, Levi AD, Dietrich WD, Guest JD. Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol 2021; 11:514181. [PMID: 33536992 PMCID: PMC7848788 DOI: 10.3389/fneur.2020.514181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neurophysiological testing can provide quantitative information about motor, sensory, and autonomic system connectivity following spinal cord injury (SCI). The clinical examination may be insufficiently sensitive and specific to reveal evolving changes in neural circuits after severe injury. Neurophysiologic data may provide otherwise imperceptible circuit information that has rarely been acquired in biologics clinical trials in SCI. We reported a Phase 1 study of autologous purified Schwann cell suspension transplantation into the injury epicenter of participants with complete subacute thoracic SCI, observing no clinical improvements. Here, we report longitudinal electrophysiological assessments conducted during the trial. Six participants underwent neurophysiology screening pre-transplantation with three post-transplantation neurophysiological assessments, focused on the thoracoabdominal region and lower limbs, including MEPs, SSEPs, voluntarily triggered EMG, and changes in GSR. We found several notable signals not detectable by clinical exam. In all six participants, thoracoabdominal motor connectivity was detected below the clinically assigned neurological level defined by sensory preservation. Additionally, small voluntary activations of leg and foot muscles or positive lower extremity MEPs were detected in all participants. Voluntary EMG was most sensitive to detect leg motor function. The recorded MEP amplitudes and latencies indicated a more caudal thoracic level above which amplitude recovery over time was observed. In contrast, further below, amplitudes showed less improvement, and latencies were increased. Intercostal spasms observed with EMG may also indicate this thoracic “motor level.” Galvanic skin testing revealed autonomic dysfunction in the hands above the injury levels. As an open-label study, we can establish no clear link between these observations and cell transplantation. This neurophysiological characterization may be of value to detect therapeutic effects in future controlled studies.
Collapse
Affiliation(s)
- Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Francisco D Benavides
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Pedro M Saraiva
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Kimberly D Anderson
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Aisha Khan
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,Miller School of Medicine, The Interdisciplinary Stem Cell Institute, The University of Miami, Miami, FL, United States
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Santamaría AJ, Benavides FD, DiFede DL, Khan A, Pujol MV, Dietrich WD, Marttos A, Green BA, Hare JM, Guest JD. Clinical and Neurophysiological Changes after Targeted Intrathecal Injections of Bone Marrow Stem Cells in a C3 Tetraplegic Subject. J Neurotrauma 2018; 36:500-516. [PMID: 29790404 DOI: 10.1089/neu.2018.5716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High-level quadriplegia is a devastating condition with limited treatment options. Bone marrow derived stem cells (BMSCs) are reported to have immunomodulatory and neurotrophic effects in spinal cord injury (SCI). We report a subject with complete C2 SCI who received three anatomically targeted intrathecal infusions of BMSCs under a single-patient expanded access investigational new drug (IND). She underwent intensive physical therapy and was followed for >2 years. At end-point, her American Spinal Injury Association Impairment Scale (AIS) grade improved from A to B, and she recovered focal pressure touch sensation over several body areas. We conducted serial neurophysiological testing to monitor changes in residual connectivity. Motor, sensory, and autonomic system testing included motor evoked potentials (MEPs), somatosensory evoked potentials (SSEPs), electromyography (EMG) recordings, F waves, galvanic skin responses, and tilt-table responses. The quality and magnitude of voluntary EMG activations increased over time, but remained below the threshold of clinically obvious movement. Unexpectedly, at 14 months post-injury, deep inspiratory maneuvers triggered respiratory-like EMG bursting in the biceps and several other muscles. This finding means that connections between respiratory neurons and motor neurons were newly established, or unmasked. We also report serial analysis of MRI, International Standards for Neurological Classification of SCI (ISNCSCI), pulmonary function, pain scores, cerebrospinal fluid (CSF) cytokines, and bladder assessment. As a single case, the linkage of the clinical and neurophysiological changes to either natural history or to the BMSC infusions cannot be resolved. Nevertheless, such detailed neurophysiological assessment of high cervical SCI patients is rarely performed. Our findings indicate that electrophysiology studies are sensitive to define both residual connectivity and new plasticity.
Collapse
Affiliation(s)
- Andrea J Santamaría
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Francisco D Benavides
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Aisha Khan
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marietsy V Pujol
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Antonio Marttos
- 4 Surgical Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - Barth A Green
- 3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - James D Guest
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
4
|
Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-Based Neurorehabilitation: Recommendations for Neurorehabilitation From Basic Science. J Mot Behav 2015; 47:7-17. [DOI: 10.1080/00222895.2014.931273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Colclough S, Copley J, Turpin M, Justins E, De Monte R. Occupational therapists’ perceptions of requirements for competent upper limb hypertonicity practice. Disabil Rehabil 2014; 37:1416-23. [DOI: 10.3109/09638288.2014.972585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|