1
|
Marinou G, Kourouma I, Mombaur K. Development and Validation of a Modular Sensor-Based System for Gait Analysis and Control in Lower-Limb Exoskeletons. SENSORS (BASEL, SWITZERLAND) 2025; 25:2379. [PMID: 40285072 PMCID: PMC12030982 DOI: 10.3390/s25082379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
With rapid advancements in lower-limb exoskeleton hardware, two key challenges persist: the accurate assessment of user biomechanics and the reliable control of device behavior in real-world settings. This study presents a modular, sensor-based system designed to enhance both biomechanical evaluation and control of lower-limb exoskeletons, leveraging advanced sensor technologies and fuzzy logic. The system addresses the limitations of traditional lab-bound, high-cost methods by integrating inertial measurement units, force-sensitive resistors, and load cells into instrumented crutches and 3D-printed insoles. These components work independently or in unison to capture critical biomechanical metrics, including the anteroposterior center of pressure and crutch ground reaction forces. Data are processed in real time by a central unit using fuzzy logic algorithms to estimate gait phases and support exoskeleton control. Validation experiments with three participants, benchmarked against motion capture and force plate systems, demonstrate the system's ability to reliably detect gait phases and accurately measure biomechanical parameters. By offering an open-source, cost-effective design, this work contributes to the advancement of wearable robotics and promotes broader innovation and accessibility in exoskeleton research.
Collapse
Affiliation(s)
- Giorgos Marinou
- Institute of Computer Engineering (ZITI), Heidelberg University, 69120 Heidelberg, Germany; (G.M.); (I.K.)
| | - Ibrahima Kourouma
- Institute of Computer Engineering (ZITI), Heidelberg University, 69120 Heidelberg, Germany; (G.M.); (I.K.)
| | - Katja Mombaur
- Institute for Anthropomatics and Robotics, Optimization and Biomechanics for Human-Centred Robotics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Department of Systems Design Engineering, CERC Human-Centred Robotics and Machine Intelligence, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Trentadue TP, Schmitt D. Fourier Analysis of the Vertical Ground Reaction Force During Walking: Applications for Quantifying Differences in Gait Strategies. J Appl Biomech 2024; 40:250-258. [PMID: 38608710 DOI: 10.1123/jab.2023-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
Time series biomechanical data inform our understanding of normal gait mechanics and pathomechanics. This study examines the utility of different quantitative methods to distinguish vertical ground reaction forces (VGRFs) from experimentally distinct gait strategies. The goals of this study are to compare measures of VGRF data-using the shape factor method and a Fourier series-based analysis-to (1) describe how these methods reflect and distinguish gait patterns and (2) determine which Fourier series coefficients discriminate normal walking, with a relatively stiff-legged gait, from compliant walking, using deep knee flexion and limited vertical oscillation. This study includes a reanalysis of previously presented VGRF data. We applied the shape factor method and fit 3- to 8-term Fourier series to zero-padded VGRF data. We compared VGRF renderings using Euclidean L2 distances and correlations stratified by gait strategy. Euclidean L2 distances improved with additional harmonics, with limited improvement after the seventh term. Euclidean L2 distances were greater in shape factor versus Fourier series renderings. In the 8 harmonic model, amplitudes of 9 Fourier coefficients-which contribute to VGRF features including peak and local minimum amplitudes and limb loading rates-were different between normal and compliant walking. The results suggest that Fourier series-based methods distinguish between gait strategies.
Collapse
Affiliation(s)
- Taylor P Trentadue
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Wang C, Pei Z, Fan Y, Qiu S, Tang Z. Review of Vision-Based Environmental Perception for Lower-Limb Exoskeleton Robots. Biomimetics (Basel) 2024; 9:254. [PMID: 38667265 PMCID: PMC11048416 DOI: 10.3390/biomimetics9040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The exoskeleton robot is a wearable electromechanical device inspired by animal exoskeletons. It combines technologies such as sensing, control, information, and mobile computing, enhancing human physical abilities and assisting in rehabilitation training. In recent years, with the development of visual sensors and deep learning, the environmental perception of exoskeletons has drawn widespread attention in the industry. Environmental perception can provide exoskeletons with a certain level of autonomous perception and decision-making ability, enhance their stability and safety in complex environments, and improve the human-machine-environment interaction loop. This paper provides a review of environmental perception and its related technologies of lower-limb exoskeleton robots. First, we briefly introduce the visual sensors and control system. Second, we analyze and summarize the key technologies of environmental perception, including related datasets, detection of critical terrains, and environment-oriented adaptive gait planning. Finally, we analyze the current factors limiting the development of exoskeleton environmental perception and propose future directions.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyong Tang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; (C.W.); (Z.P.); (Y.F.); (S.Q.)
| |
Collapse
|
4
|
Peiffer M, Duquesne K, Delanghe M, Van Oevelen A, De Mits S, Audenaert E, Burssens A. Quantifying walking speeds in relation to ankle biomechanics on a real-time interactive gait platform: a musculoskeletal modeling approach in healthy adults. Front Bioeng Biotechnol 2024; 12:1348977. [PMID: 38515625 PMCID: PMC10956131 DOI: 10.3389/fbioe.2024.1348977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background: Given the inherent variability in walking speeds encountered in day-to-day activities, understanding the corresponding alterations in ankle biomechanics would provide valuable clinical insights. Therefore, the objective of this study was to examine the influence of different walking speeds on biomechanical parameters, utilizing gait analysis and musculoskeletal modelling. Methods: Twenty healthy volunteers without any lower limb medical history were included in this study. Treadmill-assisted gait-analysis with walking speeds of 0.8 m/s and 1.1 m/s was performed using the Gait Real-time Analysis Interactive Lab (GRAIL®). Collected kinematic data and ground reaction forces were processed via the AnyBody® modeling system to determine ankle kinetics and muscle forces of the lower leg. Data were statistically analyzed using statistical parametric mapping to reveal both spatiotemporal and magnitude significant differences. Results: Significant differences were found for both magnitude and spatiotemporal curves between 0.8 m/s and 1.1 m/s for the ankle flexion (p < 0.001), subtalar force (p < 0.001), ankle joint reaction force and muscles forces of the M. gastrocnemius, M. soleus and M. peroneus longus (α = 0.05). No significant spatiotemporal differences were found between 0.8 m/s and 1.1 m/s for the M. tibialis anterior and posterior. Discussion: A significant impact on ankle joint kinematics and kinetics was observed when comparing walking speeds of 0.8 m/s and 1.1 m/s. The findings of this study underscore the influence of walking speed on the biomechanics of the ankle. Such insights may provide a biomechanical rationale for several therapeutic and preventative strategies for ankle conditions.
Collapse
Affiliation(s)
- M. Peiffer
- Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Foot & Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - K. Duquesne
- Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - M. Delanghe
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - A. Van Oevelen
- Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - S. De Mits
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
- Smart Space, Ghent University Hospital, Ghent, Belgium
| | - E. Audenaert
- Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Trauma and Orthopaedics, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Electromechanics, Op3Mech Research Group, University of Antwerp, Antwerp, Belgium
| | - A. Burssens
- Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Labrozzi GC, Warner H, Makowski NS, Audu ML, Triolo RJ. Center of Mass Estimation for Impaired Gait Assessment Using Inertial Measurement Units. IEEE Trans Neural Syst Rehabil Eng 2024; 32:12-22. [PMID: 38090847 PMCID: PMC10849874 DOI: 10.1109/tnsre.2023.3341436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Injury or disease often compromise walking dynamics and negatively impact quality of life and independence. Assessing methods to restore or improve pathological gait can be expedited by examining a global parameter that reflects overall musculoskeletal control. Center of mass (CoM) kinematics follow well-defined trajectories during unimpaired gait, and change predictably with various gait pathologies. We propose a method to estimate CoM trajectories from inertial measurement units (IMUs) using a bidirectional Long Short-Term Memory neural network to evaluate rehabilitation interventions and outcomes. Five non-disabled volunteers participated in a single session of various dynamic walking trials with IMUs mounted on various body segments. A neural network trained with data from four of the five volunteers through a leave-one-subject out cross validation estimated the CoM with average root mean square errors (RMSEs) of 1.44cm, 1.15cm, and 0.40cm in the mediolateral (ML), anteroposterior (AP), and inferior/superior (IS) directions respectively. The impact of number and location of IMUs on network prediction accuracy was determined via principal component analysis. Comparing across all configurations, three to five IMUs located on the legs and medial trunk were the most promising reduced sensor sets for achieving CoM estimates suitable for outcome assessment. Lastly, the networks were tested on data from an individual with hemiparesis with the greatest error increase in the ML direction, which could stem from asymmetric gait. These results provide a framework for assessing gait deviations after disease or injury and evaluating rehabilitation interventions intended to normalize gait pathologies.
Collapse
|
6
|
Hu X, Lu J, Wang Y, Pang R, Liu J, Gou X, Bai X, Zhang A, Cheng H, Wang Q, Chang Y, Yin J, Chang C, Xiao H, Wang W. Effects of a lower limb walking exoskeleton on quality of life and activities of daily living in patients with complete spinal cord injury: A randomized controlled trial. Technol Health Care 2024; 32:243-253. [PMID: 37483030 DOI: 10.3233/thc-220871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND In recent years, lower limb walking exoskeletons have been widely used in the study of spinal cord injury (SCI). OBJECTIVE To explore the effect of a lower limb walking exoskeleton on quality of life and functional independence in patients with motor complete SCI. METHODS This was a multi-center, single blind, randomized controlled trial. A total of 16 SCI patients were randomly assigned to either the exoskeleton-assisted walking (EAW) group (n= 8) or the conventional group (n= 8). Both groups received conventional rehabilitation training, including aerobic exercise and strength training. The EAW group additionally conducted the exoskeleton-assisted walking training using an AIDER powered robotic exoskeleton for 40-50 minutes, 5 times/week for 8 weeks. World Health Organization quality of life-BREF (WHOQOL-BREF) and the Spinal Cord Independence Measure III (SCIM-III) were used for assessment before and after training. RESULTS There was an increasing tendency of scores in the psychological health, physical health, and social relationships domain of WHOQOL-BREF in the EAW group after the intervention compared with the pre-intervention period, but there was no significant difference (P> 0.05). SCIM-III scores increased in both groups compared to pre-training, with only the conventional group showing a significant difference after 8 weeks of training (P< 0.05). CONCLUSION A lower limb walking exoskeleton may have potential benefits for quality of life and activities of daily living in patients with motor complete SCI.
Collapse
Affiliation(s)
- Xiaomin Hu
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Jiachun Lu
- The Eighth People's Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Yunyun Wang
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Xingang Bai
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation, Shanghai Fourth People's Hospital, Shanghai, China
| | - Hong Cheng
- University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Qian Wang
- Chengdu Gulian Jinchen Rehabilitation Hospital, Chengdu, Sichuan, China
| | - Youjun Chang
- Sichuan Rehabilitation Hospital, Chengdu, Sichuan, China
| | - Jie Yin
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Cong Chang
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| | - Hua Xiao
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, The Western Theater General Hospital, Chengdu, China
| |
Collapse
|
7
|
Martínez-Pascual D, Catalán JM, Blanco-Ivorra A, Sanchís M, Arán-Ais F, García-Aracil N. Estimating vertical ground reaction forces during gait from lower limb kinematics and vertical acceleration using wearable inertial sensors. Front Bioeng Biotechnol 2023; 11:1199459. [PMID: 37840666 PMCID: PMC10570513 DOI: 10.3389/fbioe.2023.1199459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
One of the most important forces generated during gait is the vertical ground reaction force (vGRF). This force can be measured using force plates, but these can limit the scope of gait analysis. This paper presents a method to estimate the vGRF using inertial measurement units (IMU) and machine learning techniques. Four wearable IMUs were used to obtain flexion/extension angles of the hip, knee, and ankle joints, and an IMU placed over the C7 vertebra to measure vertical acceleration. We trained and compared the performance of two machine learning algorithms: feedforward neural networks (FNN) and random forest (RF). We investigated the importance of the inputs introduced into the models and analyzed in detail the contribution of lower limb kinematics and vertical acceleration to model performance. The results suggest that the inclusion of vertical acceleration increases the root mean square error in the FNN, while the RF appears to decrease it. We also analyzed the ability of the models to construct the force signal, with particular emphasis on the magnitude and timing of the vGRF peaks. Using the proposed method, we concluded that FNN and RF models can estimate the vGRF with high accuracy.
Collapse
Affiliation(s)
- David Martínez-Pascual
- Biomedical Neuroengineering Research Group, Robotics and Artificial Intelligence Unit, Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| | - José M. Catalán
- Biomedical Neuroengineering Research Group, Robotics and Artificial Intelligence Unit, Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| | - Andrea Blanco-Ivorra
- Biomedical Neuroengineering Research Group, Robotics and Artificial Intelligence Unit, Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| | - Mónica Sanchís
- INESCOP Footwear Technology Center, Elda, Alicante, Spain
| | | | - Nicolás García-Aracil
- Biomedical Neuroengineering Research Group, Robotics and Artificial Intelligence Unit, Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
8
|
Chandran VD, Nam S, Hexner D, Bauman WA, Pal S. Comparison of the dynamics of exoskeletal-assisted and unassisted locomotion in an FDA-approved lower extremity device: Controlled experiments and development of a subject-specific virtual simulator. PLoS One 2023; 18:e0270078. [PMID: 36763637 PMCID: PMC9916583 DOI: 10.1371/journal.pone.0270078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Robotic exoskeletons have considerable, but largely untapped, potential to restore mobility in individuals with neurological disorders, and other conditions that result in partial or complete immobilization. The growing demand for these devices necessitates the development of technology to characterize the human-robot system during exoskeletal-assisted locomotion (EAL) and accelerate robot design refinements. The goal of this study was to combine controlled experiments with computational modeling to build a virtual simulator of EAL. The first objective was to acquire a minimum empirical dataset comprising human-robot kinematics, ground reaction forces, and electromyography during exoskeletal-assisted and unassisted locomotion from an able-bodied participant. The second objective was to quantify the dynamics of the human-robot system using a subject-specific virtual simulator reproducing EAL compared to the dynamics of normal gait. We trained an able-bodied participant to ambulate independently in a Food and Drug Administration-approved exoskeleton, the ReWalk P6.0 (ReWalk Robotics, Yoknaem, Israel). We analyzed the motion of the participant during exoskeletal-assisted and unassisted walking, sit-to-stand, and stand-to-sit maneuvers, with simultaneous measurements of (i) three-dimensional marker trajectories, (ii) ground reaction forces, (iii) electromyography, and (iv) exoskeleton encoder data. We created a virtual simulator in OpenSim, comprising a whole-body musculoskeletal model and a full-scale exoskeleton model, to determine the joint kinematics and moments during exoskeletal-assisted and unassisted maneuvers. Mean peak knee flexion angles of the human subject during exoskeletal-assisted walking were 50.1° ± 0.6° (left) and 52.6° ± 0.7° (right), compared to 68.6° ± 0.3° (left) and 70.7° ± 1.1° (right) during unassisted walking. Mean peak knee extension moments during exoskeletal-assisted walking were 0.10 ± 0.10 Nm/kg (left) and 0.22 ± 0.11 Nm/kg (right), compared to 0.64 ± 0.07 Nm/kg (left) and 0.73 ± 0.10 Nm/kg (right) during unassisted walking. This work provides a foundation for parametric studies to characterize the effects of human and robot design variables, and predictive modeling to optimize human-robot interaction during EAL.
Collapse
Affiliation(s)
- Vishnu D. Chandran
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Sanghyun Nam
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | | | - William A. Bauman
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
- Department of Medicine and Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Saikat Pal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| |
Collapse
|
9
|
Rodríguez-Fernández A, Lobo-Prat J, Tarragó R, Chaverri D, Iglesias X, Guirao-Cano L, Font-Llagunes JM. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial. Sci Rep 2022; 12:19150. [PMID: 36351989 PMCID: PMC9646697 DOI: 10.1038/s41598-022-23556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Recovering the ability to stand and walk independently can have numerous health benefits for people with spinal cord injury (SCI). Wearable exoskeletons are being considered as a promising alternative to conventional knee-ankle-foot orthoses (KAFOs) for gait training and assisting functional mobility. However, comparisons between these two types of devices in terms of gait biomechanics and energetics have been limited. Through a randomized, crossover clinical trial, this study compared the use of a knee-powered lower limb exoskeleton (the ABLE Exoskeleton) against passive orthoses, which are the current standard of care for verticalization and gait ambulation outside the clinical setting in people with SCI. Ten patients with SCI completed a 10-session gait training program with each device followed by user satisfaction questionnaires. Walking with the ABLE Exoskeleton improved gait kinematics compared to the KAFOs, providing a more physiological gait pattern with less compensatory movements (38% reduction of circumduction, 25% increase of step length, 29% improvement in weight shifting). However, participants did not exhibit significantly better results in walking performance for the standard clinical tests (Timed Up and Go, 10-m Walk Test, and 6-min Walk Test), nor significant reductions in energy consumption. These results suggest that providing powered assistance only on the knee joints is not enough to significantly reduce the energy consumption required by people with SCI to walk compared to passive orthoses. Active assistance on the hip or ankle joints seems necessary to achieve this outcome.
Collapse
Affiliation(s)
- Antonio Rodríguez-Fernández
- Biomechanical Engineering Lab, Deparment of Mechanical Engineering and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain.
| | | | - Rafael Tarragó
- Grup de Recerca en Ciències de l'Esport INEFC Barcelona, Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, 08038, Spain
| | - Diego Chaverri
- Grup de Recerca en Ciències de l'Esport INEFC Barcelona, Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, 08038, Spain
| | - Xavier Iglesias
- Grup de Recerca en Ciències de l'Esport INEFC Barcelona, Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, 08038, Spain
| | - Lluis Guirao-Cano
- Rehabilitation Service, Asepeyo Hospital Barcelona, 08174, Barcelona, Spain
| | - Josep M Font-Llagunes
- Biomechanical Engineering Lab, Deparment of Mechanical Engineering and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| |
Collapse
|
10
|
Rodriguez Tapia G, Doumas I, Lejeune T, Previnaire JG. Wearable powered exoskeletons for gait training in tetraplegia: a systematic review on feasibility, safety and potential health benefits. Acta Neurol Belg 2022; 122:1149-1162. [DOI: 10.1007/s13760-022-02011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/16/2022] [Indexed: 11/01/2022]
|
11
|
Zwijgers E, Nienhuis B, Rijken H, van Nes IJW, Geurts ACH, Keijsers NLW. The effect of limited sensory information on exoskeleton performance in people with complete spinal cord injury. IEEE Int Conf Rehabil Robot 2022; 2022:1-5. [PMID: 36176145 DOI: 10.1109/icorr55369.2022.9896518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the absence of somatosensory information from the lower extremities, people with complete spinal cord injury (SCI) can maintain postural stability in an exoskeleton. This is partly because humans are able to reweigh the relative dependence on each of the senses. However, when the sensory environment is changed, people with complete SCI are limited in their ability to reweigh their sensory organization towards more dependence on somatosensory information. The aim of this study was to investigate the effect of limited visual and/or auditory information on exoskeleton performance in people with complete SCI. Three experienced exoskeleton users performed twelve walking trials in the ReWalk exoskeleton. In each trial, the presence or absence of visual and/or auditory information was varied. Exoskeleton performance was operationalized as the walking distance covered and the amount of crutch loading. In one participant, the distance covered decreased when visual information was limited. The other two participants did not show substantial differences in distance covered between sensory conditions. Two participants decreased crutch loading when visual information was restricted, and one participant decreased crutch loading when auditory information was limited. The current study suggests a limited influence of the presence or absence of visual and auditory information on the distance covered in people with complete SCI walking in an exoskeleton. Interestingly, crutch loading seemed to decrease rather than increase when visual or auditory information was limited.
Collapse
|
12
|
Trajectory Modulation for Impact Reducing of Lower-Limb Exoskeletons. MICROMACHINES 2022; 13:mi13060816. [PMID: 35744430 PMCID: PMC9228022 DOI: 10.3390/mi13060816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Lower-limb exoskeletons have received considerable attention because of their effectiveness in walking assistance and rehabilitation for paraplegic patients. Excessive foot–ground impacts during walking make patients uncomfortable and even lead to injury. In this paper, we propose an optimized knee trajectory modulation (OKTM) for foot–ground impact reduction. The OKTM can reduce the peak of ground reaction force (PGRF) by knee-joint trajectory modulation based on a parameters-optimizing spring-damping system. In addition, a hip trajectory modulation (HTM) is presented to compensate for torso pitch deflections due to the OKTM. Unlike traditional mechanical-device-based methods, the proposed OKTM and HTM require no bulky mechanical structures, and can adaptively adjust parameters to adapt to different impacts. We demonstrated the efficiency of the proposed approach in both simulations and experiments for engineering verifications. Results show that the approach can effectively reduce PGRF.
Collapse
|
13
|
Chen S, Wang Z, Li Y, Tang J, Wang X, Huang L, Fang Z, Xu T, Xu J, Guo F, Wang Y, Long J, Wang X, Liu F, Luo J, Wang Y, Huang X, Jia Z, Shuai M, Li J. Safety and Feasibility of a Novel Exoskeleton for Locomotor Rehabilitation of Subjects With Spinal Cord Injury: A Prospective, Multi-Center, and Cross-Over Clinical Trial. Front Neurorobot 2022; 16:848443. [PMID: 35645758 PMCID: PMC9133609 DOI: 10.3389/fnbot.2022.848443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To evaluate the safety, walking efficiency, physiological cost, don and doff time cost, and user satisfaction of Ai-robot. Design Prospective, multi-center, and cross-over trial. Subjects Paraplegic subjects (n = 40) with T6-L2 level spinal cord injury. Methods Subjects who could walk independently using Aiwalker, Ailegs, and hip knee ankle foot orthosis (HKAFO) for 6 min within 30 days of training underwent 10 sets of tests. In each set, they completed three 6-min walk test (6MWT) sessions using the three aids in random order. Results Skin lesions, pressure sores, and fractures, were the main adverse events, likely due to a lack of experience in using exoskeleton systems. The average 6MWT distances of the Aiwalker, Ailegs, and HKAFO groups were 134.20 ± 18.74, 79.71 ± 18.06, and 48.31 ± 19.87 m, respectively. The average heart rate increases in the Aiwalker (4.21 ± 8.20%) and Ailegs (41.81 ± 23.47%) groups were both significantly lower than that in the HKAFO group (62.33 ± 28.32%) (both p < 0.001). The average donning/doffing time costs for Ailegs and Aiwalker were significantly shorter than that of HKAFO (both p < 0.001). Satisfaction was higher in the Ailegs and Aiwalker groups (both p < 0.001). Conclusion Subjects with paraplegia below T6 level were able to ambulate safely and efficiently with Ai-robot. The use of Ai-robot should be learned under the guidance of experienced medical personnel.
Collapse
Affiliation(s)
- Sijing Chen
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Zhanbin Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Yongqiang Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Jiashuai Tang
- Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Xue Wang
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Liping Huang
- Department of Rehabilitation, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhuangwei Fang
- Department of Rehabilitation, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tao Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhao Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Long
- Department of Rehabilitation, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaodong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Liu
- Department of Rehabilitation, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zishan Jia
- Department of Rehabilitation, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mei Shuai
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Jianan Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| |
Collapse
|
14
|
Sethi D, Bharti S, Prakash C. A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, and future work. Artif Intell Med 2022; 129:102314. [DOI: 10.1016/j.artmed.2022.102314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022]
|
15
|
Tamburella F, Lorusso M, Tramontano M, Fadlun S, Masciullo M, Scivoletto G. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review. J Neuroeng Rehabil 2022; 19:27. [PMID: 35292044 PMCID: PMC8922901 DOI: 10.1186/s12984-022-01003-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Overground powered lower limb exoskeletons (EXOs) have proven to be valid devices in gait rehabilitation in individuals with spinal cord injury (SCI). Although several articles have reported the effects of EXOs in these individuals, the few reviews available focused on specific domains, mainly walking. The aim of this systematic review is to provide a general overview of the effects of commercial EXOs (i.e. not EXOs used in military and industry applications) for medical purposes in individuals with SCI. This systematic review was conducted following the PRISMA guidelines and it referred to MED-LINE, EMBASE, SCOPUS, Web of Science and Cochrane library databases. The studies included were Randomized Clinical Trials (RCTs) and non-RCT based on EXOs intervention on individuals with SCI. Out of 1296 studies screened, 41 met inclusion criteria. Among all the EXO studies, the Ekso device was the most discussed, followed by ReWalk, Indego, HAL and Rex devices. Since 14 different domains were considered, the outcome measures were heterogeneous. The most investigated domain was walking, followed by cardiorespiratory/metabolic responses, spasticity, balance, quality of life, human–robot interaction, robot data, bowel functionality, strength, daily living activity, neurophysiology, sensory function, bladder functionality and body composition/bone density domains. There were no reports of negative effects due to EXOs trainings and most of the significant positive effects were noted in the walking domain for Ekso, ReWalk, HAL and Indego devices. Ekso studies reported significant effects due to training in almost all domains, while this was not the case with the Rex device. Not a single study carried out on sensory functions or bladder functionality reached significance for any EXO. It is not possible to draw general conclusions about the effects of EXOs usage due to the lack of high-quality studies as addressed by the Downs and Black tool, the heterogeneity of the outcome measures, of the protocols and of the SCI epidemiological/neurological features. However, the strengths and weaknesses of EXOs are starting to be defined, even considering the different types of adverse events that EXO training brought about. EXO training showed to bring significant improvements over time, but whether its effectiveness is greater or less than conventional therapy or other treatments is still mostly unknown. High-quality RCTs are necessary to better define the pros and cons of the EXOs available today. Studies of this kind could help clinicians to better choose the appropriate training for individuals with SCI.
Collapse
Affiliation(s)
- Federica Tamburella
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy.
| | - Matteo Lorusso
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Marco Tramontano
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Silvia Fadlun
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Marcella Masciullo
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Giorgio Scivoletto
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| |
Collapse
|
16
|
Yip CCH, Lam CY, Cheung KMC, Wong YW, Koljonen PA. Knowledge Gaps in Biophysical Changes After Powered Robotic Exoskeleton Walking by Individuals With Spinal Cord Injury-A Scoping Review. Front Neurol 2022; 13:792295. [PMID: 35359657 PMCID: PMC8960715 DOI: 10.3389/fneur.2022.792295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to helping individuals with spinal cord injury (SCI) regain the ability to ambulate, the rapidly evolving capabilities of robotic exoskeletons provide an array of secondary biophysical benefits which can reduce the complications resulting from prolonged immobilization. The proposed benefits of increased life-long over-ground walking capacity include improved upper body muscular fitness, improved circulatory response, improved bowel movement regularity, and reduced pain and spasticity. Beyond the positive changes related to physical and biological function, exoskeletons have been suggested to improve SCI individuals' quality of life (QOL) by allowing increased participation in day-to-day activities. Most of the currently available studies that have reported on the impact of exoskeletons on the QOL and prevention of secondary health complications on individuals with SCI, are of small scale and are heterogeneous in nature. Moreover, few meta-analyses and reviews have attempted to consolidate the dispersed data to reach more definitive conclusions of the effects of exoskeleton use. This scoping review seeks to provide an overview on the known effects of overground exoskeleton use, on the prevention of secondary health complications, changes to the QOL, and their effect on the independence of SCI individuals in the community settings. Moreover, the intent of the review is to identify gaps in the literature currently available, and to make recommendations on focus study areas and methods for future investigations.
Collapse
Affiliation(s)
- Christopher C. H. Yip
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chor-Yin Lam
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth M. C. Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yat Wa Wong
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
| | - Paul A. Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Pinto-Fernandez D, Torricelli D, Sanchez-Villamanan MDC, Aller F, Mombaur K, Conti R, Vitiello N, Moreno JC, Pons JL. Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng 2021; 28:1573-1583. [PMID: 32634096 DOI: 10.1109/tnsre.2020.2989481] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benchmarks have long been used to verify and compare the readiness level of different technologies in many application domains. In the field of wearable robots, the lack of a recognized benchmarking methodology is one important impediment that may hamper the efficient translation of research prototypes into actual products. At the same time, an exponentially growing number of research studies are addressing the problem of quantifying the performance of robotic exoskeletons, resulting in a rich and highly heterogeneous picture of methods, variables and protocols. This review aims to organize this information, and identify the most promising performance indicators that can be converted into practical benchmarks. We focus our analysis on lower limb functions, including a wide spectrum of motor skills and performance indicators. We found that, in general, the evaluation of lower limb exoskeletons is still largely focused on straight walking, with poor coverage of most of the basic motor skills that make up the activities of daily life. Our analysis also reveals a clear bias towards generic kinematics and kinetic indicators, in spite of the metrics of human-robot interaction. Based on these results, we identify and discuss a number of promising research directions that may help the community to attain a comprehensive benchmarking methodology for robot-assisted locomotion more efficiently.
Collapse
|
18
|
Gorman PH, Forrest GF, Asselin PK, Scott W, Kornfeld S, Hong E, Spungen AM. The Effect of Exoskeletal-Assisted Walking on Spinal Cord Injury Bowel Function: Results from a Randomized Trial and Comparison to Other Physical Interventions. J Clin Med 2021; 10:jcm10050964. [PMID: 33801165 PMCID: PMC7957745 DOI: 10.3390/jcm10050964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Bowel function after spinal cord injury (SCI) is compromised because of a lack of voluntary control and reduction in bowel motility, often leading to incontinence and constipation not easily managed. Physical activity and upright posture may play a role in dealing with these issues. We performed a three-center, randomized, controlled, crossover clinical trial of exoskeletal-assisted walking (EAW) compared to usual activity (UA) in people with chronic SCI. As a secondary outcome measure, the effect of this intervention on bowel function was assessed using a 10-question bowel function survey, the Bristol Stool Form Scale (BSS) and the Spinal Cord Injury Quality of Life (SCI-QOL) Bowel Management Difficulties instrument. Fifty participants completed the study, with bowel data available for 49. The amount of time needed for the bowel program on average was reduced in 24% of the participants after EAW. A trend toward normalization of stool form was noted. There were no significant effects on patient-reported outcomes for bowel function for the SCI-QOL components, although the time since injury may have played a role. Subset analysis suggested that EAW produces a greater positive effect in men than women and may be more effective in motor-complete individuals with respect to stool consistency. EAW, along with other physical interventions previously investigated, may be able to play a previously underappreciated role in assisting with SCI-related bowel dysfunction.
Collapse
Affiliation(s)
- Peter H. Gorman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rehabilitation Medicine, University of Maryland Rehabilitation and Orthopaedic Institute, Baltimore, MD 21207, USA
- Correspondence: ; Tel.: +1-410-448-6265
| | - Gail F. Forrest
- Kessler Foundation, West Orange, NJ 07052, USA;
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School-Rutgers University, Newark, NJ 07103, USA
| | - Pierre K. Asselin
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA; (P.K.A.); (S.K.); (E.H.); (A.M.S.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William Scott
- VA Maryland Healthcare System, Baltimore, MD 21201, USA;
| | - Stephen Kornfeld
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA; (P.K.A.); (S.K.); (E.H.); (A.M.S.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eunkyoung Hong
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA; (P.K.A.); (S.K.); (E.H.); (A.M.S.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ann M. Spungen
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA; (P.K.A.); (S.K.); (E.H.); (A.M.S.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Plaza A, Hernandez M, Puyuelo G, Garces E, Garcia E. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability. Disabil Rehabil Assist Technol 2020; 18:392-406. [PMID: 33332159 DOI: 10.1080/17483107.2020.1858976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To analyse the versatility and adaptability of commercially available exoskeletons for mobility assistance and their adaptation to diverse pathologies through a review of clinical trials in robotic lower limb training. DATA SOURCES A computer-aided search in bibliographic databases (PubMed and Web of Science) of clinical trials published up to September 2020 was done. METHODS To be selected for detailed review, clinical trials had to meet the following criteria: (1) a protocol was designed and approved, (2) participants were people with pathologies, and (3) the trials were not a single case study. Clinical trial data were collected, extracted, and analysed, considering: objectives, trial participants, number of sessions, pathologies involved, and conclusions. RESULTS The search resulted in 312 potentially relevant studies of seven commercial exoskeletons, of which 135 passed the preliminary screening; and 69 studies were finally selected. Of the 69 clinical trials included in the review about 50% involved Spinal Cord Injury participants, while roughly 25% focussed on stroke and two trials corresponded to patients with both disorders. The rest were composed of neurological diseases and trauma disorders. CONCLUSIONS The use of a single wearable robot for different medical conditions in various diseases is a challenge. Based on this comparative, the properties of the exoskeletons that improve the working ability with different pathologies and patient conditions have been evaluated. Suggestions were made for developing a new lower-limb exoskeleton based on various modules with a distributed control system to improve versatility in wearable technology for different gait pattern progression.Implications for rehabilitationWearable robotic exoskeletons for gait assistance have been analysed from the perspective of adaptation to different diseases.This paper emphasizes the importance of personalized therapies and adaptive assistive technology.Suggestions were made for a new modular exoskeleton capable of addressing the issue of low versatility characterizing currently wearable assistive technology.
Collapse
Affiliation(s)
- Alberto Plaza
- Marsi Bionics S.L, Madrid, Spain.,Centro de Automática y Robótica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mar Hernandez
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas (CSIC-UPM), Madrid, Spain
| | - Gonzalo Puyuelo
- Marsi Bionics S.L, Madrid, Spain.,Escuela de Doctorado, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - Elena Garcia
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas (CSIC-UPM), Madrid, Spain
| |
Collapse
|
20
|
Yang W, Zhang J, Zhang S, Yang C. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7216. [PMID: 33339443 PMCID: PMC7766720 DOI: 10.3390/s20247216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
With the help of wearable robotics, the lower limb exoskeleton becomes a promising solution for spinal cord injury (SCI) patients to recover lower body locomotion ability. However, fewer exoskeleton gait planning methods can meet the needs of patient in real time, e.g., stride length or step width, etc., which may lead to human-machine incoordination, limit comfort, and increase the risk of falling. This work presents a human-exoskeleton-crutch system with the center of pressure (CoP)-based gait planning method to enable the balance control during the exoskeleton-assisted walking with crutches. The CoP generated by crutches and human-machine feet makes it possible to obtain the overall stability conditions of the system in the process of exoskeleton-assisted quasi-static walking, and therefore, to determine the next stride length and ensure the balance of the next step. Thus, the exoskeleton gait is planned with the guidance of stride length. It is worth emphasizing that the nominal reference gait is adopted as a reference to ensure that the trajectory of the swing ankle mimics the reference one well. This gait planning method enables the patient to adaptively interact with the exoskeleton gait. The online gait planning walking tests with five healthy volunteers proved the method's feasibility. Experimental results indicate that the algorithm can deal with the sensed signals and plan the landing point of the swing leg to ensure balanced and smooth walking. The results suggest that the method is an effective means to improve human-machine interaction. Additionally, it is meaningful for the further training of independent walking stability control in exoskeletons for SCI patients with less assistance of crutches.
Collapse
Affiliation(s)
- Wei Yang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; (W.Y.); (C.Y.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiyu Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
| | - Sheng Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; (W.Y.); (C.Y.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Canjun Yang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; (W.Y.); (C.Y.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals. Clin Biomech (Bristol, Avon) 2020; 80:105133. [PMID: 32777685 DOI: 10.1016/j.clinbiomech.2020.105133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Overground lower-limb robotic exoskeletons are assistive devices used to facilitate ambulation and gait rehabilitation. Our understanding of how closely they resemble comfortable and slow walking is limited. This information is important to maximise the effects of gait rehabilitation. The aim was to compare the 3D gait parameters of able-bodied individuals walking with and without an exoskeleton at two speeds (self-selected comfortable vs. slow, speed-matched to the exoskeleton) to understand how the user's body moved within the device. METHODS Eight healthy, able-bodied individuals walked along a 12-m walkway with and without the exoskeleton. Three-dimensional whole-body kinematics inside the device were captured. Temporal-spatial parameters and sagittal joint kinematics were determined for normal and exoskeleton walking. One-way repeated measures ANOVAs and statistical parametric mapping were used to compare the three walking conditions (P < .05). FINDINGS The walking speeds of the slow (0.44[0.03] m/s) and exoskeleton (0.41[0.03] m/s) conditions were significantly slower than the comfortable walking speed (1.54[0.07] m/s). However, time in swing was significantly greater (P < .001, d = -3.64) and double support was correspondingly lower (P < .001, d = 3.72) during exoskeleton gait than slow walking, more closely resembling comfortable speed walking. Ankle and knee angles were significantly reduced in the slow and exoskeleton conditions. Angles were also significantly different for the upper body. INTERPRETATION Although the slow condition was speed-matched to exoskeleton gait, the stance:swing ratio of exoskeleton stepping more closely resembled comfortable gait than slow gait. The altered upper body kinematics suggested that overground exoskeletons may provide a training environment that would also benefit balance training.
Collapse
|
22
|
Knezevic S, Asselin PK, Cirnigliaro CM, Kornfeld S, Emmons RR, Spungen AM. Oxygen Uptake During Exoskeletal-Assisted Walking in Persons With Paraplegia. Arch Phys Med Rehabil 2020; 102:185-195. [PMID: 33181116 DOI: 10.1016/j.apmr.2020.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the cardiometabolic demands associated with exoskeletal-assisted walking (EAW) in persons with paraplegia. This study will further examine if training in the device for 60 sessions modifies cost of transport (CT). DESIGN Prospective cohort study. Measurements over the course of a 60-session training program, approximately 20 sessions apart. SETTING James J. Peters Bronx Veterans Affairs Medical Center, Center for the Medical Consequences of Spinal Cord Injury Research Center. PARTICIPANTS The participants' demographics (N=5) were 37-61 years old, body mass index (calculated as weight in kilograms divided by height in meters squared) of 22.7-28.6, level of injury from T1-T11, and 2-14 years since injury. INTERVENTIONS Powered EAW. MAIN OUTCOME MEASURES Oxygen consumption per unit time (V˙O2, mL/min/kg), velocity (m/min), cost of transport (V˙O2/velocity), and rating of perceived exertion (RPE). RESULTS With training: EAW velocity significantly improved (Pre: 51±51m; 0.14±0.14m/s vs Post: 99±42m; 0.28±0.12m/s, P=.023), RPE significantly decreased (Pre: 13±6 vs Post: 7±4, P=.001), V˙O2 significantly improved (Pre: 9.76±1.23 mL/kg/m vs Post: 12.73±2.30 mL/kg/m, P=.04), and CT was reduced from the early to the later stages of training (3.66±5.2 vs 0.87±0.85 mL/kg/m). CONCLUSIONS The current study suggests that EAW training improves oxygen uptake efficiency and walking velocities, with a lower perception of exertion.
Collapse
Affiliation(s)
- Steven Knezevic
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Kinesiology, William Paterson University, Wayne, New Jersey.
| | - Pierre K Asselin
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher M Cirnigliaro
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
| | - Stephen Kornfeld
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Injury Service, James J. Peters VA Medical Center, Bronx, New York
| | - Racine R Emmons
- Department of Kinesiology, William Paterson University, Wayne, New Jersey
| | - Ann M Spungen
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
23
|
Asselin P, Cirnigliaro CM, Kornfeld S, Knezevic S, Lackow R, Elliott M, Bauman WA, Spungen AM. Effect of Exoskeletal-Assisted Walking on Soft Tissue Body Composition in Persons With Spinal Cord Injury. Arch Phys Med Rehabil 2020; 102:196-202. [PMID: 33171129 DOI: 10.1016/j.apmr.2020.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the effect of overground walking using a powered exoskeleton on soft tissue body composition in persons with spinal cord injury (SCI). DESIGN A prospective, single group observational pilot study. SETTING Medical center. PARTICIPANTS Persons (N=8) with chronic (>6mo) SCI between 18 and 65 years old who weighed less than 100 kg. INTERVENTIONS Overground ambulation training using a powered exoskeleton (ReWalk) for 40 sessions, with each session lasting up to 2 hours, with participants training 3 times per week. MAIN OUTCOME MEASURE(S) Dual-energy x-ray absorptiometry (DXA) was used to measure lean mass (LM) and fat mass (FM) from the whole body, arms, legs and trunk. DXA was also used to assess visceral adipose tissue (VAT). Walking performance was measured by 6-minute walk test. RESULTS Participants significantly lost total body FM (-1.8±1.2kg, P=.004) with the loss of adiposity distributed over several regional sites. Six of the 8 participants lost VAT, with the average loss in VAT trending toward significance (-0.141kg, P=.06). LM for the group was not significantly changed. CONCLUSIONS Sustained and weekly use of powered exoskeletons in persons with SCI has the potential to reduce FM with inferred improvements in health.
Collapse
Affiliation(s)
- Pierre Asselin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Christopher M Cirnigliaro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - Stephen Kornfeld
- Spinal Cord Injury Service, James J. Peters VA Medical Center, Bronx, NY
| | - Steven Knezevic
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - Rachel Lackow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - Michael Elliott
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ann M Spungen
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
24
|
Delgado AD, Escalon MX, Bryce TN, Weinrauch W, Suarez SJ, Kozlowski AJ. Safety and feasibility of exoskeleton-assisted walking during acute/sub-acute SCI in an inpatient rehabilitation facility: A single-group preliminary study. J Spinal Cord Med 2020; 43:657-666. [PMID: 31603395 PMCID: PMC7534310 DOI: 10.1080/10790268.2019.1671076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Context/objective: Information on the safety and feasibility of lower extremity powered exoskeletons for persons with acute/sub-acute spinal cord injury (SCI) is limited. Understanding the safety and feasibility of employing powered exoskeletons in acute/sub-acute (<6 months post injury) at a SCI acute inpatient rehabilitation (SCI-AIR) facility could guide clinical practice and provide a basis for larger clinical trials on efficacy and effectiveness. Design: Single group observational study. Setting: SCI-AIR. Participants: Participants (n = 12; age: 28-71 years; 58% AIS D; 58% male) with neurological levels of injuries ranging from C2 to L3. Interventions: Up to 90 min of exoskeleton-assisted locomotor training was provided up to three times per week during SCI-AIR. Outcome measures: Safety of device use during inpatient locomotor training was quantified as the number of adverse events (AE) per device exposure hour. Feasibility of device use was defined in terms of protocol compliance, intensity, and proficiency. Results: Concerning safety, symptomatic hypotension was the most common AE reported at 111-events/exoskeleton-hours. Protocol compliance had a mean (SD) of 54% (30%). For intensity, 77% of participants incorporated variable assistance into at least 1 walking session; 70% of participants' sessions were completed with a higher RPE than the physical therapist. In proficiency, 58% achieved at least minimal assistance when walking with the device. Conclusion: Exoskeleton training in SCI-AIR can be safe and feasible for newly injured individuals with SCI who have clinically defined ambulatory goals. Nonetheless, sufficient controls to minimize risks for AEs, such as hypotensive events, are required.
Collapse
Affiliation(s)
- Andrew D. Delgado
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA,The Graduate School, Icahn School of Medicine at Mount Sinai, New York City, New York, USA,Correspondence to: Andrew D. Delgado, Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, New York10029, USA; Ph: 212-241-9478.
| | - Miguel X. Escalon
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - William Weinrauch
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Stephanie J. Suarez
- Sports Therapy and Rehabilitation Services (STARS), Northwell Health, East Meadow, New York, USA
| | - Allan J. Kozlowski
- Department of Epidemiology and Biostatistics, Michigan State University, Grand Rapids, Michigan, USA,John F. Butzer Center for Research & Innovation, Mary Free Bed Rehabilitation Hospital, Grand Rapids, Michigan, USA
| |
Collapse
|
25
|
Stair-ascent strategies and performance evaluation for a lower limb exoskeleton. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2020. [DOI: 10.1007/s41315-020-00123-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Chun A, Asselin PK, Knezevic S, Kornfeld S, Bauman WA, Korsten MA, Harel NY, Huang V, Spungen AM. Changes in bowel function following exoskeletal-assisted walking in persons with spinal cord injury: an observational pilot study. Spinal Cord 2020; 58:459-466. [PMID: 31822808 PMCID: PMC7145720 DOI: 10.1038/s41393-019-0392-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023]
Abstract
STUDY DESIGN Prospective, observational study. OBJECTIVE To explore the effects of exoskeletal-assisted walking (EAW) on bowel function in persons with spinal cord injury (SCI). SETTING Ambulatory research facility located in a tertiary care hospital. METHODS Individuals 18-65 years of age, with thoracic vertebrae one (T1) to T11 motor-complete paraplegia of at least 12 months duration were enrolled. Pre- and post-EAW training, participants were asked to report on various aspects of their bowel function as well as on their overall quality of life (QOL) as related to their bowel function. RESULTS Ten participants completed 25-63 sessions of EAW over a period of 12-14 weeks, one participant was lost to follow up due to early withdrawal after ten sessions. Due to the small sample size, each participant's results were presented descriptively in a case series format. At least 5/10 participants reported improvements with frequency of bowel evacuations, less time spent on bowel management per bowel day, fewer bowel accidents per month, reduced laxative and/or stool softener use, and improved overall satisfaction with their bowel program post-EAW training. Furthermore, 8/10 reported improved stool consistency and 7/10 reported improved bowel function related QOL. One participant reported worsening of bowel function post-EAW. CONCLUSION Between 50 and 80% of the participants studied reported improvements in bowel function and/or management post-EAW training. EAW training appeared to mitigate SCI-related bowel dysfunction and the potential benefits of EAW on bowel function after SCI is worthy or further study.
Collapse
Affiliation(s)
- Audrey Chun
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pierre K Asselin
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven Knezevic
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Stephen Kornfeld
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William A Bauman
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark A Korsten
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam Y Harel
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Huang
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ann M Spungen
- VA Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, 10468, USA.
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
27
|
Tsai CY, Delgado AD, Weinrauch WJ, Manente N, Levy I, Escalon MX, Bryce TN, Spungen AM. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil 2019; 101:607-612. [PMID: 31891715 DOI: 10.1016/j.apmr.2019.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the potential effects of incorporating exoskeletal-assisted walking (EAW) into spinal cord injury (SCI) acute inpatient rehabilitation (AIR) on facilitating functional and motor recovery when compared with standard of care AIR. DESIGN A quasi-experimental design with a prospective intervention group (AIR with EAW) and a retrospective control group (AIR only). SETTING SCI AIR facility. PARTICIPANTS Ten acute inpatient participants with SCI who were eligible for locomotor training were recruited in the intervention group. Twenty inpatients with SCI were identified as matched controls by reviewing an AIR database, Uniform Data System for Medical Rehabilitation, by an individual blinded to the study. Both groups (N=30) were matched based on etiology, paraplegia/tetraplegia, completeness of injury, age, and sex. INTERVENTION EAW incorporated into SCI AIR. MAIN OUTCOME MEASURES FIM score, International Standards for Neurological Classification of Spinal Cord Injury Upper Extremity Motor Score and Lower Extremity Motor Scores (LEMS), and EAW session results, including adverse events, walking time, and steps. RESULTS Changes from admission to discharge LEMS and FIM scores were significantly greater in the intervention group (LEMS change: 14.3±10.1; FIM change: 37.8±10.8) compared with the control group (LEMS change: 4.6±6.1; FIM change: 26.5±14.3; Mann-Whitney U tests: LEMS, P<.01 and FIM, P<.05). One adverse event (minor skin abrasion) occurred during 42 walking sessions. Participants on average achieved 31.5 minutes of up time and 18.2 minutes of walk time with 456 steps in one EAW session. CONCLUSIONS Incorporation of EAW into standard of care AIR is possible. AIR with incorporated EAW has the potential to facilitate functional and motor recovery compared with AIR without EAW.
Collapse
Affiliation(s)
- Chung-Ying Tsai
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York.
| | - Andrew D Delgado
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William J Weinrauch
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas Manente
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Isaiah Levy
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miguel X Escalon
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas N Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ann M Spungen
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York
| |
Collapse
|
28
|
Systemic inflammation in traumatic spinal cord injury. Exp Neurol 2019; 325:113143. [PMID: 31843491 DOI: 10.1016/j.expneurol.2019.113143] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
|
29
|
Bao G, Pan L, Fang H, Wu X, Yu H, Cai S, Yu B, Wan Y. Academic Review and Perspectives on Robotic Exoskeletons. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2294-2304. [PMID: 31567097 DOI: 10.1109/tnsre.2019.2944655] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since the first robotic exoskeleton was developed in 1960, this research field has attracted much interest from both the academic and industrial communities resulting in scientific publications, prototype developments and commercialized products. In this article, to document the progress in and current status of this field, we performed a bibliometric analysis. This analysis evaluated the publications in the field of robotic exoskeletons from 1990 to July 2019 that were retrieved from the Science Citation Index Expanded database. The bibliometric analyses were presented in terms of author keywords, year, country, institution, journal, author, and the citation. Results show that currently the United States has taken the leading position in this field and has built the largest collaborative network with other countries. The Massachusetts Institute of Technology (MIT) made the greatest contribution to the field of robotic exoskeleton investigations in terms of the number of publications, average citations per publication and the h-index. In addition, the Journal of NeuroEngineering and Rehabilitation ranks first among the top 20 academic journals in terms of the number of publications related to robotic exoskeletons during the period investigated. Author keyword analysis indicates that most research has focused on rehabilitation robotics. Biomedical engineering, rehabilitation and the neurosciences are the most common disciplines conducting research in this area according to the Web of Science (WoS). Our study comprehensively assesses the current research status and collaboration network of robotic exoskeletons, thus helping researchers steer their projects or locate potential collaborators.
Collapse
|
30
|
Exoskeletons for Personal Use After Spinal Cord Injury. Arch Phys Med Rehabil 2019; 102:331-337. [PMID: 31228407 DOI: 10.1016/j.apmr.2019.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Before the development of robotic exoskeletons, mobility options beyond a wheelchair were very limited for most people lacking leg movement due to spinal cord injury (SCI). Over the years, robotic exoskeletons have become more widely available and now have the potential to be successfully used for personal use at home and in the community. However, it is important that users set realistic expectations. The features and capabilities of each robotic exoskeleton differ, and how exoskeletons are used may vary greatly between individuals. Robotic exoskeletons can allow individuals with SCI with varying levels of injury to safely and functionally walk for personal mobility or exercise. The following special communication will discuss important considerations surrounding exoskeleton use including feasibility, safety, cost, speed, and potential health benefits of using an exoskeleton for everyday life for people with SCI.
Collapse
|
31
|
Ayad S, Ayad M, Megueni A, Spaich EG, Struijk LNSA. Toward Standardizing the Classification of Robotic Gait Rehabilitation Systems. IEEE Rev Biomed Eng 2018; 12:138-153. [PMID: 30561350 DOI: 10.1109/rbme.2018.2886228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With the existence of numerous rehabilitation systems, classification and comparison becomes difficult, especially due to the many factors involved. Moreover, most current reviews are descriptive and do not provide systematic methods for the visual comparison of systems. This review proposes a method for classifying systems and representing them graphically to easily visualize various characteristics of the different systems at the same time. This method could be an introduction for standardizing the evaluation of gait rehabilitation systems. It evaluates four main modules (body weight support, reciprocal stepping mechanism, pelvis mechanism, and environment module) of 27 different gait systems based on a set of characteristics. The combination of these modular evaluations provides a description of the system "in the space of rehabilitation." The evaluation of each robotic module, based on specific characteristics, showed diverse tendencies. While there is an augmented interest in developing more sophisticated reciprocal stepping mechanisms, few researchers are dedicated to enhance the properties of pelvis mechanisms.
Collapse
|
32
|
Husain SR, Ramanujam A, Momeni K, Forrest GF. Effects of Exoskeleton Training Intervention on Net Loading Force in Chronic Spinal Cord Injury. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2793-2796. [PMID: 30440981 DOI: 10.1109/embc.2018.8512768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The goal of this study was to understand the rehabilitative effects of longitudinal overground exoskeleton training $( >100$ hours) on gait mechanics, especially foot loading, for gains in walking speed in an individual with chronic motorincomplete SCI. Biomechanical measures included: normalized plantar loading forces, walking speed and bilateral weight transfer ratio during walking in the EksoGT $^{\mathrm{ TM}}$ exoskeleton. Longitudinal training with a robotic exoskeleton yielded improvements in clinical outcomes (AIS classification, ISNCSCI motor scores and 10MWT) and provided functional gains in terms of biomechanical outcomes (plantar forces, weight transfer point) to increase overall walking speed.
Collapse
|
33
|
Smith AJJ, Lemaire ED, Nantel J. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling. PLoS One 2018; 13:e0203934. [PMID: 30222772 PMCID: PMC6141077 DOI: 10.1371/journal.pone.0203934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/30/2018] [Indexed: 11/19/2022] Open
Abstract
Lower extremity powered exoskeletons (LEPE) are an emerging technology that assists people with lower-limb paralysis. LEPE for people with complete spinal cord injury walk at very slow speeds, below 0.5m/s. For the able-bodied population, very slow walking uses different neuromuscular, locomotor, postural, and dynamic balance control. Speed dependent kinetic and kinematic regression equations in the literature could be used for very slow walking LEPE trajectory scaling; however, kinematic and kinetic information at walking speeds below 0.5 m/s is lacking. Scaling LEPE trajectories using current reference equations may be inaccurate because these equations were produced from faster than real-world LEPE walking speeds. An improved understanding of how able-bodied people biomechanically adapt to very slow walking will provide LEPE developers with more accurate models to predict and scale LEPE gait trajectories. Full body motion capture data were collected from 30 healthy adults while walking on an instrumented self-paced treadmill, within a CAREN-Extended virtual reality environment. Kinematic and kinetic data were collected for 0.2 m/s-0.8 m/s, and self-selected walking speed. Thirty-three common sagittal kinematic and kinetic gait parameters were identified from motion capture data and inverse dynamics. Gait parameter relationships to walking speed, cadence, and stride length were determined with linear and quadratic (second and third order) regression. For parameters with a non-linear relationship with speed, cadence, or stride-length, linear regressions were used to determine if a consistent inflection occurred for faster and slower walking speeds. Group mean equations were applied to each participant's data to determine the best performing equations for calculating important peak sagittal kinematic and kinetic gait parameters. Quadratic models based on walking speed had the strongest correlations with sagittal kinematic and kinetic gait parameters, with kinetic parameters having the better results. The lack of a consistent inflection point indicated that the kinematic and kinetic gait strategies did not change at very slow gait speeds. This research showed stronger associations with speed and gait parameters then previous studies, and provided more accurate regression equations for gait parameters at very slow walking speeds that can be used for LEPE joint trajectory development.
Collapse
Affiliation(s)
- Andrew J. J. Smith
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Department of Human Kinetics, University of Ottawa, Ottawa, Canada
- * E-mail:
| | - Edward D. Lemaire
- Ottawa Hospital Research Institute, Ottawa, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Julie Nantel
- University of Ottawa, Department of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
34
|
Hayes SC, James Wilcox CR, Forbes White HS, Vanicek N. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review. J Spinal Cord Med 2018; 41:529-543. [PMID: 29400988 PMCID: PMC6117598 DOI: 10.1080/10790268.2018.1426236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CONTEXT Robotic assisted gait training (RAGT) technology can be used as a rehabilitation tool or as an assistive device for spinal cord injured (SCI) individuals. Its impact on upright stepping characteristics of SCI individuals using treadmill or overground robotic exoskeleton systems has yet to be established. OBJECTIVE To systematically review the literature and identify if overground or treadmill based RAGT use in SCI individuals elicited differences in temporal-spatial characteristics and functional outcome measures. METHODS A systematic search of the literature investigating overground and treadmill RAGT in SCIs was undertaken excluding case-studies and case-series. Studies were included if the primary outcomes were temporal-spatial gait parameters. Study inclusion and methodological quality were assessed and determined independently by two reviewers. Methodological quality was assessed using a validated scoring system for randomized and non-randomized trials. RESULTS Twelve studies met all inclusion criteria. Participant numbers ranged from 5-130 with injury levels from C2 to T12, American Spinal Injuries Association A-D. Three studies used overground RAGT systems and the remaining nine focused on treadmill based RAGT systems. Primary outcome measures were walking speed and walking distance. The use of treadmill or overground based RAGT did not result in an increase in walking speed beyond that of conventional gait training and no studies reviewed enabled a large enough improvement to facilitate community ambulation. CONCLUSION The use of RAGT in SCI individuals has the potential to benefit upright locomotion of SCI individuals. Its use should not replace other therapies but be incorporated into a multi-modality rehabilitation approach.
Collapse
Affiliation(s)
| | - Christopher Richard James Wilcox
- School of Life Sciences, University of Hull, Hull, UK,Correspondence to: Dr. Christopher Richard James Wilcox, School of Life Sciences, University of Hull, Don Building, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | |
Collapse
|
35
|
Mekki M, Delgado AD, Fry A, Putrino D, Huang V. Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review. Neurotherapeutics 2018; 15:604-617. [PMID: 29987763 PMCID: PMC6095795 DOI: 10.1007/s13311-018-0642-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mobility after spinal cord injury (SCI) is among the top goals of recovery and improvement in quality of life. Those with tetraplegia rank hand function as the most important area of recovery in their lives, and those with paraplegia, walking. Without hand function, emphasis in rehabilitation is placed on accessing one's environment through technology. However, there is still much reliance on caretakers for many activities of daily living. For those with paraplegia, if incomplete, orthoses exist to augment walking function, but they require a significant amount of baseline strength and significant energy expenditure to use. Options for those with motor complete paraplegia have traditionally been limited to the wheelchair. While wheelchairs provide a modified level of independence, wheelchair users continue to face difficulties in access and mobility. In the past decade, research in SCI rehabilitation has expanded to include external motorized or robotic devices that initiate or augment movement. These robotic devices are used with 2 goals: to enhance recovery through repetitive, functional movement and increased neural plasticity and to act as a mobility aid beyond orthoses and wheelchairs. In addition, lower extremity exoskeletons have been shown to provide benefits to the secondary medical conditions after SCI such as pain, spasticity, decreased bone density, and neurogenic bowel. In this review, we discuss advances in robot-guided rehabilitation after SCI for the upper and lower extremities, as well as potential adjuncts to robotics.
Collapse
Affiliation(s)
- Marwa Mekki
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew D Delgado
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Fry
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Putrino
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincent Huang
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Lester RM, Gorgey AS. Feasibility of robotic exoskeleton ambulation in a C4 person with incomplete spinal cord injury: a case report. Spinal Cord Ser Cases 2018; 4:36. [PMID: 29736262 PMCID: PMC5947854 DOI: 10.1038/s41394-018-0053-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION To determine whether an individual with C4 incomplete spinal cord injury (SCI) with limited hand functions can effectively operate a powered exoskeleton (Ekso) to improve parameters of physical activity as determined by swing-time, up-time, walk-time, and total number of steps. CASE PRESENTATION A 21-year-old male with incomplete chronic (>1 year postinjury) SCI C4, participated in a clinical exoskeleton program to determine the feasibility of standing up and walking with limited hand functions. The participant was invited to attend 3 sessions including fitting, familiarization and gait training separated by one week intervals. Walk-time, up-time and total number of steps were measured during each training session. A complete body composition assessment using dual-energy X-ray absorptiometry (DXA) of the spine, knees and hips was conducted before training.Using a platform walker and cuffing both hands, the participant managed to stand up and ambulate successfully using exoskeleton. Over the course of 2 weeks, maximum walk-time increased from 7 to 17 min and number of steps increased from 83 to 589 steps. The total up-time increased from 19 to 31 min. DISCUSSION Exoskeleton training may be a safe and feasible approach for persons with higher levels of SCI after effectively providing a supportive assistive device for weight shifting. The current case study demonstrates the use of a powered exoskeleton for an individual with high level tetraplegia (C4 and above) and limited hand functions.
Collapse
Affiliation(s)
- Robert M. Lester
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA USA
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
37
|
Takayanagi N, Sudo M, Fujii M, Sakai H, Morimoto K, Tomisaki M, Niki Y, Tokimitsu I. Foot pressure analysis of gait pattern in older Japanese females requiring different personal care support levels. J Phys Ther Sci 2018; 30:461-466. [PMID: 29581672 PMCID: PMC5857459 DOI: 10.1589/jpts.30.461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study evaluated gait parameters and foot pressure in two regions of the feet among older females with different personal care support needs to analyze factors that contribute to higher support requirements. [Subjects and Methods] Thirty-two older females were divided into support-need and care-need level groups. Gait parameters (speed, cadence, step length, step width, gait angle, toe angle, double support phase, swing phase, and stance phase) and foot pressure during a 5-m walk were measured and analyzed in the two groups. [Results] The percentage of the double support phase on both feet and the right stance phase were significantly higher in the care-need level group, while that of the right swing phase was significantly lower than that of the support-need level group. Additionally, the phase showing peak pressure on the left rear foot was significantly delayed and the left forefoot pressure in the terminal stance was significantly lower in the care-need level group than in the support-need level group. [Conclusion] These findings show that the temporal duration parameters and foot pressure on a particular side were significantly different between the two groups and suggest that these differences were associated with a higher care level.
Collapse
Affiliation(s)
- Naoto Takayanagi
- Tokyo Research Laboratories, Kao Corporation: 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Motoki Sudo
- Tokyo Research Laboratories, Kao Corporation: 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | | | - Hirokazu Sakai
- Himawari-no-kai Corporation, Japan.,Unebi-kai Social Welfare Organization, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women's University, Japan
| | - Masumi Tomisaki
- Tokyo Research Laboratories, Kao Corporation: 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Yoshifumi Niki
- Tokyo Research Laboratories, Kao Corporation: 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Ichiro Tokimitsu
- Department of Health Food Sciences, University of Human Arts and Sciences, Japan
| |
Collapse
|
38
|
Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety. J Neuroeng Rehabil 2018; 15:12. [PMID: 29490678 PMCID: PMC5831695 DOI: 10.1186/s12984-018-0354-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background For individuals who sustain a complete motor spinal cord injury (SCI) and rely on a wheelchair as their primary mode of locomotion, overground robotic exoskeletons represent a promising solution to stand and walk again. Although overground robotic exoskeletons have gained tremendous attention over the past decade and are now being transferred from laboratories to clinical settings, their effects remain unclear given the paucity of scientific evidence and the absence of large-scale clinical trials. This study aims to examine the feasibility of a locomotor training program with an overground robotic exoskeleton in terms of recruitment, attendance, and drop-out rates as well as walking performance, learnability, and safety. Methods Individuals with a SCI were invited to participate in a 6 to 8-week locomotor training program with a robotic exoskeleton encompassing 18 sessions. Selected participants underwent a comprehensive screening process and completed two familiarization sessions with the robotic exoskeleton. The outcome measures were the rate of recruitment of potential participants, the rate of attendance at training sessions, the rate of drop-outs, the ability to walk with the exoskeleton, and its progression over the program as well as the adverse events. Results Out of 49 individuals who expressed their interest in participating in the study, only 14 initiated the program (recruitment rate = 28.6%). Of these, 13 individuals completed the program (drop-out rate = 7.1%) and attended 17.6 ± 1.1 sessions (attendance rate = 97.9%). Their greatest standing time, walking time, and number of steps taken during a session were 64.5 ± 10.2 min, 47.2 ± 11.3 min, and 1843 ± 577 steps, respectively. During the training program, these last three parameters increased by 45.3%, 102.1%, and 248.7%, respectively. At the end of the program, when walking with the exoskeleton, most participants required one therapist (85.7%), needed stand-by or contact-guard assistance (57.1%), used forearm crutches (71.4%), and reached a walking speed of 0.25 ± 0.05 m/s. Five participants reported training-related pain or stiffness in the upper extremities during the program. One participant sustained bilateral calcaneal fractures and stopped the program. Conclusions This study confirms that larger clinical trials investigating the effects of a locomotor training program with an overground robotic exoskeleton are feasible and relatively safe in individuals with complete motor SCI. Moreover, to optimize the recruitment rate and safety in future trials, this study now highlights the need of developing pre-training rehabilitation programs to increase passive lower extremity range of motion and standing tolerance. This study also calls for the development of clinical practice guidelines targeting fragility fracture risk assessment linked to the use of overground robotic exoskeletons.
Collapse
|
39
|
Jansen O, Schildhauer TA, Meindl RC, Tegenthoff M, Schwenkreis P, Sczesny-Kaiser M, Grasmücke D, Fisahn C, Aach M. Functional Outcome of Neurologic-Controlled HAL-Exoskeletal Neurorehabilitation in Chronic Spinal Cord Injury: A Pilot With One Year Treatment and Variable Treatment Frequency. Global Spine J 2017; 7:735-743. [PMID: 29238636 PMCID: PMC5722001 DOI: 10.1177/2192568217713754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
STUDY DESIGN Longitudinal prospective study. OBJECTIVES Whether 1-year HAL-BWSTT of chronic spinal cord injured patients can improve independent ambulated mobility further as a function of training frequency, after an initial 3-month training period. METHODS Eight patients with chronic SCI were enrolled. They initially received full standard physical therapy and neurorehabilitation in the acute/subacute posttrauma phase. During this trial, all patients first underwent a daily (5 per week) HAL-BWSTT for 12 weeks. Subsequently, these patients performed a 40-week HAL-BWSTT with a training session frequency of either 1 or 3 to 5 sessions per week. The patients' functional status including HAL-associated treadmill-walking time, -distance, and -speed with additional analysis of gait pattern, and their independent (without wearing the robot suit) functional mobility improvements, were assessed using the 10-Meter-Walk Test (10MWT), Timed-Up-and-Go Test (TUG) and 6-Minute-Walk Test (6MinWT) on admission, at 6 weeks, 12 weeks, and 1 year after enrollment. The data were analyzed separately for the 2 training frequency subgroups after the initial 12-week training period, which was identical in both groups. RESULTS During the 1-year follow-up, HAL-associated walking parameters and independent functional improvements were maintained in all the patients. This result held irrespective of the training frequency. CONCLUSIONS Long-term 1-year maintenance of HAL-associated treadmill walking parameters and of improved independent walking abilities after initial 12 weeks of daily HAL-BWSTT is possible and depends mainly on the patients' ambulatory status accomplished after initial training period. Subsequent regular weekly training, but not higher frequency training, seems to be sufficient to preserve the improvements accomplished.
Collapse
Affiliation(s)
- Oliver Jansen
- BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany,Oliver Jansen, Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bürkle-de-la-Camp-Platz 1, D-44789 Bochum, Germany.
| | | | - Renate C. Meindl
- BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Peter Schwenkreis
- BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | | | - Dennis Grasmücke
- BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Christian Fisahn
- BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Mirko Aach
- BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
40
|
Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J Biomed Health Inform 2017; 20:1521-1537. [PMID: 28113185 DOI: 10.1109/jbhi.2016.2608720] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After decades of evolution, measuring instruments for quantitative gait analysis have become an important clinical tool for assessing pathologies manifested by gait abnormalities. However, such instruments tend to be expensive and require expert operation and maintenance besides their high cost, thus limiting them to only a small number of specialized centers. Consequently, gait analysis in most clinics today still relies on observation-based assessment. Recent advances in wearable sensors, especially inertial body sensors, have opened up a promising future for gait analysis. Not only can these sensors be more easily adopted in clinical diagnosis and treatment procedures than their current counterparts, but they can also monitor gait continuously outside clinics - hence providing seamless patient analysis from clinics to free-living environments. The purpose of this paper is to provide a systematic review of current techniques for quantitative gait analysis and to propose key metrics for evaluating both existing and emerging methods for qualifying the gait features extracted from wearable sensors. It aims to highlight key advances in this rapidly evolving research field and outline potential future directions for both research and clinical applications.
Collapse
|
41
|
Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions. Pediatr Phys Ther 2017; 29 Suppl 3:S48-S56. [PMID: 28654477 DOI: 10.1097/pep.0000000000000379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To review lower-limb technology currently available for people with neurological disorders, such as spinal cord injury, stroke, or other conditions. We focus on 3 emerging technologies: treadmill-based training devices, exoskeletons, and other wearable robots. SUMMARY OF KEY POINTS Efficacy for these devices remains unclear, although preliminary data indicate that specific patient populations may benefit from robotic training used with more traditional physical therapy. Potential benefits include improved lower-limb function and a more typical gait trajectory. STATEMENT OF CONCLUSIONS Use of these devices is limited by insufficient data, cost, and in some cases size of the machine. However, robotic technology is likely to become more prevalent as these machines are enhanced and able to produce targeted physical rehabilitation. RECOMMENDATIONS FOR CLINICAL PRACTICE Therapists should be aware of these technologies as they continue to advance but understand the limitations and challenges posed with therapeutic/mobility robots.
Collapse
|
42
|
He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2017; 10:89-107. [PMID: 28533700 PMCID: PMC5431736 DOI: 10.2147/mder.s107134] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gait disability is a major health care problem worldwide. Powered exoskeletons have recently emerged as devices that can enable users with gait disabilities to ambulate in an upright posture, and potentially bring other clinical benefits. In 2014, the US Food and Drug Administration approved marketing of the ReWalk™ Personal Exoskeleton as a class II medical device with special controls. Since then, Indego™ and Ekso™ have also received regulatory approval. With similar trends worldwide, this industry is likely to grow rapidly. On the other hand, the regulatory science of powered exoskeletons is still developing. The type and extent of probable risks of these devices are yet to be understood, and industry standards are yet to be developed. To address this gap, Manufacturer and User Facility Device Experience, Clinicaltrials.gov, and PubMed databases were searched for reports of adverse events and inclusion and exclusion criteria involving the use of lower limb powered exoskeletons. Current inclusion and exclusion criteria, which can determine probable risks, were found to be diverse. Reported adverse events and identified risks of current devices are also wide-ranging. In light of these findings, current regulations, standards, and regulatory procedures for medical device applications in the USA, Europe, and Japan were also compared. There is a need to raise awareness of probable risks associated with the use of powered exoskeletons and to develop adequate countermeasures, standards, and regulations for these human-machine systems. With appropriate risk mitigation strategies, adequate standards, comprehensive reporting of adverse events, and regulatory oversight, powered exoskeletons may one day allow individuals with gait disabilities to safely and independently ambulate.
Collapse
Affiliation(s)
- Yongtian He
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - David Eguren
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Trieu Phat Luu
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive, Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
43
|
Gorgey AS, Wade R, Sumrell R, Villadelgado L, Khalil RE, Lavis T. Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series. Top Spinal Cord Inj Rehabil 2017; 23:245-255. [PMID: 29339900 PMCID: PMC5562032 DOI: 10.1310/sci16-00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: To determine whether the use of a powered exoskeleton can improve parameters of physical activity as determined by walking time, stand up time, and number of steps in persons with spinal cord injury (SCI). Methods: Three men with complete (1 C5 AIS A and 2 T4 AIS A) and one man with incomplete (C5 AIS D) SCI participated in a clinical rehabilitation program. In the training program, the participants walked once weekly using a powered exoskeleton (Ekso) for approximately 1 hour over the course of 10 to 15 weeks. Walking time, stand up time, ratio of walking to stand up time, and number of steps were determined. Oxygen uptake (L/min), energy expenditure, and body composition were measured in one participant after training. Results: Over the course of 10 to 15 weeks, the maximum walking time increased from 12 to 57 minutes and the number of steps increased from 59 to 2,284 steps. At the end of the training, the 4 participants were able to exercise for 26 to 59 minutes. For one participant, oxygen uptake increased from 0.27 L/min during rest to 0.55 L/min during walking. Maximum walking speed was 0.24 m/s, and delta energy expenditure increased by 1.4 kcal/min during walking. Body composition showed a modest decrease in absolute fat mass in one participant. Conclusion: Exoskeleton training may improve parameters of physical activity after SCI by increasing the number of steps and walking time. Other benefits may include increasing energy expenditure and improving the profile of body composition.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Rodney Wade
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Ryan Sumrell
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Lynette Villadelgado
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Refka E. Khalil
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Timothy Lavis
- Spinal Cord Injury Service and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
44
|
Dijkers MP, Akers KG, Galen SS, Patzer DE, Vu PT. Letter to the editor regarding "Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis". MEDICAL DEVICES-EVIDENCE AND RESEARCH 2016; 9:419-421. [PMID: 27942236 PMCID: PMC5136361 DOI: 10.2147/mder.s125211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Marcel P Dijkers
- Department of Physical Medicine and Rehabilitation, Wayne State University, Detroit
| | | | - Sujay S Galen
- Physical Therapy Program, Wayne State University, Detroit
| | - Diane E Patzer
- Center for Spinal Cord Injury Recovery, Rehabilitation Institute of Michigan, Detroit, MI, USA
| | - Phuong T Vu
- Center for Spinal Cord Injury Recovery, Rehabilitation Institute of Michigan, Detroit, MI, USA
| |
Collapse
|
45
|
Fisahn C, Aach M, Jansen O, Moisi M, Mayadev A, Pagarigan KT, Dettori JR, Schildhauer TA. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Global Spine J 2016; 6:822-841. [PMID: 27853668 PMCID: PMC5110426 DOI: 10.1055/s-0036-1593805] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Study Design Systematic review. Clinical Questions (1) When used as an assistive device, do wearable exoskeletons improve lower extremity function or gait compared with knee-ankle-foot orthoses (KAFOs) in patients with complete or incomplete spinal cord injury? (2) When used as a rehabilitation device, do wearable exoskeletons improve lower extremity function or gait compared with other rehabilitation strategies in patients with complete or incomplete spinal cord injury? (3) When used as an assistive or rehabilitation device, are wearable exoskeletons safe compared with KAFO for assistance or other rehabilitation strategies for rehabilitation in patients with complete or incomplete spinal cord injury? Methods PubMed, Cochrane, and Embase databases and reference lists of key articles were searched from database inception to May 2, 2016, to identify studies evaluating the effectiveness of wearable exoskeletons used as assistive or rehabilitative devices in patients with incomplete or complete spinal cord injury. Results No comparison studies were found evaluating exoskeletons as an assistive device. Nine comparison studies (11 publications) evaluated the use of exoskeletons as a rehabilitative device. The 10-meter walk test velocity and Spinal Cord Independence Measure scores showed no difference in change from baseline among patients undergoing exoskeleton training compared with various comparator therapies. The remaining primary outcome measures of 6-minute walk test distance and Walking Index for Spinal Cord Injury I and II and Functional Independence Measure-Locomotor scores showed mixed results, with some studies indicating no difference in change from baseline between exoskeleton training and comparator therapies, some indicating benefit of exoskeleton over comparator therapies, and some indicating benefit of comparator therapies over exoskeleton. Conclusion There is no data to compare locomotion assistance with exoskeleton versus conventional KAFOs. There is no consistent benefit from rehabilitation using an exoskeleton versus a variety of conventional methods in patients with chronic spinal cord injury. Trials comparing later-generation exoskeletons are needed.
Collapse
Affiliation(s)
- Christian Fisahn
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, United States,Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany,Address for correspondence Christian Fisahn, MD Swedish Neuroscience Institute, Swedish Medical Center550 17th Avenue, Seattle, WA 98122United States
| | - Mirko Aach
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Oliver Jansen
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marc Moisi
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, United States
| | - Angeli Mayadev
- Multiple Sclerosis Center, Swedish Medical Center, Seattle, Washington, United States
| | | | | | - Thomas A. Schildhauer
- Department of Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
46
|
AKHTARUZZAMAN MD, SHAFIE AMIRAKRAMIN, KHAN MDRAISUDDIN. GAIT ANALYSIS: SYSTEMS, TECHNOLOGIES, AND IMPORTANCE. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416300039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human gait is the identity of a person's style and quality of life. Reliable cognition of gait properties over time, continuous monitoring, accuracy of evaluation, and proper analysis of human gait characteristics have demonstrated their importance not only in clinical and medical studies, but also in the field of sports, rehabilitation, training, and robotics research. Focusing on walking gait, this study presents an overview on gait mechanisms, common technologies used in gait analysis, and importance of this particular field of research. Firstly, available technologies that involved in gait analysis are briefly introduced in this paper by concentrating on the usability and limitations of the systems. Secondly, key gait parameters and motion characteristics are elucidated from four angles of views; one: gait phases and gait properties; two: center of mass and center of pressure (CoM-CoP) tracking profile; three: Ground Reaction Force (GRF) and impact, and four: muscle activation. Thirdly, the study focuses on the clinical observations of gait patterns in diagnosing gait abnormalities of impaired patients. The presentation also shows the importance of gait analysis in sports to improve performance as well as to avoid risk of injuries of sports personnel. Significance of gait analysis in robotic research is also illustrated in this part where the study focuses on robot assisted systems and its possible applicability in clinical rehabilitation and sports training.
Collapse
Affiliation(s)
- MD. AKHTARUZZAMAN
- Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
| | - AMIR AKRAMIN SHAFIE
- Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
| | - MD. RAISUDDIN KHAN
- Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Onose G, Cârdei V, Crăciunoiu ŞT, Avramescu V, Opriş I, Lebedev MA, Constantinescu MV. Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach. Front Neurosci 2016; 10:343. [PMID: 27746711 PMCID: PMC5040717 DOI: 10.3389/fnins.2016.00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/08/2016] [Indexed: 12/29/2022] Open
Abstract
During the last few years, interest has been growing to mechatronic and robotic technologies utilized in wearable powered exoskeletons that assist standing and walking. The available literature includes single-case reports, clinical studies conducted in small groups of subjects, and several recent systematic reviews. These publications have fulfilled promotional and marketing objectives but have not yet resulted in a fully optimized, practical wearable exoskeleton. Here we evaluate the progress and future directions in this field from a joint perspective of health professionals, manufacturers, and consumers. We describe the taxonomy of existing technologies and highlight the main improvements needed for the development and functional optimization of the practical exoskeletons.
Collapse
Affiliation(s)
- Gelu Onose
- Department of Physical and Rehabilitation Medicine, University of Medicine and Pharmacy "Carol Davila"Bucharest, Romania; Teaching Emergency Hospital "Bagdasar-Arseni"Bucharest, Romania
| | - Vladimir Cârdei
- Research and Technological Design Institute for Machines Construction Bucharest, Romania
| | - Ştefan T Crăciunoiu
- Research and Technological Design Institute for Machines Construction Bucharest, Romania
| | - Valeriu Avramescu
- Research and Technological Design Institute for Machines Construction Bucharest, Romania
| | - Ioan Opriş
- Miller School of Medicine, University of Miami Miami, FL, USA
| | | | | |
Collapse
|
48
|
Esquenazi A, Talaty M, Jayaraman A. Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review. PM R 2016; 9:46-62. [PMID: 27565639 DOI: 10.1016/j.pmrj.2016.07.534] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
Individuals with central nervous system injuries are a large and apparently rapidly expanding population-as suggested by 2013 statistics from the American Heart Association. Increasing survival rates and lifespans emphasize the need to improve the quality of life for this population. In persons with central nervous system injuries, mobility limitations are among the most important factors contributing to reduced life satisfaction. Decreased mobility and subsequently reduced overall activity levels also contribute to lower levels of physical health. Braces to assist walking are options for greater-functioning individuals but still limit overall mobility as the result of increased energy expenditure and difficulty of use. For individuals with greater levels of mobility impairment, wheelchairs remain the preferred mobility aid yet still fall considerably short compared with upright bipedal walking. Furthermore, the promise of functional electrical stimulation as a means to achieve walking has yet to materialize. None of these options allow individuals to achieve walking at speeds or levels comparable with those seen in individuals with unimpaired gait. Medical exoskeletons hold much promise to fulfill this unmet need and have advanced as a viable option in both therapeutic and personal mobility state, particularly during the past decade. The present review highlights the major developments in this technology, with a focus on exoskeletons for lower limb that may encompass the spine and that aim to allow independent upright walking for those who otherwise do not have this option. Specifically reviewed are powered exoskeletons that are either commercially available or have the potential to restore upright walking function. This paper includes a basic description of how each exoskeleton device works, a summation of key features, their known limitations, and a discussion of current and future clinical applicability.
Collapse
Affiliation(s)
- Alberto Esquenazi
- MossRehab/Einstein Healthcare Network, 60 Township Lane Road, Elkins Park, PA 19027(∗).
| | - Mukul Talaty
- MossRehab/Einstein Healthcare Network, Elkins Park, PA(†)
| | - Arun Jayaraman
- Rehabilitation Institute of Chicago/Northwestern University, Chicago, IL(‡)
| |
Collapse
|
49
|
Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, Spungen AM. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. ACTA ACUST UNITED AC 2016; 52:147-58. [PMID: 26230182 DOI: 10.1682/jrrd.2014.02.0060] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 12/22/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Historically, persons with paralysis have limited options for overground ambulation. Recently, powered exoskeletons have become available, which are systems that translate the user's body movements to activate motors to move the lower limbs through a predetermined gait pattern. As part of an ongoing clinical study (NCT01454570), eight nonambulatory persons with paraplegia were trained to ambulate with a powered exoskeleton. Measurements of oxygen uptake (VO2) and heart rate (HR) were recorded for 6 min each during each maneuver while sitting, standing, and walking. The average value of VO2 during walking (11.2 +/- 1.7 mL/kg/min) was significantly higher than those for sitting and standing (3.5 +/- 0.4 and 4.3 +/- 0.9 mL/kg/min, respectively; p < 0.001). The HR response during walking was significantly greater than that of either sitting or standing (118 +/- 21vs 70 +/- 10 and 81 +/- 12 beats per minute, respectively: p < 0.001). Persons with paraplegia were able to ambulate efficiently using the powered exoskeleton for overground ambulation, providing potential for functional gain and improved fitness. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; NCT01454570; "The ReWalk Exoskeletal Walking System for Persons with Paraplegia (VA_ReWalk)"; https://clinicaltrials.gov/ct2/show/NCT01454570.
Collapse
Affiliation(s)
- Pierre Asselin
- Department of Veterans Affairs (VA) Rehabilitation Research and Development National Center of Excellence for the Medical Consequences of Spinal Cord Injury
| | | | | | | | | | | | | |
Collapse
|
50
|
Lonini L, Shawen N, Scanlan K, Rymer WZ, Kording KP, Jayaraman A. Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study. J Neuroeng Rehabil 2016; 13:35. [PMID: 27037035 PMCID: PMC4815161 DOI: 10.1186/s12984-016-0142-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/22/2016] [Indexed: 11/24/2022] Open
Abstract
Background Clinical scores for evaluating walking skills with lower limb exoskeletons are often based on a single variable, such as distance walked or speed, even in cases where a host of features are measured. We investigated how to combine multiple features such that the resulting score has high discriminatory power, in particular with few patients. A new score is introduced that allows quantifying the walking ability of patients with spinal cord injury when using a powered exoskeleton. Methods Four spinal cord injury patients were trained to walk over ground with the ReWalk™ exoskeleton. Body accelerations during use of the device were recorded by a wearable accelerometer and 4 features to evaluate walking skills were computed. The new score is the Gaussian naïve Bayes surprise, which evaluates patients relative to the features’ distribution measured in 7 expert users of the ReWalk™. We compared our score based on all the features with a standard outcome measure, which is based on number of steps only. Results All 4 patients improved over the course of training, as their scores trended towards the expert users’ scores. The combined score (Gaussian naïve surprise) was considerably more discriminative than the one using only walked distance (steps). At the end of training, 3 out of 4 patients were significantly different from the experts, according to the combined score (p < .001, Wilcoxon Signed-Rank Test). In contrast, all but one patient were scored as experts when number of steps was the only feature. Conclusion Integrating multiple features could provide a more robust metric to measure patients’ skills while they learn to walk with a robotic exoskeleton. Testing this approach with other features and more subjects remains as future work.
Collapse
Affiliation(s)
- Luca Lonini
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Rehabilitation Institute of Chicago, 345 E Superior St, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Nicholas Shawen
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Rehabilitation Institute of Chicago, 345 E Superior St, Chicago, IL, 60611, USA
| | - Kathleen Scanlan
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Rehabilitation Institute of Chicago, 345 E Superior St, Chicago, IL, 60611, USA
| | - William Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, 60611, USA
| | - Konrad P Kording
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, 60611, USA
| | - Arun Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Rehabilitation Institute of Chicago, 345 E Superior St, Chicago, IL, 60611, USA. .,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|