1
|
Martin P, Bartlett NL, Chavez JC, Reagan JL, Smith SM, LaCasce AS, Jones J, Drew J, Wu C, Mulvey E, Revuelta MV, Cerchietti L, Leonard JP. Phase 1 study of oral azacitidine (CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL. Blood 2022; 139:1147-1159. [PMID: 34428285 PMCID: PMC9211445 DOI: 10.1182/blood.2021011679] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to standard immunochemotherapy remains an unmet challenge in diffuse large B-cell lymphoma (DLBCL), and aberrant DNA methylation may contribute to chemoresistance. Promising early-phase results were reported with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) plus subcutaneous azacitidine, a hypomethylating agent. In this phase 1 study, we evaluated CC-486 (oral azacitidine) plus 6 cycles of R-CHOP in patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. CC-486 doses of 100, 150, 200, or 300 mg given 7 days before cycle 1 and on days 8-21 of cycles 1-5 were evaluated; additional patients were enrolled in the expansion phase to examine preliminary efficacy. The primary objectives were to determine the safety and the maximum tolerated dose (MTD) of CC-486 in combination with R-CHOP. The most common grade 3/4 toxicities were hematologic, including neutropenia (62.7%) and febrile neutropenia (25.4%); grade 3/4 nonhematologic toxicities were uncommon (<7%). The MTD was not established; 2 patients had dose-limiting toxicities (1 with grade 4 febrile neutropenia; 1 with grade 4 prolonged neutropenia). The recommended phase 2 dose was established as 300 mg. The overall response rate was 94.9%, with 52 patients (88.1%) achieving complete responses. With a median follow-up of 28.9 months, estimated 1- and 2-year progression-free survival rates were 84.1% and 78.6%, respectively. Overall, epigenetic priming with CC-486 before R-CHOP can be delivered with acceptable safety to patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. ClinicalTrials.gov: NCT02343536.
Collapse
Affiliation(s)
| | | | | | - John L Reagan
- The Warren Alpert Medical School of Brown University, Providence, RI
| | - Sonali M Smith
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Frazzi R, Cusenza VY, Pistoni M, Canovi L, Cascione L, Bertoni F, Merli F. KLF4, DAPK1 and SPG20 promoter methylation is not affected by DNMT1 silencing and hypomethylating drugs in lymphoma cells. Oncol Rep 2021; 47:10. [PMID: 34751409 PMCID: PMC8600396 DOI: 10.3892/or.2021.8221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2021] [Indexed: 11/05/2022] Open
Abstract
Promoter methylation represents one of the major epigenetic mechanisms responsible for the regulation of gene expression. Hypomethylating drugs are currently approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia, and some studies have recently been carried out on diffuse large B cell lymphoma (DLBCL). DLBCL is a type of Non-Hodgkin lymphoma. The aim of the present study was to assess the role of DNA methyltransferase (DNMT)1 in mediating the epigenetic regulation of some key targets previously emerged as hypermethylated in Non-Hodgkin lymphoma. Reverse transcription-quantitative PCR, genome-wide arrays and methylation-specific PCR were used to determine the level of methylation of specific targets. Gene silencing, gene expression and immunoblotting were used to investigate the role of DNMT1 and DNMT3a in lymphoma cells. The present study showed that lymphoma cell lines displayed a completely different methylation profile on selected targets compared with primary B lymphocytes and peripheral blood mononuclear cells. 5′-aza-cytidine (5AZA) and 5′-aza-2-deoxycitidine (decitabine) exerted their activity through, at least in part, mechanisms independent of DNMT1 downregulation. Despite a global hypomethylating effect of 5AZA and decitabine, DNMT1 was not found to be necessary to maintain the hypermethylation of Krüppel-like factor 4 (KLF4), death associated protein 1 (DAPK1) and spastic paraplegia 20 (SPG20). SPG20 was found to be a completely methylated target in all the tested cell lines, but not in peripheral blood mononuclear cells, suggesting its association with malignancy. The highest methylation was clustered upstream of the transcription starting site in a panel of 28 DLBCL cell lines and the results were unaffected by the silencing of DNMT1 expression. These data demonstrated the epigenetic regulation of SPG20 in lymphoid cells and identified a number of novel markers associated with lymphomas that deserve further investigation.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Laura Canovi
- Immunohematology and Transfusional Medicine Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Merli
- Hematology Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| |
Collapse
|
3
|
Gao Y, Ding X. miR-145-5p exerts anti-tumor effects in diffuse large B-cell lymphoma by regulating S1PR1/STAT3/AKT pathway. Leuk Lymphoma 2021; 62:1884-1891. [PMID: 33715582 DOI: 10.1080/10428194.2021.1894642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To investigate the molecular mechanism of miR-145-5p in diffuse large B-cell lymphoma (DLBCL) tissues and cells. The tissues from patients with DLBCL were collected for RT-qPCR or immunohistochemistry. Cell viability, proliferation, migration, invasion, the relationship between miR-145-5p and S1PR1, and proteins related pathway were detected using CCK-8, BrdU staining, Transwell assay, dual luciferase report assay, and western blotting, respectively. The results showed that miR-145-5p was down-regulated and positively correlated with the survival of DLBCL patients. Overexpression of miR-145-5p inhibited cell proliferation, migration, and invasion in cell model. miR-145-5p directly targeted S1PR1. miR-145-5p down-regulated S1PR1, p-AKT/AKT, and p-STAT3 expression. The reduction of miR-145-5p-induced cell movement was reversed by S1PR1 overexpression. Moreover, S1PR1-induced addition of cell growth was clearly alleviated in LY294002 or S3I-201 treated cells. S1PR1 was up-regulated in the tissues of DLBCL patients. In conclusion, miR-145-5p regulated DLBCL cell growth and movement through suppressing S1PR1/STAT3/AKT pathway.
Collapse
Affiliation(s)
- Yuanmei Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojuan Ding
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Bakhshi TJ, Georgel PT. Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J 2020; 10:123. [PMID: 33277464 PMCID: PMC7718920 DOI: 10.1038/s41408-020-00389-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma and is notorious for its heterogeneity, aggressive nature, and the frequent development of resistance and/or relapse after treatment with standard chemotherapy. To address these problems, a strong emphasis has been placed on researching the molecular origins and mechanisms of DLBCL to develop effective treatments. One of the major insights produced by such research is that DLBCL almost always stems from genetic damage that occurs during the germinal center (GC) reaction, which is required for the production of high-affinity antibodies. Indeed, there is significant overlap between the mechanisms that govern the GC reaction and those that drive the progression of DLBCL. A second important insight is that some of the most frequent genetic mutations that occur in DLBCL are those related to chromatin and epigenetics, especially those related to proteins that “write” histone post-translational modifications (PTMs). Mutation or deletion of these epigenetic writers often renders cells unable to epigenetically “switch on” critical gene sets that are required to exit the GC reaction, differentiate, repair DNA, and other essential cellular functions. Failure to activate these genes locks cells into a genotoxic state that is conducive to oncogenesis and/or relapse.
Collapse
Affiliation(s)
- Tanner J Bakhshi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Philippe T Georgel
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA. .,Department of Biological Sciences, Cell Differentiation and Development Center, Byrd Biotechnology Science Center, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
5
|
Parachini-Winter C, Bracha S, Ramsey SA, Yang L, Ho E, Leeper HJ, Curran KM. Prospective evaluation of the lymph node proteome in dogs with multicentric lymphoma supplemented with sulforaphane. J Vet Intern Med 2020; 34:2036-2047. [PMID: 32926463 PMCID: PMC7517837 DOI: 10.1111/jvim.15898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lymphoma (LSA) is a common malignancy in dogs. Epigenetic changes are linked to LSA pathogenesis and poor prognosis in humans, and LSA pathogenesis in dogs. Sulforaphane (SFN), an epigenetic‐targeting compound, has recently gained interest in relation to cancer prevention and therapy. Objective Examine the impact of oral supplementation with SFN on the lymph node proteome of dogs with multicentric LSA. Animals Seven client‐owned dogs with multicentric LSA. Methods Prospective, nonrandomized, noncontrolled study in treatment‐naïve dogs with intermediate or large cell multicentric LSA. Lymph node cell aspirates were obtained before and after 7 days of oral supplementation with SFN, and analyzed via label‐free mass spectrometry, immunoblots, and Gene Set Enrichment Analysis. Results There was no clinical response and no adverse events attributed to SFN. For individual dogs, the expression of up to 650 proteins changed by at least 2‐fold (range, 2‐100) after supplementation with SFN. When all dogs where analyzed together, 14 proteins were significantly downregulated, and 10 proteins were significantly upregulated after supplementation with SFN (P < .05). Proteins and gene sets impacted by SFN were commonly involved in immunity, response to oxidative stress, gene transcription, apoptosis, protein transport, maturation and ubiquitination. Conclusions and Clinical Importance Sulforaphane is associated with major changes in the proteome of neoplastic lymphocytes in dogs.
Collapse
Affiliation(s)
- Cyril Parachini-Winter
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Shay Bracha
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Liping Yang
- Department of Chemistry, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute and College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Haley J Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
6
|
Moubadder L, McCullough LE, Flowers CR, Koff JL. Linking Environmental Exposures to Molecular Pathogenesis in Non-Hodgkin Lymphoma Subtypes. Cancer Epidemiol Biomarkers Prev 2020; 29:1844-1855. [PMID: 32727723 DOI: 10.1158/1055-9965.epi-20-0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Non-Hodgkin lymphoma comprises a heterogeneous group of hematologic malignancies, with about 60 subtypes that arise via various pathogenetic mechanisms. Although establishing etiology for specific NHL subtypes has been historically difficult given their relative rarity, environmental exposures have been repeatedly implicated as risk factors across many subtypes. Large-scale epidemiologic investigations have pinpointed chemical exposures in particular, but causality has not been established, and the exact biologic mechanisms underpinning these associations are unclear. Here we review chemical exposures that have been associated with development of NHL subtypes and discuss their biologic plausibility based on current research.
Collapse
Affiliation(s)
- Leah Moubadder
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Christopher R Flowers
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
7
|
Gaudio E, Tarantelli C, Ponzoni M, Odore E, Rezai K, Bernasconi E, Cascione L, Rinaldi A, Stathis A, Riveiro E, Cvitkovic E, Zucca E, Bertoni F. Bromodomain inhibitor OTX015 (MK-8628) combined with targeted agents shows strong in vivo antitumor activity in lymphoma. Oncotarget 2018; 7:58142-58147. [PMID: 27494885 PMCID: PMC5295419 DOI: 10.18632/oncotarget.10983] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022] Open
Abstract
The bromodomain inhibitor OTX015 (MK-8628) has shown anti-lymphoma activity as a single agent in both the preclinical and clinical settings, as well as in vitro synergism with several anticancer agents. Here, we report in vivo data for OTX015 in combination with the histone deacetylase inhibitor vorinostat, the Bruton's tyrosine kinase inhibitor ibrutinib, the anti-CD20 monoclonal antibody rituximab, and the mTOR inhibitor everolimus in a diffuse large B cell lymphoma model. The antitumor effect of OTX015-containing combinations in SU-DHL-2 xenografts in mice was much stronger than the activity of the corresponding single agents with almost complete tumor eradication for all four combinations. Pharmacokinetic analyses showed similar OTX015 levels in plasma and tumor samples of approximately 1.5 μM, which is equivalent to the concentration showing strong in vitro activity. For all four combinations, mean terminal levels of the bromodomain inhibitor differed from those in mice exposed to single agent OTX015, indicating a need for thorough pharmacokinetic investigations in phase I combination studies. In conclusion, our results provide a strong rationale to explore OTX015-containing combinations in the clinical lymphoma setting.
Collapse
Affiliation(s)
- Eugenio Gaudio
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Chiara Tarantelli
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Elodie Odore
- Institut Curie, Hôpital René Huguenin, Saint-Cloud, France
| | - Keyvan Rezai
- Institut Curie, Hôpital René Huguenin, Saint-Cloud, France
| | - Elena Bernasconi
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | | | | | - Emanuele Zucca
- Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| |
Collapse
|
8
|
Salama ME, Hoffman R. Progress in the Classification of Hematopoietic and Lymphoid Neoplasms. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
How gene polymorphisms can influence clinical response and toxicity following R-CHOP therapy in patients with diffuse large B cell lymphoma. Blood Rev 2017; 31:235-249. [DOI: 10.1016/j.blre.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
|
10
|
Pera B, Tang T, Marullo R, Yang SN, Ahn H, Patel J, Elstrom R, Ruan J, Furman R, Leonard J, Cerchietti L, Martin P. Combinatorial epigenetic therapy in diffuse large B cell lymphoma pre-clinical models and patients. Clin Epigenetics 2016; 8:79. [PMID: 27453763 PMCID: PMC4957280 DOI: 10.1186/s13148-016-0245-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Refractory and/or relapsed diffuse large B cell lymphoma (RR-DLBCL) patients are incurable with conventional chemotherapy due to the aggressiveness and the chemorefractory state of these tumors. DNA hypermethylation and histone deacetylation are two major epigenetic modifications by which aggressive DLBCL maintain their oncogenic state. We have previously reported that DNA methyltransferase inhibitors (DNMTI) affect RR-DLBCL growth and improve chemosensitivity. Here, we hypothesized that the combination of DNMTI with histone deacetylase inhibitor (HDI) would be an active and feasible therapeutic strategy in RR-DLBCL. Thus, we evaluated the anti-lymphoma activity of the HDI vorinostat (VST) in combination with the DNMTI azacitidine (AZA) or decitabine (DAC) in pre-clinical models of RR-DLBCL, and we determined the feasibility of the combination by conducting a phase Ib trial in RR-DLBCL patients. RESULTS Concurrent combination of DNMTI and HDI resulted in synergistic anti-lymphoma effect toward RR-DLBCL cells in vitro and in vivo, with no significant toxicity increase. In a phase Ib trial, a total of 18 patients with a median of three prior therapies were treated with four different dose levels of AZA and VST. The most common toxicities were hematological, followed by gastrointestinal and metabolic. The clinical benefit was low as only one subject had a partial response and three subjects had stable disease. Interestingly, two of the seven patients that received additional chemotherapy post-study achieved a complete response and three others had a significant clinical benefit. These observations suggested that the combination might have a delayed chemosensitization effect that we were able to confirm by using in vitro and in vivo models. These studies also demonstrated that the addition of VST does not improve the chemosensitizing effect of DAC alone. CONCLUSIONS Our data supports the strategy of epigenetic priming by employing DNMTI in RR-DLBCL patients in order to overcome resistance and improve their outcomes.
Collapse
Affiliation(s)
- Benet Pera
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - Tiffany Tang
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
- />National Cancer Center Singapore, Singapore, 169610 Singapore
| | - Rossella Marullo
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - Shao-Ning Yang
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - Haelee Ahn
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - Jayeshkumar Patel
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - Rebecca Elstrom
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
- />Present address: Genentech, Inc., 1 DNA Way, 444B, San Francisco, CA 94080 USA
| | - Jia Ruan
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - Richard Furman
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - John Leonard
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
| | - Leandro Cerchietti
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
- />Hematology and Oncology Division, Weill Cornell Medical College, Cornell University, 1305 York Ave, New York, NY 10065 USA
| | - Peter Martin
- />Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY 10065 USA
- />Hematology and Oncology Division, Weill Cornell Medical College, Cornell University, 1305 York Ave, New York, NY 10065 USA
| |
Collapse
|
11
|
Haery L, Mussakhan S, Waxman DJ, Gilmore TD. Evidence for an oncogenic modifier role for mutant histone acetyltransferases in diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 57:2661-71. [PMID: 27003102 DOI: 10.3109/10428194.2016.1160083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in histone acetyltransferases (HATs) are among the most common mutations in diffuse large B-cell lymphoma (DLBCL). We previously showed that two human DLBCL cell lines, RC-K8 and SUDHL2, express C-terminally truncated, HAT domain-deficient p300 proteins (p300ΔC) that are required for optimal cell proliferation. Microarray analysis of mRNA expression in RC-K8 cells following p300ΔC knockdown shows upregulation of NF-κB and p53 gene expression programs and downregulation of a MYC gene expression program. Experiments indicate that these gene expression changes are due to inhibitory effects of p300ΔC on NF-κB activity and on p53 protein levels and stimulatory effects on MYC protein levels, suggesting that p300ΔC mutants enhance the proliferation of DLBCL cells by adjusting the transcriptional output of cell-specific oncoproteins. We propose that p300/CBP gene truncation represents a new class of oncogenic mutation that optimizes the activity of context-specific oncogenic transcription factors. We propose 'oncogenic modifier' to describe such mutations.
Collapse
Affiliation(s)
- Leila Haery
- a Department of Biology , Boston University , Boston , MA , USA
| | | | - David J Waxman
- a Department of Biology , Boston University , Boston , MA , USA
| | | |
Collapse
|
12
|
Preclinical antitumor activity of ST7612AA1: a new oral thiol-based histone deacetylase (HDAC) inhibitor. Oncotarget 2016; 6:5735-48. [PMID: 25671299 PMCID: PMC4467398 DOI: 10.18632/oncotarget.3240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023] Open
Abstract
ST7612AA1 (property of Sigma-Tau), a thioacetate-ω (γ-lactam amide) derivative, is a potent, second generation, oral pan-histone deacetylase inhibitor (HDACi). Aim of the study was to assess the efficacy of ST7612AA1 in solid and haematological tumors, and to characterize its mechanism of action. In vitro, ST7612AA1 potently inhibited different class I and class II HDACs, leading to restore the balance of both histone and non-histone protein acetylation. In vivo, it induced significant anti-tumor effects in xenograft models of lung, colon, breast and ovarian carcinomas, leukemia and lymphoma. This was likely due to the modulation of different HDAC substrates and induction of transcriptional changes with respect to several genes involved in key processes, such as cell cycle regulation, DNA damage checkpoints, immune response, cell adhesion and epithelial-to-mesenchymal transition. PK analysis confirmed the pro-drug nature of ST7612AA1, which is rapidly absorbed and converted to ST7464AA1 after a single oral dose in mice. ST7612AA1 was selected from a novel generation of oral HDAC inhibitors. Its high efficacy correlated with its potent and selective inhibitory activity of HDAC and was combined with a favorable pharmacodynamics profile. These aspects support a clinical development of ST7612AA1 towards a broad spectrum of human solid and haematologic malignancies.
Collapse
|
13
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Abstract
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) is strongly linked to perturbation of epigenetic mechanisms. The germinal center (GC) B cells from which DLBCLs arise are prone to instability in their cytosine methylation patterns. DLBCLs inherit this epigenetic instability and display variable degrees of epigenetic heterogeneity. Greater epigenetic heterogeneity is linked with poor clinical outcome. Somatic mutations of histone-modifying proteins have also emerged as a hallmark of DLBCL. The effect of these somatic mutations may be to disrupt epigenetic switches that control the GC phenotype and "lock in" certain oncogenic features of GC B cells, resulting in malignant transformation. DNA methyltransferase and histone methyltransferase inhibitors are emerging as viable therapeutic approaches to erase aberrant epigenetic programming, suppress DLBCL growth, and overcome chemotherapy resistance. This review will discuss these recent advances and their therapeutic implications.
Collapse
Affiliation(s)
- Yanwen Jiang
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|