1
|
Byrd JC, Gatz JL, Louis CL, Mims AS, Borate U, Yocum AO, Gana TJ, Burd A. Real-world genomic testing and treatment patterns of newly diagnosed adult acute myeloid leukemia patients within a comprehensive health system. Cancer Med 2023; 12:18368-18380. [PMID: 37635639 PMCID: PMC10524030 DOI: 10.1002/cam4.6442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND We evaluated the frequency of genomic testing and treatment patterns by age category in patients with newly diagnosed (ND) acute myeloid leukemia (AML) treated in both academic- and community-based health systems within a single Midwestern State. METHODS Retrospective analysis of data from the Indiana University Health System Enterprise Data Warehouse and two local cancer registries, of 629 patients aged ≥18 years with ND AML during 2011-2018. Primary outcome variables were, proportion of patients with genomic analysis and frequency of mutations. Chemotherapy was categorized as "standard induction" or "other chemotherapy"/targeted therapy, and hypomethylating agents. RESULTS Overall, 13% of ND AML patients between 2011 and 2018 had evidence of a genomic sequencing report with a demonstrated increase to 37% since 2016. Genomic testing was more likely performed in patients: aged ≤60 years than >60 years (45% vs. 30%; p = 0.03), treated in academic versus community hospitals (44% vs. 26%; p = 0.01), and in chemotherapy recipients than non-therapy recipients (46% vs. 19%; p < 0.001). Most common mutations were ASXL1, NPM1, and FLT3. Patients ≥75 years had highest proportion (46%) of multiple (≥3) mutations. Overall, 31.2% of patients with AML did not receive any therapy for their disease. This subgroup was older than chemotherapy recipients (mean age: 71.4 vs. 55.7 years, p < 0.001), and was highest (66.2%) in patients ≥75 years. CONCLUSIONS Our results highlight the unmet medical need to increase access to genomic testing to afford treatment options, particularly to older AML patients in the real-world setting, in this new era of targeted therapies.
Collapse
Affiliation(s)
- John C. Byrd
- University of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | | | | | - Uma Borate
- The Ohio State UniversityColumbusOhioUSA
| | | | | | - Amy Burd
- The Leukemia and Lymphoma SocietyRye BrookNew YorkUSA
| |
Collapse
|
2
|
Nie L, Zhang Y, You Y, Lin C, Li Q, Deng W, Ma J, Luo W, He H. The signature based on seven genomic instability-related genes could predict the prognosis of acute myeloid leukemia patients. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:840-848. [PMID: 35924822 DOI: 10.1080/16078454.2022.2107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common acute blood malignancy in adults. The complicated and dynamic genomic instability (GI) is the most prominent feature of AML. Our study aimed to explore the prognostic value of GI-related genes in AML patients. METHODS The mRNA data and mutation data were downloaded from the TCGA and GEO databases. Differential expression analyses were completed in limma package. GO and KEGG functional enrichment was conducted using clusterProfiler function of R. Univariate Cox and LASSO Cox regression analyses were performed to screen key genes for Risk score model construction. Nomogram was built with rms package. RESULTS We identified 114 DEGs between high TMB patients and low TMB AML patients, which were significantly enriched in 429 GO terms and 13 KEGG pathways. Based on the univariate Cox and LASSO Cox regression analyses, seven optimal genes were finally applied for Risk score model construction, including SELE, LGALS1, ITGAX, TMEM200A, SLC25A21, S100A4 and CRIP1. The Risk score could reliably predict the prognosis of AML patients. Age and Risk score were both independent prognostic indicators for AML, and the Nomogram based on them could also reliably predict the OS of AML patients. CONCLUSIONS A prognostic signature based on seven GI-related genes and a predictive Nomogram for AML patients are finally successfully constructed.
Collapse
Affiliation(s)
- Lirong Nie
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yuming Zhang
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yuchan You
- Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Changmei Lin
- Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Qinghua Li
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Wenbo Deng
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jingzhi Ma
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Wenying Luo
- Department of Clinical Laboratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Honghua He
- Department of Hematology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
3
|
Identifying potential germline variants from sequencing hematopoietic malignancies. Blood 2021; 136:2498-2506. [PMID: 33236764 DOI: 10.1182/blood.2020006910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) of bone marrow and peripheral blood increasingly guides clinical care in hematological malignancies. NGS data may help to identify single nucleotide variants, insertions/deletions, copy number variations, and translocations at a single time point, and repeated NGS testing allows tracking of dynamic changes in variants during the course of a patient's disease. Tumor cells used for NGS may contain germline, somatic, and clonal hematopoietic DNA alterations, and distinguishing the etiology of a variant may be challenging. We describe an approach using patient history, individual variant characteristics, and sequential NGS assays to identify potential germline variants. Our current criteria for identifying an individual likely to have a deleterious germline variant include a strong family history or multiple cancers in a single patient, diagnosis of a hematopoietic malignancy at a younger age than seen in the general population, variant allele frequency > 0.3 of a deleterious allele in a known germline predisposition gene, and variant persistence identified on clinical NGS panels, despite a change in disease state. Sequential molecular testing of hematopoietic specimens may provide insight into disease pathology, impact patient and family members' care, and potentially identify new cancer-predisposing risk alleles. Ideally, individuals should give consent at the time of NGS testing to receive information about potential germline variants and to allow future contact as research advances.
Collapse
|
4
|
Kraft IL, Godley LA. Identifying potential germline variants from sequencing hematopoietic malignancies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:219-227. [PMID: 33275754 PMCID: PMC7727528 DOI: 10.1182/hematology.2020006910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Next-generation sequencing (NGS) of bone marrow and peripheral blood increasingly guides clinical care in hematological malignancies. NGS data may help to identify single nucleotide variants, insertions/deletions, copy number variations, and translocations at a single time point, and repeated NGS testing allows tracking of dynamic changes in variants during the course of a patient's disease. Tumor cells used for NGS may contain germline, somatic, and clonal hematopoietic DNA alterations, and distinguishing the etiology of a variant may be challenging. We describe an approach using patient history, individual variant characteristics, and sequential NGS assays to identify potential germline variants. Our current criteria for identifying an individual likely to have a deleterious germline variant include a strong family history or multiple cancers in a single patient, diagnosis of a hematopoietic malignancy at a younger age than seen in the general population, variant allele frequency > 0.3 of a deleterious allele in a known germline predisposition gene, and variant persistence identified on clinical NGS panels, despite a change in disease state. Sequential molecular testing of hematopoietic specimens may provide insight into disease pathology, impact patient and family members' care, and potentially identify new cancer-predisposing risk alleles. Ideally, individuals should give consent at the time of NGS testing to receive information about potential germline variants and to allow future contact as research advances.
Collapse
Affiliation(s)
- Ira L. Kraft
- Section of Hematology/Oncology, Department of Medicine and The University of Chicago Comprehensive Cancer Center and
| | - Lucy A. Godley
- Section of Hematology/Oncology, Department of Medicine and The University of Chicago Comprehensive Cancer Center and
- Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
5
|
Shouval R, Labopin M, Bomze D, Baerlocher GM, Capria S, Blaise D, Hänel M, Forcade E, Huynh A, Saccardi R, Milone G, Zuckerman T, Reményi P, Versluis J, Esteve J, Gorin NC, Mohty M, Nagler A. Risk stratification using FLT3 and NPM1 in acute myeloid leukemia patients autografted in first complete remission. Bone Marrow Transplant 2020; 55:2244-2253. [PMID: 32388535 DOI: 10.1038/s41409-020-0936-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
FLT3-ITD and NPM1 mutation refine prognostic stratification in acute myeloid leukemia (AML) with intermediate-risk cytogenetics. However, data on their role in patients undergoing autologous stem cell transplantation (Auto-SCT) as post-remission therapy (PRT) are limited. We therefore sought to retrospectively evaluate the role of FLT3-ITD and NPM1 in a cohort of AML patients (n = 405) with intermediate-risk cytogenetics, autografted in first complete remission (CR1). Patients were transplanted between 2000 and 2014 and reported to the European Society for Blood and Marrow Transplantation (EBMT) registry. Leukemia-free survival (LFS) was the primary outcome. Median follow-up was 5.5 years. FLT3-ITDneg/NPM1WT was the leading molecular subtype (50%), followed by FLT3-ITDneg/NPM1mut (30%). In the univariate analysis, molecular subtype was associated with LFS, overall survival (OS), and relapse incidence (RI) (p < 0.001); 5-year LFS: FLT3-ITDneg/NPM1mut 62%, FLT3-ITDpos/NPM1mut 38%, FLT3-ITDneg/NPM1WT 32%, and FLT3-ITDpos/NPM1WT 21%. At 5 years, OS and RI in the FLT3-ITDneg/NPM1mut subtype were 74% and 35%, respectively. The corresponding OS and RI in other subtypes were below 48% and over 57%. In a Cox multivariable model, molecular subtype was the strongest predictor of LFS, OS, and relapse. In conclusion, AML patients with intermediate-risk cytogenetics and FLT3-ITDneg/NPM1mut experience favorable outcomes when autografted in CR1, suggesting that Auto-SCT is a valid PRT option.
Collapse
Affiliation(s)
- Roni Shouval
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Dr. Pinchas Bornstein Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | - Myriam Labopin
- Acute Leukemia Working Party of EBMT, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - David Bomze
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriela M Baerlocher
- Department of Hematology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Saveria Capria
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Policlinico Umberto I, Rome, Italy
| | - Didier Blaise
- Department of Hematology, Institut Paoli Calmettes, Marseille, France
| | - Mathias Hänel
- Department of Hematology, Oncology, Stem Cell Transplantation, Hospital Chemnitz, Chemnitz, Germany
| | - Edouard Forcade
- Hématologie Clinique et Thérapie cellulaire, CHU Bordeaux, Pessac, France
| | - Anne Huynh
- CHU Toulouse, IUCT-Oncopole, Toulouse, France
| | | | | | - Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Péter Reményi
- St. István and St. László Hospital of Budapest, Budapest, Hungary
| | - Jurjen Versluis
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Jordi Esteve
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Mohamad Mohty
- Hospital Saint-Antoine, APHP, Sorbonne University, INSERM U938, Paris, France
| | - Arnon Nagler
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Acute Leukemia Working Party of EBMT, Paris, France
| |
Collapse
|
6
|
Is There Still a Role for Autologous Stem Cell Transplantation for the Treatment of Acute Myeloid Leukemia? Cancers (Basel) 2019; 12:cancers12010059. [PMID: 31878297 PMCID: PMC7016672 DOI: 10.3390/cancers12010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
After intensive induction chemotherapy and complete remission achievement, patients with acute myeloid leukemia (AML) are candidates to receive either high-dose cytarabine-based regimens, or autologous (ASCT) or allogeneic (allo-SCT) hematopoietic stem cell transplantations as consolidation treatment. Pretreatment risk classification represents a determinant key of type and intensity of post-remission therapy. Current evidence indicates that allo-SCT represents the treatment of choice for high and intermediate risk patients if clinically eligible, and its use is favored by increasing availability of unrelated or haploidentical donors. On the contrary, the adoption of ASCT is progressively declining, although numerous studies indicate that in favorable risk AML the relapse rate is lower after ASCT than chemotherapy. In addition, the burden of supportive therapy and hospitalization favors ASCT. In this review, we summarize current indications (if any) to ASCT on the basis of molecular genetics at diagnosis and minimal residual disease evaluation after induction/consolidation phase. Finally, we critically discuss the role of ASCT in older patients with AML and acute promyelocytic leukemia.
Collapse
|
7
|
Zimta AA, Tomuleasa C, Sahnoune I, Calin GA, Berindan-Neagoe I. Long Non-coding RNAs in Myeloid Malignancies. Front Oncol 2019; 9:1048. [PMID: 31681586 PMCID: PMC6813191 DOI: 10.3389/fonc.2019.01048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) represents 80% of adult leukemias and 15-20% of childhood leukemias. AML are characterized by the presence of 20% blasts or more in the bone marrow, or defining cytogenetic abnormalities. Laboratory diagnoses of myelodysplastic syndromes (MDS) depend on morphological changes based on dysplasia in peripheral blood and bone marrow, including peripheral blood smears, bone marrow aspirate smears, and bone marrow biopsies. As leukemic cells are not functional, the patient develops anemia, neutropenia, and thrombocytopenia, leading to fatigue, recurrent infections, and hemorrhage. The genetic background and associated mutations in AML blasts determine the clinical course of the disease. Over the last decade, non-coding RNAs transcripts that do not codify for proteins but play a role in regulation of functions have been shown to have multiple applications in the diagnosis, prognosis and therapeutic approach of various types of cancers, including myeloid malignancies. After a comprehensive review of current literature, we found reports of multiple long non-coding RNAs (lncRNAs) that can differentiate between AML types and how their exogenous modulation can dramatically change the behavior of AML cells. These lncRNAs include: H19, LINC00877, RP11-84C10, CRINDE, RP11848P1.3, ZNF667-AS1, AC111000.4-202, SFMBT2, LINC02082-201, MEG3, AC009495.2, PVT1, HOTTIP, SNHG5, and CCAT1. In addition, by performing an analysis on available AML data in The Cancer Genome Atlas (TCGA), we found 10 lncRNAs with significantly differential expression between patients in favorable, intermediate/normal, or poor cytogenetic risk categories. These are: DANCR, PRDM16-DT, SNHG6, OIP5-AS1, SNHG16, JPX, FTX, KCNQ1OT1, TP73-AS1, and GAS5. The identification of a molecular signature based on lncRNAs has the potential for have deep clinical significance, as it could potentially help better define the evolution from low-grade MDS to high-grade MDS to AML, changing the course of therapy. This would allow clinicians to provide a more personalized, patient-tailored therapeutic approach, moving from transfusion-based therapy, as is the case for low-grade MDS, to the introduction of azacytidine-based chemotherapy or allogeneic stem cell transplantation, which is the current treatment for high-grade MDS.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Iman Sahnoune
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| |
Collapse
|