1
|
Fukami Y, Iijima M, Koike HH, Yagi S, Furukawa S, Mouri N, Ouchida J, Murakami A, Iida M, Yokoi S, Hashizume A, Iguchi Y, Imagama S, Katsuno M. Autoantibodies Against Dihydrolipoamide S-Acetyltransferase in Immune-Mediated Neuropathies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200199. [PMID: 38181320 DOI: 10.1212/nxi.0000000000200199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND OBJECTIVES This study aimed to identify disease-related autoantibodies in the serum of patients with immune-mediated neuropathies including chronic inflammatory demyelinating polyneuropathy (CIDP) and to investigate the clinical characteristics of patients with these antibodies. METHODS Proteins extracted from mouse brain tissue were used to react with sera from patients with CIDP by western blotting (WB) to determine the presence of common bands. Positive bands were then identified by mass spectrometry and confirmed for reactivity with patient sera using enzyme-linked immunosorbent assay (ELISA) and WB. Reactivity was further confirmed by cell-based and tissue-based indirect immunofluorescence assays. The clinical characteristics of patients with candidate autoantibody-positive CIDP were analyzed, and their association with other neurologic diseases was also investigated. RESULTS Screening of 78 CIDP patient sera by WB revealed a positive band around 60-70 kDa identified as dihydrolipoamide S-acetyltransferase (DLAT) by immunoprecipitation and mass spectrometry. Serum immunoglobulin G (IgG) and IgM antibodies' reactivity to recombinant DLAT was confirmed using ELISA and WB. A relatively high reactivity was observed in 29 of 160 (18%) patients with CIDP, followed by patients with sensory neuropathy (6/58, 10%) and patients with MS (2/47, 4%), but not in patients with Guillain-Barré syndrome (0/27), patients with hereditary neuropathy (0/40), and healthy controls (0/26). Both the cell-based and tissue-based assays confirmed reactivity in 26 of 33 patients with CIDP. Comparing the clinical characteristics of patients with CIDP with anti-DLAT antibodies (n = 29) with those of negative cases (n = 131), a higher percentage of patients had comorbid sensory ataxia (69% vs 37%), cranial nerve disorders (24% vs 9%), and malignancy (20% vs 5%). A high DLAT expression was observed in human autopsy dorsal root ganglia, confirming the reactivity of patient serum with mouse dorsal root ganglion cells. DISCUSSION Reactivity to DLAT was confirmed in patient sera, mainly in patients with CIDP. DLAT is highly expressed in the dorsal root ganglion cells, and anti-DLAT antibody may serve as a biomarker for sensory-dominant neuropathies.
Collapse
Affiliation(s)
- Yuki Fukami
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Masahiro Iijima
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Haruki H Koike
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Satoru Yagi
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Soma Furukawa
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Naohiro Mouri
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Jun Ouchida
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Ayuka Murakami
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Madoka Iida
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Satoshi Yokoi
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Hashizume
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Yohei Iguchi
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Shiro Imagama
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Masahisa Katsuno
- From the Department of Neurology (Y.F., M. Iijima, H.H.K., S. Yagi, S.F., N.M., A.M., M. Iida, S. Yokoi, A.H., Y.I., M.K.), Nagoya University Graduate School of Medicine; Department of Advanced Medicine (M.I.), Nagoya University Hospital; Department of Orthopedic Surgery (J.O., S.I.); and Department of Clinical Research Education (A.H., M.K.), Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
5
|
Zhang W, Choi J, Zeng W, Rogers SA, Alyea EP, Rheinwald JG, Canning CM, Brusic V, Sasada T, Reinherz EL, Ritz J, Soiffer RJ, Wu CJ. Graft-versus-leukemia antigen CML66 elicits coordinated B-cell and T-cell immunity after donor lymphocyte infusion. Clin Cancer Res 2010; 16:2729-39. [PMID: 20460482 PMCID: PMC2872105 DOI: 10.1158/1078-0432.ccr-10-0415] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The target antigens of graft-versus-leukemia that are tumor associated are incompletely characterized. EXPERIMENTAL DESIGN We examined responses developing against CML66, an immunogenic antigen preferentially expressed in myeloid progenitor cells identified from a patient with chronic myelogenous leukemia who attained long-lived remission following CD4+ donor lymphocyte infusion (DLI). RESULTS From this patient, CML66-reactive CD8+ T-cell clones were detected against an endogenously presented HLA-B*4403-restricted epitope (HDVDALLW). Neither CML66-specific antibody nor T-cell responses were detectable in peripheral blood before DLI. However, by 1 month after DLI, CD8+ T cells were present in peripheral blood and at 10-fold higher frequency in marrow. Subsequently, plasma antibody to CML66 developed in association with disease remission. Donor-derived CML66-reactive T cells were detected at low levels in vivo in marrow before DLI by ELISpot and by a nested PCR-based assay to detect clonotypic T-cell receptor sequences but not in blood of the patient pre-DLI nor of the graft donor. CONCLUSIONS CD4+ DLI results in rapid expansion of preexisting marrow-resident leukemia-specific donor CD8+ T cells, followed by a cascade of antigen-specific immune responses detectable in blood. Our single-antigen analysis thus shows that durable posttransplant tumor immunity is directed in part against nonpolymorphic overexpressed leukemia antigens that elicit coordinated cellular and humoral immunity.
Collapse
MESH Headings
- Antigen Presentation/immunology
- Antigens, Neoplasm/immunology
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/immunology
- Epitopes, T-Lymphocyte/immunology
- HLA Antigens/immunology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Lymphocyte Activation/immunology
- Lymphocyte Transfusion
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/therapy
- Polymerase Chain Reaction
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Wandi Zhang
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
| | - Jaewon Choi
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
| | - Wanyong Zeng
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
| | - Shelby A. Rogers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Edwin P. Alyea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - James G. Rheinwald
- Department of Dermatology, Brigham and Women’s Hospital and Harvard Skin Disease Research Center, Harvard Medical School, Boston, MA
| | | | - Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
| | - Tetsuro Sasada
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ellis L. Reinherz
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jerome Ritz
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Catherine J. Wu
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|