1
|
Gaillard JB, Chapiro E, Daudignon A, Nadal N, Penther D, Chauzeix J, Nguyen-Khac F, Veronese L, Lefebvre C. Cytogenetics in the management of mature T-cell and NK-cell neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103428. [PMID: 38016421 DOI: 10.1016/j.retram.2023.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Mature T-cell and natural killer (NK)-cell neoplasms (MTNKNs) are a highly heterogeneous group of lymphomas that represent 10-15 % of lymphoid neoplasms and have usually an aggressive behavior. Diagnosis can be challenging due to their overlapping clinical, histological and immunophenotypic features. Genetic data are not a routine component of the diagnostic algorithm for most MTNKNs. Indeed, unlike B-cell lymphomas, the genomic landscape of MTNKNs is not fully understood. Only few characteristic rearrangements can be easily identified with conventional cytogenetic methods and are an integral part of the diagnostic criteria, for instance the t(14;14)/inv(14) or t(X;14) abnormality harbored by 95 % of patients with T-cell prolymphocytic leukemia, or the ALK gene translocation observed in some forms of anaplastic large cell lymphoma. However, advances in molecular and cytogenetic techniques have brought new insights into MTNKN pathogenesis. Several recurrent genetic alterations have been identified, such as chromosomal losses involving tumor suppressor genes (SETD2, CDKN2A, TP53) and gains involving oncogenes (MYC), activating mutations in signaling pathways (JAK-STAT, RAS), and epigenetic dysregulation, that have improved our understanding of these pathologies. This work provides an overview of the cytogenetics knowledge in MTNKNs in the context of the new World Health Organization classification and the International Consensus Classification of hematolymphoid tumors. It describes key genetic alterations and their clinical implications. It also proposes recommendations on cytogenetic methods for MTNKN diagnosis.
Collapse
Affiliation(s)
- Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France.
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - Jasmine Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
2
|
Carpizo DR, Harris CR. Genetic Drivers of Ileal Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13205070. [PMID: 34680217 PMCID: PMC8533727 DOI: 10.3390/cancers13205070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Although ileal neuroendocrine tumors are the most common tumors of the small intestine, they are not well-defined at the genetic level. Unlike most cancers, they have an unusually low number of mutations, and also lack recurrently mutated genes. Moreover ileal NETs have been difficult to study in the laboratory because there were no animal models and because cell lines were generally unavailable. But recent advances, including the first ileal NET mouse model as well as methods for culturing patient tumor samples, have been described and have already helped to identify IGF2 and CDK4 as two of the genetic drivers for this tumor type. These advances may help in the development of new treatments for patients. Abstract The genetic causes of ileal neuroendocrine tumors (ileal NETs, or I-NETs) have been a mystery. For most types of tumors, key genes were revealed by large scale genomic sequencing that demonstrated recurrent mutations of specific oncogenes or tumor suppressors. In contrast, genomic sequencing of ileal NETs demonstrated a distinct lack of recurrently mutated genes, suggesting that the mechanisms that drive the formation of I-NETs may be quite different than the cell-intrinsic mutations that drive the formation of other tumor types. However, recent mouse studies have identified the IGF2 and RB1 pathways in the formation of ileal NETs, which is supported by the subsequent analysis of patient samples. Thus, ileal NETs no longer appear to be a cancer without genetic causes.
Collapse
|
3
|
Hung D, Lenton D, Eslick R, Blennerhassett R, Joshi M, McCaughan G, Day S, Wright D. Chromosome microarray characterisation of chromosome arm 12p loss associated with complex molecular karyotype and recurrent adverse cytogenetic markers in multiple myeloma. Genes Chromosomes Cancer 2021; 60:668-677. [PMID: 34041820 DOI: 10.1002/gcc.22975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
Copy number loss within chromosome 12 short arm (12p) has gained attention as an adverse cytogenetic marker in multiple myeloma. The prognostic significance and characterisation of the common minimal deleted region remains controversial between various studies with loss of CD27 proposed as the putative critical gene. We aimed to determine the frequency of 12p loss, its correlation with adverse cytogenetic markers further to define and characterise 12p deletions. Our study included a prospective cohort of 574 multiple myeloma patients referred for cytogenetic testing, including interphase fluorescence in situ hybridisation for IGH (14q32.33) translocations and chromosome microarray. Loss of 12p was detected in 54/574 (9.4%) patients and when compared with the non-12p loss group [520/574 (90.6%)], 12p loss patients demonstrated a statistically significant association with specific recurrent cytogenetic markers: complex molecular karyotypes (98.1% vs 45.2%), 1p loss (50.0% vs 20.2%), t(4;14) (20.4% vs 7.7%), 8p loss (37.0% vs 15.0%), 13/13q loss (70.4% vs 41.7%), and 17p loss (33.3% vs 6.5%). The size and location of 12p losses were heterogeneous with a common 0.88 Mb minimally deleted region that included ~9 genes from ETV6 to CDKN1B in 52/54 (~96.3%) patients but did not include CD27. Our findings support 12p loss being a secondary chromosome abnormality frequently co-occurring with adverse cytogenetic markers and complex molecular karyotypes indicative of chromosome instability.
Collapse
Affiliation(s)
- Dorothy Hung
- Cytogenetics Department, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Douglas Lenton
- Clinical Haematology Services, Orange, New South Wales, Australia
| | - Renee Eslick
- Haematology Department, Liverpool Hospital, Liverpool, New South Wales, Australia
| | | | - Maansi Joshi
- Department of Haematology, Nepean Hospital, Kingswood, New South Wales, Australia
| | - Georgia McCaughan
- Haematology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | - Samantha Day
- Haematology Department, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Dale Wright
- Cytogenetics Department, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Co-occurrence of unclassified myeloproliferative neoplasm and giant cell arteritis in a patient treated with allogeneic hematopoietic stem cell transplantation: a case report and literature review. Cent Eur J Immunol 2021; 46:121-126. [PMID: 33897294 PMCID: PMC8056354 DOI: 10.5114/ceji.2019.83140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of hematologic disorders characterized by clonal proliferation of myeloid lineage cells. The diagnostic criteria are based on morphological features of bone marrow and peripheral blood cells but also include specific genomic mutations. In some patients, co-occurrence of hematologic and rheumatic diseases could be observed. To date, most of the reported cases concerned patients with myelodysplastic syndrome (MDS) or essential thrombocythemia (ET). In this paper, we present a case of a patient with a complicated diagnostic process leading to the diagnosis of unclassified MPN and giant cell arteritis (GCA). Routine tests did not reveal any mutations typical for MPNs such as JAK-2, CALR, MPL or BCR-ABL. Targeted next-generation sequencing (NGS) helped to confirm the diagnosis by demonstrating the presence of heterozygous ASXL1, TET2, SRSF2, and CBL mutations. The second important issue was the overlapping of symptoms of MPN and seronegative rheumatic disease, which finally was diagnosed as GCA. Leukocytosis and musculoskeletal pain, which were present at the time of diagnosis, resolved after allogeneic hematopoietic stem cell transplantation but recurred after a few months along with decreasing donor cell chimerism. Differentiation of the causes of recurrence of the symptoms was an important issue. This case shows the diagnostic challenge posed by co-incidence of MPN and rheumatic disease, especially its atypical variants.
Collapse
|
5
|
Cross M, Dearden C. B and T cell prolymphocytic leukaemia. Best Pract Res Clin Haematol 2019; 32:217-228. [PMID: 31585622 DOI: 10.1016/j.beha.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Prolymphocytic leukaemias B-PLL and T-PLL are rare disorders, typically with an aggressive clinical course and poor prognosis. Combining morphology, immunophenotyping, cytogenetic and molecular diagnostics reliably separates B-PLL and T-PLL from one another and other disorders. In T-PLL discovery of frequent mutations in the JAK-STAT pathway have increased understanding of disease pathogenesis. Alemtuzumab (anti-CD52) produces excellent response rates but long-term remissions are only achieved in a minority following consolidation with allogeneic stem cell transplant. Molecular abnormalities in B-PLL are less understood. Disruption of TP53 is a key finding, conveying chemotherapy resistance requiring novel therapies such as B-cell receptor inhibitors (BCRi). Both conditions require improved pathobiological knowledge to identify new treatment targets and guide therapy with novel pathway inhibitors.
Collapse
Affiliation(s)
- M Cross
- The Royal Marsden Hospital and the Institute of Cancer Research, UK
| | - C Dearden
- The Royal Marsden Hospital and the Institute of Cancer Research, UK.
| |
Collapse
|
6
|
The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis. Cell Death Differ 2018; 25:1823-1836. [PMID: 30013037 PMCID: PMC6180092 DOI: 10.1038/s41418-018-0160-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet B (UVB) radiation induces mutagenic DNA photoproducts, in particular cyclobutane pyrimidine dimers (CPDs), in epidermal keratinocytes (KC). To prevent skin carcinogenesis, these DNA photoproducts must be removed by nucleotide excision repair (NER) or apoptosis. Here we report that the UVB-sensitive transcription factor aryl hydrocarbon receptor (AHR) attenuates the clearance of UVB-induced CPDs in human HaCaT KC and skin from SKH-1 hairless mice. Subsequent RNA interference and inhibitor studies in KC revealed that AHR specifically suppresses global genome but not transcription-coupled NER. In further experiments, we found that the accelerated repair of CPDs in AHR-compromised KC depended on a modulation of the p27 tumor suppressor protein. Accordingly, p27 protein levels were increased in AHR-silenced KC and skin biopsies from AHR−/− mice, and critical for the improvement of NER. Besides increasing NER activity, AHR inhibition was accompanied by an enhanced occurrence of DNA double-strand breaks triggering KC apoptosis at later time points after irradiation. The UVB-activated AHR thus acts as a negative regulator of both early defense systems against carcinogenesis, NER and apoptosis, implying that it exhibits tumorigenic functions in UVB-exposed skin. In fact, AHR−/− mice developed 50% less UVB-induced cutaneous squamous cell carcinomas in a chronic photocarcinogenesis study than their AHR+/+ littermates. Taken together, our data reveal that AHR influences DNA damage-dependent responses in UVB-irradiated KC and critically contributes to skin photocarcinogenesis in mice.
Collapse
|
7
|
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun 2018; 9:697. [PMID: 29449575 PMCID: PMC5814445 DOI: 10.1038/s41467-017-02688-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution. T-cell prolymphocytic leukemia (T-PLL) is a rare malignancy with a poor prognosis. Here, the authors investigate the genomic landscape, gene expression profiles and functional mechanisms in 111 patients, highlighting TCL1 overexpression and ATM aberrations as core lesions which co-operate to impair DNA damage processing.
Collapse
|
8
|
Laribi K, Lemaire P, Sandrini J, Baugier de Materre A. Advances in the understanding and management of T-cell prolymphocytic leukemia. Oncotarget 2017; 8:104664-104686. [PMID: 29262669 PMCID: PMC5732835 DOI: 10.18632/oncotarget.22272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/27/2017] [Indexed: 12/02/2022] Open
Abstract
T-prolymphocytic leukemia (T-PLL) is a rare T-cell neoplasm with an aggressive clinical course. Leukemic T-cells exhibit a post-thymic T-cell phenotype (Tdt-, CD1a-, CD5+, CD2+ and CD7+) and are generally CD4+/CD8-, but CD4+/CD8+ or CD8+/CD4- T-PLL have also been reported. The hallmark of T-PLL is the rearrangement of chromosome 14 involving genes for the subunits of the T-cell receptor (TCR) complex, leading to overexpression of the proto-oncogene TCL1. In addition, molecular analysis shows that T-PLL exhibits substantial mutational activation of the IL2RG-JAK1-JAK3-, STAT5B axis. T-PLL patients have a poor prognosis, due to a poor response to conventional chemotherapy. Monoclonal antibody therapy with antiCD52-alemtuzumab has considerably improved outcomes, but the responses to treatment are transient; hence, patients who achieve a response to therapy are considered for stem cell transplantation (SCT). This combined approach has extended the median survival to four years or more. Nevertheless, new approaches using well-tolerated therapies that target growth and survival signals are needed for most patients unable to receive intensive chemotherapy.
Collapse
Affiliation(s)
- Kamel Laribi
- Department of Hematology, Centre Hospitalier du Mans, Le Mans, France
| | - Pierre Lemaire
- Laboratory of Biology and Hematology, Centre Hospitalier du Mans, Le Mans, France
| | - Jeremy Sandrini
- Laboratory of Anatomopathology, Centre Hospitalier du Mans, Le Mans, France
| | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW We aimed to produce a comprehensive update on clinical and biological data regarding two rare lymphoid neoplasms, B and T prolymphocytic leukemias, and assess therapeutic management in the light of new molecular insights and the advent of targeted therapies. RECENT FINDINGS B cell prolymphocytic leukemia (B-PLL) diagnosis remains challenging in the absence of clear immunophenotypic or cytogenetic signature and overlap with mantle cell lymphoma. New molecular defects have been identified in T cell prolymphocytic leukemia (T-PLL), especially in the JAK STAT pathway. Like in chronic lymphocytic leukemia (CLL), B-PLL treatment depends on the presence of TP53 dysfunction. In T-PLL, alemtuzumab still remains the standard of care. Allogeneic transplantation is the only curable option. Thanks to reduced intensity conditioning regimens, it has become accessible to a larger number of patients. PLL prognosis remains poor with conventional therapies. However, great advances in the understanding of both T- and B-PLL pathogenesis lead to promising new therapeutic agents.
Collapse
|
10
|
Bencivenga D, Caldarelli I, Stampone E, Mancini FP, Balestrieri ML, Della Ragione F, Borriello A. p27 Kip1 and human cancers: A reappraisal of a still enigmatic protein. Cancer Lett 2017; 403:354-365. [DOI: 10.1016/j.canlet.2017.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
|
11
|
Andersson EI, Pützer S, Yadav B, Dufva O, Khan S, He L, Sellner L, Schrader A, Crispatzu G, Oleś M, Zhang H, Adnan-Awad S, Lagström S, Bellanger D, Mpindi JP, Eldfors S, Pemovska T, Pietarinen P, Lauhio A, Tomska K, Cuesta-Mateos C, Faber E, Koschmieder S, Brümmendorf TH, Kytölä S, Savolainen ER, Siitonen T, Ellonen P, Kallioniemi O, Wennerberg K, Ding W, Stern MH, Huber W, Anders S, Tang J, Aittokallio T, Zenz T, Herling M, Mustjoki S. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia 2017; 32:774-787. [PMID: 28804127 DOI: 10.1038/leu.2017.252] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive neoplasm of mature T-cells with an urgent need for rationally designed therapies to address its notoriously chemo-refractory behavior. The median survival of T-PLL patients is <2 years and clinical trials are difficult to execute. Here we systematically explored the diversity of drug responses in T-PLL patient samples using an ex vivo drug sensitivity and resistance testing platform and correlated the findings with somatic mutations and gene expression profiles. Intriguingly, all T-PLL samples were sensitive to the cyclin-dependent kinase inhibitor SNS-032, which overcame stromal-cell-mediated protection and elicited robust p53-activation and apoptosis. Across all patients, the most effective classes of compounds were histone deacetylase, phosphoinositide-3 kinase/AKT/mammalian target of rapamycin, heat-shock protein 90 and BH3-family protein inhibitors as well as p53 activators, indicating previously unexplored, novel targeted approaches for treating T-PLL. Although Janus-activated kinase-signal transducer and activator of transcription factor (JAK-STAT) pathway mutations were common in T-PLL (71% of patients), JAK-STAT inhibitor responses were not directly linked to those or other T-PLL-specific lesions. Overall, we found that genetic markers do not readily translate into novel effective therapeutic vulnerabilities. In conclusion, novel classes of compounds with high efficacy in T-PLL were discovered with the comprehensive ex vivo drug screening platform warranting further studies of synergisms and clinical testing.
Collapse
Affiliation(s)
- E I Andersson
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Pützer
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - B Yadav
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Dufva
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Khan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L He
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L Sellner
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - A Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - G Crispatzu
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - M Oleś
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - H Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S Adnan-Awad
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Lagström
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - D Bellanger
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - J P Mpindi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - S Eldfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - T Pemovska
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - P Pietarinen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - A Lauhio
- Department of Medicine, Division of Infectious Disease, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - K Tomska
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - C Cuesta-Mateos
- Departamento de Immunología, Hospital Universitario de la Princesa, Madrid, Spain
| | - E Faber
- Department of Hemato-oncology, University Hospital Olomouc, Olomouc, Czech Republic
| | - S Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - T H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - S Kytölä
- Helsinki University Central Hospital (HUCH), Laboratory of Genetics, HUSLAB, Helsinki, Finland
| | - E-R Savolainen
- Nordlab Oulu, Hematology Laboratory, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T Siitonen
- Department of Hematology, Oulu University Hospital, MRC Oulu, University of Oulu, Oulu, Finland
| | - P Ellonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - K Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - W Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - M-H Stern
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - W Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - S Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - J Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Zenz
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - M Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - S Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
12
|
Colomer-Lahiguera S, Pisecker M, König M, Nebral K, Pickl WF, Kauer MO, Haas OA, Ullmann R, Attarbaschi A, Dworzak MN, Strehl S. MEF2C-dysregulated pediatric T-cell acute lymphoblastic leukemia is associated with CDKN1B deletions and a poor response to glucocorticoid therapy. Leuk Lymphoma 2017; 58:2895-2904. [PMID: 28482719 DOI: 10.1080/10428194.2017.1312383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease in which multiple genetic abnormalities cooperate in the malignant transformation of T-lymphoid progenitors. Although in pediatric T-ALL, CDKN1B deletions occur in about 12% of the cases and represent one of the most frequent copy number alterations, neither their association with other genetic alterations nor the clinical characteristics of these patients have been determined yet. In this study, we show that loss of CDKN1B increased the prevalence of cell cycle regulator defects in immature T-ALL, usually only ascribed to CDKN2A/B deletions, and that CDKN1B deletions frequently coincide with expression of MEF2C, considered as one of the driving oncogenes in immature early T-cell precursor (ETP) ALL. However, MEF2C-dysregulation was only partially associated with the immunophenotypic characteristics used to define ETP-ALL. Furthermore, MEF2C expression levels were significantly associated with or may even be predictive of the response to glucocorticoid treatment.
Collapse
Affiliation(s)
- Sara Colomer-Lahiguera
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Markus Pisecker
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Margit König
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Karin Nebral
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Winfried F Pickl
- b Institute of Immunology , Medical University of Vienna , Vienna , Austria
| | - Maximilian O Kauer
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Oskar A Haas
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Reinhard Ullmann
- c MPIMG , Max Planck Institute for Molecular Genetics , Berlin , Germany.,d Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm , Munich , Germany
| | - Andishe Attarbaschi
- e Department of Pediatric Hematology and Oncology , St. Anna Children's Hospital, Medical University of Vienna , Vienna , Austria
| | - Michael N Dworzak
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria.,e Department of Pediatric Hematology and Oncology , St. Anna Children's Hospital, Medical University of Vienna , Vienna , Austria
| | - Sabine Strehl
- a CCRI , Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| |
Collapse
|
13
|
|
14
|
Hasanali ZS, Saroya BS, Stuart A, Shimko S, Evans J, Vinod Shah M, Sharma K, Leshchenko VV, Parekh S, Loughran TP, Epner EM. Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia. Sci Transl Med 2016; 7:293ra102. [PMID: 26109102 DOI: 10.1126/scitranslmed.aaa5079] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cell prolymphocytic leukemia (T-PLL) is a rare, mature T cell neoplasm with distinct features and an aggressive clinical course. Early relapse and short overall survival are commonplace. Use of the monoclonal anti-CD52 antibody alemtuzumab has improved the rate of complete remission and duration of response to more than 50% and between 6 and 12 months, respectively. Despite this advance, without an allogeneic transplant, resistant relapse is inevitable. We report seven complete and one partial remission in eight patients receiving alemtuzumab and cladribine with or without a histone deacetylase inhibitor. These data show that administration of epigenetic agents can overcome alemtuzumab resistance. We also report epigenetically induced expression of the surface receptor protein CD30 in T-PLL. Subsequent treatment with the anti-CD30 antibody-drug conjugate brentuximab vedotin overcame organ-specific (skin) resistance to alemtuzumab. Our findings demonstrate activity of combination epigenetic and immunotherapy in the incurable illness T-PLL, particularly in the setting of previous alemtuzumab therapy.
Collapse
Affiliation(s)
- Zainul S Hasanali
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | | | - August Stuart
- Department of Medicine/Hematology-Oncology, Pennsylvania State University College of Medicine and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | - Sara Shimko
- Department of Medicine/Hematology-Oncology, Pennsylvania State University College of Medicine and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | - Juanita Evans
- Department of Anatomic Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Mithun Vinod Shah
- Division of Hematology and Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kamal Sharma
- Shaner Cancer Center Mount Nittany Medical Center/Pennsylvania State University, State College, PA 6803, USA
| | - Violetta V Leshchenko
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samir Parekh
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas P Loughran
- Department of Medicine/Hematology-Oncology, UVA Cancer Center, Charlottesville, VA 22903, USA.
| | - Elliot M Epner
- Department of Hematology/Oncology, New Mexico VA Health Care System, Albuquerque, NM 87108, USA.
| |
Collapse
|
15
|
López C, Bergmann AK, Paul U, Murga Penas EM, Nagel I, Betts MJ, Johansson P, Ritgen M, Baumann T, Aymerich M, Jayne S, Russell RB, Campo E, Dyer MJS, Dürig J, Siebert R. Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia. Br J Haematol 2016; 173:265-73. [DOI: 10.1111/bjh.13952] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/07/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Cristina López
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Anke K. Bergmann
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
- Department of Paediatrics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Ulrike Paul
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Eva M. Murga Penas
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Inga Nagel
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Matthew J. Betts
- Cell Networks; Bioquant; University of Heidelberg; Heidelberg Germany
| | - Patricia Johansson
- Department of Haematology; University Hospital Essen; University of Duisburg-Essen; Essen Germany
- Faculty of Medicine; Institute of Cell Biology (Cancer Research); University of Duisburg-Essen; Essen Germany
| | - Matthias Ritgen
- Second Department of Medicine; University Hospital of Schleswig-Holstein; Kiel Germany
| | - Tycho Baumann
- Department of Haematology; Hospital Clínic; Institut d′Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS); Barcelona Spain
| | - Marta Aymerich
- Haematopathology Unit; Hospital Clínic; Institut d′Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute; University of Leicester; Leicester UK
| | - Robert B. Russell
- Cell Networks; Bioquant; University of Heidelberg; Heidelberg Germany
| | - Elias Campo
- Haematopathology Unit; Hospital Clínic; Institut d′Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Martin JS Dyer
- Ernest and Helen Scott Haematological Research Institute; University of Leicester; Leicester UK
| | - Jan Dürig
- Department of Haematology; University Hospital Essen; University of Duisburg-Essen; Essen Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
| | - Reiner Siebert
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| |
Collapse
|
16
|
Abstract
In this issue of Blood, Dietrich et al make the first observation of the presence of deleterious CDKN1B mutation in 16% of patients with hairy cell leukemia (HCL). Furthermore, in the majority of patients, the CDKN1B mutation was clonal, suggesting that this mutation plays a role in the pathogenesis of HCL.
Collapse
|
17
|
Stengel A, Kern W, Zenger M, Perglerová K, Schnittger S, Haferlach T, Haferlach C. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer 2015; 55:82-94. [PMID: 26493028 DOI: 10.1002/gcc.22313] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 01/26/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare post-thymic T-cell neoplasm with aggressive clinical course and short overall survival. So far, due to the rareness of this disease, genetic data are available only from individual cases or small cohorts. In our study, we aimed at performing a comprehensive cytogenetic and molecular genetic characterization of T-PLL comprising the largest cohort of patients with T-PLL analyzed so far, including correlations between the respective markers and their impact on prognosis. Genetic abnormalities were found in all 51 cases with T-PLL, most frequently involving the TCRA/D locus (86%). Deletions were detected for ATM (69%) and TP53 (31%), whereas i(8)(q10) was observed in 61% of cases. Mutations in ATM, TP53, JAK1, and JAK3 were detected in 73, 14, 6, and 21% of patients, respectively. Additionally, BCOR mutations were observed for the first time in a lymphoid malignancy (8%). Two distinct genetic subgroups of T-PLL were identified: A large subset (86% of patients) showed abnormalities involving the TCRA/D locus activating the proto-oncogenes TCL1 or MTCP1, while the second group was characterized by a high frequency of TP53 mutations (4/7 cases). Further, analyses of overall survival identified JAK3 mutations as important prognostic marker, showing a significant negative impact.
Collapse
Affiliation(s)
- Anna Stengel
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Melanie Zenger
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | | | - Susanne Schnittger
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| |
Collapse
|
18
|
Solving the genetic puzzle of systemic lupus erythematosus. Pediatr Nephrol 2015; 30:1735-48. [PMID: 25239301 DOI: 10.1007/s00467-014-2947-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/30/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023]
Abstract
In recent years, genome-wide association studies on systemic lupus erythematosus (SLE) have significantly improved our understanding of the genetic architecture of this prototypic autoimmune disease. However, there is still a long way to go before we can fully understand the genetic factors for this very heterogeneous disease and the interplays between environmental factors and genetic predisposition that lead to the pathogenesis of SLE. Here we summarize the recent advances in our understanding of the genetics of SLE and discuss the future directions towards fully elucidating the mechanisms of this disease.
Collapse
|
19
|
Maxwell JE, Sherman SK, Li G, Choi AB, Bellizzi AM, O'Dorisio TM, Howe JR. Somatic alterations of CDKN1B are associated with small bowel neuroendocrine tumors. Cancer Genet 2015; 208:S2210-7762(15)00184-2. [PMID: 26603463 PMCID: PMC4936963 DOI: 10.1016/j.cancergen.2015.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/17/2023]
Abstract
CDKN1B, a cyclin-dependent kinase inhibitor associated with G1 arrest, was recently proposed as an important tumor suppressor gene in small bowel neuroendocrine tumors (SBNETs). The rate of frameshift mutations in SBNET primaries are reportedly 7.4%, and hemizygous deletions are 6.7%. We set out to confirm the role of CDKN1B mutations and copy number variants (CNVs) in primary SBNETs, and whether these are also found in pancreatic neuroendocrine tumors (PNETs). Genomic DNA was isolated from 90 primary SBNETs and 67 PNETs. Coding exons of CDKN1B were amplified by PCR and sequenced. CNV analysis was performed by quantitative PCR, p27 expression was evaluated using immunohistochemistry. In SBNETS, three frameshifts, one missense mutation, and three CNVs were observed. The total rate of CDKN1B alterations was 7.0% (6 of 86; 95% confidence interval (CI) 3.2-4.4%). The frameshift rate was 3.5% (95% CI 1.1-9.8%). One SBNET patient had a hemizygous deletion of CDKN1B, and two patients had duplications (3.4%; 95% CI -0.41-7.2%). One PNET patient had a duplication, and two patients had hemizygous deletions (4.8%; 95% CI -0.44-10%). Alterations of cell-cycle control due to alterations in CDKN1B may be one mechanism by which SBNETs develop, which could have implications for new treatment modalities.
Collapse
Affiliation(s)
- Jessica E Maxwell
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Scott K Sherman
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guiying Li
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Allen B Choi
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew M Bellizzi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Thomas M O'Dorisio
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James R Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
20
|
Maxwell JE, Sherman SK, Li G, Choi AB, Bellizzi AM, O'Dorisio TM, Howe JR. Somatic alterations of CDKN1B are associated with small bowel neuroendocrine tumors. Cancer Genet 2015; 208:S2210-7762(15)00184-2. [PMID: 26603463 PMCID: PMC4936963 DOI: 10.1016/j.cancergen.2015.08.003 10.1016/j.cancergen.2015.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2024]
Abstract
CDKN1B, a cyclin-dependent kinase inhibitor associated with G1 arrest, was recently proposed as an important tumor suppressor gene in small bowel neuroendocrine tumors (SBNETs). The rate of frameshift mutations in SBNET primaries are reportedly 7.4%, and hemizygous deletions are 6.7%. We set out to confirm the role of CDKN1B mutations and copy number variants (CNVs) in primary SBNETs, and whether these are also found in pancreatic neuroendocrine tumors (PNETs). Genomic DNA was isolated from 90 primary SBNETs and 67 PNETs. Coding exons of CDKN1B were amplified by PCR and sequenced. CNV analysis was performed by quantitative PCR, p27 expression was evaluated using immunohistochemistry. In SBNETS, three frameshifts, one missense mutation, and three CNVs were observed. The total rate of CDKN1B alterations was 7.0% (6 of 86; 95% confidence interval (CI) 3.2-4.4%). The frameshift rate was 3.5% (95% CI 1.1-9.8%). One SBNET patient had a hemizygous deletion of CDKN1B, and two patients had duplications (3.4%; 95% CI -0.41-7.2%). One PNET patient had a duplication, and two patients had hemizygous deletions (4.8%; 95% CI -0.44-10%). Alterations of cell-cycle control due to alterations in CDKN1B may be one mechanism by which SBNETs develop, which could have implications for new treatment modalities.
Collapse
Affiliation(s)
- Jessica E Maxwell
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Scott K Sherman
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guiying Li
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Allen B Choi
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew M Bellizzi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Thomas M O'Dorisio
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James R Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
21
|
Recurrent CDKN1B (p27) mutations in hairy cell leukemia. Blood 2015; 126:1005-8. [PMID: 26065650 DOI: 10.1182/blood-2015-04-643361] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations.
Collapse
|
22
|
Pardi E, Mariotti S, Pellegata NS, Benfini K, Borsari S, Saponaro F, Torregrossa L, Cappai A, Satta C, Mastinu M, Marcocci C, Cetani F. Functional characterization of a CDKN1B mutation in a Sardinian kindred with multiple endocrine neoplasia type 4 (MEN4). Endocr Connect 2015; 4:1-8. [PMID: 25416039 PMCID: PMC5713151 DOI: 10.1530/ec-14-0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inactivating germline mutations of the CDKN1B gene, encoding for the nuclear cyclin-dependent kinase inhibitor p27kip1 protein, have been reported in patients with multiple endocrine neoplasia type 4 (MEN4), a MEN1-like phenotype without MEN1 mutations. The aim of this study was to in vitro characterize the germline CDKN1B mutation c.374_375delCT (S125X) we detected in a patient with MEN4. The proband was affected by multiglandular primary hyperparathyroidism and gastro-entero-pancreatic tumors. We carried out subcellular localization experiments transfecting into eukaryotic HeLa and GH3 cell lines plasmid vectors expressing the CDKN1B wild type (wt) or mutant cDNA. Western blot studies showed that fusion proteins were expressed at equal levels. The mutated protein was shorter compared to the wt protein and lacked the highly conserved C-terminal domain, which includes the bipartite nuclear localization signal at amino acids 152/153 and 166/168. In HeLa and GH3 cells wt p27 localized in the nucleus whereas the p27_S125X protein was retained in the cytoplasm predicting the loss of tumor suppressive function. The proband's tumoral parathyroid tissue did not show allelic loss, since wt and mutant alleles were both present by sequencing the somatic DNA. Immunohistochemistry showed a complete loss of nuclear p27 expression in the parathyroid adenoma removed by the patient at the second surgery. In conclusion, our study confirms the pathogenic role of the c.374_375delCT CDKN1B germline mutation in a patient with MEN4.
Collapse
Affiliation(s)
- Elena Pardi
- E Pardi, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Stefano Mariotti
- S Mariotti, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Natalia S Pellegata
- N Pellegata, Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Katiuscia Benfini
- K Benfini, Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Simona Borsari
- S Borsari, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Federica Saponaro
- F Saponaro, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- L Torregrossa, Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Antonello Cappai
- A Cappai, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Chiara Satta
- C Satta, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Marco Mastinu
- M Mastinu, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Claudio Marcocci
- C Marcocci, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Filomena Cetani
- F Cetani, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Tomiatti V, Istvánffy R, Pietschmann E, Kratzat S, Hoellein A, Quintanilla-Fend L, von Bubnoff N, Peschel C, Oostendorp RAJ, Keller U. Cks1 is a critical regulator of hematopoietic stem cell quiescence and cycling, operating upstream of Cdk inhibitors. Oncogene 2014; 34:4347-57. [DOI: 10.1038/onc.2014.364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/06/2014] [Accepted: 09/02/2014] [Indexed: 01/14/2023]
|
24
|
Feurstein S, Rücker FG, Bullinger L, Hofmann W, Manukjan G, Göhring G, Lehmann U, Heuser M, Ganser A, Döhner K, Schlegelberger B, Steinemann D. Haploinsufficiency of ETV6 and CDKN1B in patients with acute myeloid leukemia and complex karyotype. BMC Genomics 2014; 15:784. [PMID: 25213837 PMCID: PMC4168160 DOI: 10.1186/1471-2164-15-784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia with complex karyotype (CK-AML) is a distinct biological entity associated with a very poor outcome. Since complex karyotypes frequently contain deletions of the chromosomal region 12p13 encompassing the tumor suppressor genes ETV6 and CDKN1B, we aimed to unravel their modes of inactivation in CK-AML. RESULTS To decipher deletions, mutations and methylation of ETV6 and CDKN1B, arrayCGH, SNP arrays, direct sequencing of all coding exons and pyrosequencing of the 5'UTR CpG islands of ETV6 and CDKN1B were performed. In total, 39 of 79 patients (49%) showed monoallelic deletions of 12p13 according to karyotypic data and 20 of 43 patients (47%) according to genomic profiling. Genomic profiling led to the minimal deleted region covering the 3'-UTR of ETV6 and CDKN1B. Direct sequencing revealed one novel monoallelic frameshift mutation in ETV6 while no mutations in CDKN1B were identified. Furthermore, methylation levels of ETV6 and CDKN1B did not indicate transcriptional silencing of any of these genes. ETV6 and CDKN1B had reduced expression levels in CK-AML patients with deletion in 12p13 as compared to CK-AML without deletion in 12p13, while the other genes (BCL2L14, LRP6, DUSP16 and GPRC5D) located within the minimal deleted region in 12p13 had very low or missing expression in CK-AML irrespective of their copy number status. CONCLUSIONS ETV6 and CDKN1B are mainly affected by small monoallelic deletions, whereas mutations and hypermethylation play a minor role in CK-AML. Reduced gene dosage led to reduced gene expression levels, pointing to haploinsufficiency as the relevant mechanism of inactivation of ETV6 and CDKN1B in CK-AML.
Collapse
Affiliation(s)
- Simone Feurstein
- />Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Frank G Rücker
- />Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- />Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Winfried Hofmann
- />Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Georgi Manukjan
- />Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- />Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Ulrich Lehmann
- />Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- />Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- />Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Konstanze Döhner
- />Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | | | - Doris Steinemann
- />Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Francis JM, Kiezun A, Ramos AH, Serra S, Pedamallu CS, Qian ZR, Banck MS, Kanwar R, Kulkarni AA, Karpathakis A, Manzo V, Contractor T, Philips J, Nickerson E, Pho N, Hooshmand SM, Brais LK, Lawrence MS, Pugh T, McKenna A, Sivachenko A, Cibulskis K, Carter SL, Ojesina AI, Freeman S, Jones RT, Voet D, Saksena G, Auclair D, Onofrio R, Shefler E, Sougnez C, Grimsby J, Green L, Lennon N, Meyer T, Caplin M, Chung DC, Beutler AS, Ogino S, Thirlwell C, Shivdasani R, Asa SL, Harris CR, Getz G, Kulke M, Meyerson M. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 2013; 45:1483-6. [PMID: 24185511 PMCID: PMC4239432 DOI: 10.1038/ng.2821] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022]
Abstract
The diagnosed incidence of small intestine neuroendocrine tumors (SI-NETs) is increasing, and the underlying genomic mechanisms have not yet been defined. Using exome- and genome-sequence analysis of SI-NETs, we identified recurrent somatic mutations and deletions in CDKN1B, the cyclin-dependent kinase inhibitor gene, which encodes p27. We observed frameshift mutations of CDKN1B in 14 of 180 SI-NETs, and we detected hemizygous deletions encompassing CDKN1B in 7 out of 50 SI-NETs, nominating p27 as a tumor suppressor and implicating cell cycle dysregulation in the etiology of SI-NETs.
Collapse
Affiliation(s)
- Joshua M Francis
- 1] Broad Institute, Cambridge, Massachusetts, USA. [2] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Warner K, Crispatzu G, Al-Ghaili N, Weit N, Florou V, You MJ, Newrzela S, Herling M. Models for mature T-cell lymphomas--a critical appraisal of experimental systems and their contribution to current T-cell tumorigenic concepts. Crit Rev Oncol Hematol 2013; 88:680-95. [PMID: 23972664 DOI: 10.1016/j.critrevonc.2013.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 02/03/2023] Open
Abstract
Mature T-cell lymphomas/leukemias (MTCL) have been understudied lymphoid neoplasms that currently receive growing attention. Our historically rudimentary molecular understanding and dissatisfactory interventional success in this complex and for the most part poor-prognostic group of tumors is only slightly improving. A major limiting aspect in further progress in these rare neoplasms is the lack of suitable model systems that would substantially facilitate pathogenic studies and pre-clinical drug evaluations. Such representations of MTCL have thus far not been systematically appraised. We therefore provide an overview on existing models and point out their particular advantages and limitations in the context of the specific scientific questions. After addressing issues of species-specific differences and classifications, we summarize data on MTCL cell lines of human as well as murine origin, on murine strain predispositions to MTCL, on available models of genetically engineered mice, and on transplant systems. From an in-silico meta-analysis of available primary data of gene expression profiles on human MTCL we cross-reference genes reported to transform T-cells in mice and reflect on their general vs entity-restricted relevance and on target-promoter influences. Overall, we identify the urgent need for new models of higher fidelity to human MTCL with respect to their increasingly recognized diversity and to predictions of drug response.
Collapse
Affiliation(s)
- Kathrin Warner
- Laboratory of lymphocyte signaling and oncoproteome, CECAD, Cologne University, Cologne, Germany; Senckenberg Institute of Pathology, Goethe-University, Frankfurt/M., Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Abstract
B- and T-cell subtypes of prolymphocytic leukemia (PLL) are rare, aggressive lymphoid malignancies with characteristic morphologic, immunophenotypic, cytogenetic, and molecular features. Prognosis for these patients remains poor, with short survival times and no curative therapy. The advent of mAbs has improved treatment options. In B-PLL, rituximab-based combination chemoimmunotherapy is effective in fitter patients. TP53 abnormalities are common and, as for chronic lymphocytic leukemia, these patients should generally be managed using an alemtuzumab-based therapy. Currently, the best treatment for T-PLL is IV alemtuzumab, which has resulted in very high response rates of more than 90% when given as frontline treatment and a significant improvement in survival. Consolidation of remissions with autologous or allogeneic stem cell transplantation further prolongs survival times, and the latter may offer potential cure. The role of allogeneic transplantation with nonmyeloablative conditioning needs to be explored further in both T- and B-PLL to broaden the patient eligibility for what may be a curative treatment.
Collapse
|
28
|
Abstract
Hematopoiesis is a dynamic and highly complex developmental process that gives rise to a multitude of the cell types that circulate in the blood of multicellular organisms. These cells provide tissues with oxygen, guard against infection, prevent bleeding by clotting, and mediate inflammatory reactions. Because the hematopoietic system plays such a central role in human diseases such as infections, cancer, autoimmunity, and anemia, it has been intensely studied for more than a century. This scrutiny has helped to shape many of the developmental paradigms that exist today and has identified specific protein factors that serve as master regulators of blood cell lineage specification. Despite this progress, many aspects of blood cell development remain obscure, suggesting that novel layers of regulation must exist. Consequently, the emergence of regulatory noncoding RNAs, such as the microRNAs (miRNAs), is beginning to provide new insights into the molecular control networks underlying hematopoiesis and diseases that stem from aberrations in this process. This review will discuss how miRNAs fit into our current understanding of hematopoietic development in mammals and how breakdowns in these pathways can trigger disease.
Collapse
Affiliation(s)
- Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
29
|
Abstract
T- and B-cell subtypes of prolymphocytic leukemia (PLL) are rare, aggressive lymphoid malignancies with characteristic morphologic, immunophenotypic, cytogenetic, and molecular features. Recent studies have highlighted the role of specific oncogenes, such as TCL-1, MTCP-1, and ATM in the case of T-cell and TP53 mutations in the case of B-cell prolymphocytic leukemia. Despite the advances in the understanding of the biology of these conditions, the prognosis for these patients remains poor with short survival and no curative therapy. The advent of monoclonal antibodies has improved treatment options. Currently, the best treatment for T-PLL is intravenous alemtuzumab, which has resulted in very high response rates of more than 90% when given as first-line treatment and a significant improvement in survival. Consolidation of remissions with autologous or allogeneic stem cell transplantation further prolongs survival, and the latter may offer potential cure. In B-PLL, rituximab-based combination chemo-immunotherapy is effective in fitter patients. TP53 abnormalities are common and, as for chronic lymphocytic leukemia, these patients should be managed using an alemtuzumab-based therapy. The role of allogeneic transplant with nonmyeloablative conditioning needs to be explored further in both T- and B-cell PLL to broaden the patient eligibility for what may be a curative treatment.
Collapse
|
30
|
Bellone M, Svensson AM, Zaslav AL, Spitzer S, Golightly M, Celiker M, Hu Y, Ma Y, Ahmed T. Pediatric T-cell prolymphocytic leukemia with an isolated 12(p13) deletion and aberrant CD117 expression. Exp Hematol Oncol 2012; 1:7. [PMID: 23211022 PMCID: PMC3514102 DOI: 10.1186/2162-3619-1-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/18/2012] [Indexed: 12/04/2022] Open
Abstract
T-cell Prolymphocytic leukemia (T-PLL) is a rare post-thymic T-cell malignancy that follows an aggressive clinical course. The classical presentation includes an elevated white blood cell (WBC) count with anemia and thrombocytopenia, hepatosplenomegaly, and lymphadenopathy. T-PLL is a disease of the elderly and to our knowledge it has never been described in the pediatric age group. We report a case of T-PLL in a 9 year old male who was initially diagnosed with T-cell acute lymphoblastic lymphoma (ALL), the diagnosis was later refined to T-PLL following additional analysis of bone marrow morphology and immunophenotype. Two unusual findings in our patient included CD117 expression and an isolated chromosomal 12(p13) deletion. The patient failed to respond to standard ALL induction chemotherapy, but achieved complete remission following treatment with a fludarabine and alemtuzumab-based regimen.
Collapse
Affiliation(s)
- Michael Bellone
- Department of Pathology, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Paul RN, Alizadeh L, Ajayi OI, Karpurapu H, Ganesan C, Taddesse-Heath L, Aggarwal A. A case report of T cell prolymphocytic leukemia and Kaposi sarcoma and a review of T cell prolymphocytic leukemia. Acta Haematol 2012; 127:235-43. [PMID: 22517037 DOI: 10.1159/000336241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/28/2011] [Indexed: 11/19/2022]
Abstract
T cell prolymphocytic leukemia (T-PLL) is a rare mature T cell lymphoproliferative disease. It has been associated with an aggressive course, a poor response to conventional chemotherapy and a short median survival. Here we present a rare case of concurrent T-PLL and Kaposi sarcoma who achieved a complete hematologic and cytogenetic remission after a very short course of treatment with alemtuzumab. A review of T-PLL was done. In this review, clinical features, laboratory features and current therapeutic strategies of T-PLL are presented.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alemtuzumab
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD
- Antigens, Neoplasm
- Antineoplastic Agents/therapeutic use
- CD52 Antigen
- Glycoproteins/antagonists & inhibitors
- Humans
- Leukemia, Prolymphocytic, T-Cell/diagnosis
- Leukemia, Prolymphocytic, T-Cell/immunology
- Leukemia, Prolymphocytic, T-Cell/therapy
- Male
- Neoplasms, Multiple Primary/diagnosis
- Neoplasms, Multiple Primary/immunology
- Neoplasms, Multiple Primary/therapy
- Remission Induction
- Sarcoma, Kaposi/radiotherapy
- Sarcoma, Kaposi/therapy
- Time Factors
Collapse
Affiliation(s)
- R N Paul
- Division of Hematology/Oncology, Department of Medicine, Howard University Hospital, Washington, DC 20060, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yokoyama A, Ficara F, Murphy MJ, Meisel C, Naresh A, Kitabayashi I, Cleary ML. Proteolytically cleaved MLL subunits are susceptible to distinct degradation pathways. J Cell Sci 2011; 124:2208-19. [PMID: 21670200 DOI: 10.1242/jcs.080523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mixed lineage leukemia (MLL) proto-oncogenic protein is a histone-lysine N-methyltransferase that is produced by proteolytic cleavage and self-association of the respective functionally distinct subunits (MLL(N) and MLL(C)) to form a holocomplex involved in epigenetic transcriptional regulation. On the basis of studies in Drosophila it has been suggested that the separated subunits might also have distinct functions. In this study, we used a genetically engineered mouse line that lacked MLL(C) to show that the MLL(N)-MLL(C) holocomplex is responsible for MLL functions in various developmental processes. The stability of MLL(N) is dependent on its intramolecular interaction with MLL(C), which is mediated through the first and fourth plant homeodomain (PHD) fingers (PHD1 and PHD4) and the phenylalanine/tyrosine-rich (FYRN) domain of MLL(N). Free MLL(N) is destroyed by a mechanism that targets the FYRN domain, whereas free MLL(C) is exported to the cytoplasm and degraded by the proteasome. PHD1 is encoded by an alternatively spliced exon that is occasionally deleted in T-cell leukemia, and its absence produces an MLL mutant protein that is deficient for holocomplex formation. Therefore, this should be a loss-of-function mutant allele, suggesting that the known tumor suppression role of MLL may also apply to the T-cell lineage. Our data demonstrate that the dissociated MLL subunits are subjected to distinct degradation pathways and thus not likely to have separate functions unless the degradation mechanisms are inhibited.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Taguchi R, Yamada M, Horiguchi K, Tomaru T, Ozawa A, Shibusawa N, Hashimoto K, Okada S, Satoh T, Mori M. Haploinsufficient and predominant expression of multiple endocrine neoplasia type 1 (MEN1)-related genes, MLL, p27Kip1 and p18Ink4C in endocrine organs. Biochem Biophys Res Commun 2011; 415:378-83. [PMID: 22037578 DOI: 10.1016/j.bbrc.2011.10.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominantly inherited syndrome characterized by parathyroid, gastro-entero-pancreatic and anterior pituitary tumors. Although the tissue selectivity of tumors in specific endocrine organs is the very essence of MEN1, the mechanisms underlying the tissue-selectivity of tumors remain unknown. The product of the Men1 gene, menin, and mixed lineage leukemia (MLL) have been found to cooperatively regulate p27(Kip1)/CDKN1B (p27) and p18(Ink4C)/CDKN2C (p18) genes. However, there are no reports on the tissue distribution of these MEN1-related genes. We investigated the expression of these genes in the endocrine and non-endocrine organs of wild-type, Men1 knockout and MLL knockout mice. Men1 mRNA was expressed at a similar level in endocrine and non-endocrine organs. However, MLL, p27 and p18 mRNAs were predominantly expressed in the endocrine organs. Notably, p27 and MLL mRNAs were expressed in the pituitary gland at levels approximately 12- and 17-fold higher than those in the liver. The heterozygotes of Men1 knockout mice the levels of MLL, p27 and p18 mRNAs did not differ from those in the wild-type mice. In contrast, heterozygotes of MLL knockout mice showed significant reductions in p27 mRNA as well as protein levels in the pituitary and p27 and p18 in the pancreatic islets, but not in the liver. This study demonstrated for the first time the predominant expression MEN1-related genes, particularly MLL and p27, in the endocrine organs, and a tissue-specific haploinsuffiency of MLL, but not menin, may lead to a decrease in levels of p27 and p18 mRNAs in endocrine organs. These findings may provide basic information for understanding the mechanisms of tissue selectivity of the tumorigenesis in patients with MEN1.
Collapse
Affiliation(s)
- Ryo Taguchi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang J, Su F, Smilenov LB, Zhou L, Hu W, Ding N, Zhou G. Mechanisms of increased risk of tumorigenesis in Atm and Brca1 double heterozygosity. Radiat Oncol 2011; 6:96. [PMID: 21849032 PMCID: PMC3169458 DOI: 10.1186/1748-717x-6-96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/17/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Both epidemiological and experimental studies suggest that heterozygosity for a single gene is linked with tumorigenesis and heterozygosity for two genes increases the risk of tumor incidence. Our previous work has demonstrated that Atm/Brca1 double heterozygosity leads to higher cell transformation rate than single heterozygosity. However, the underlying mechanisms have not been fully understood yet. In the present study, a series of pathways were investigated to clarify the possible mechanisms of increased risk of tumorigenesis in Atm and Brca1 heterozygosity. METHODS Wild type cells, Atm or Brca1 single heterozygous cells, and Atm/Brca1 double heterozygous cells were used to investigate DNA damage and repair, cell cycle, micronuclei, and cell transformation after photon irradiation. RESULTS Remarkable high transformation frequency was confirmed in Atm/Brca1 double heterozygous cells compared to wild type cells. It was observed that delayed DNA damage recognition, disturbed cell cycle checkpoint, incomplete DNA repair, and increased genomic instability were involved in the biological networks. Haploinsufficiency of either ATM or BRCA1 negatively impacts these pathways. CONCLUSIONS The quantity of critical proteins such as ATM and BRCA1 plays an important role in determination of the fate of cells exposed to ionizing radiation and double heterozygosity increases the risk of tumorigenesis. These findings also benefit understanding of the individual susceptibility to tumor initiation.
Collapse
Affiliation(s)
- Jufang Wang
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P R China
| | | | | | | | | | | | | |
Collapse
|
35
|
Urbánková H, Holzerová M, Balcárková J, Raida L, Procházka V, Pikalová Z, Papajík T, Indrák K, Jarosová M. Array comparative genomic hybridization in the detection of chromosomal abnormalities in T-cell prolymphocytic leukemia. ACTA ACUST UNITED AC 2010; 202:58-62. [PMID: 20804923 DOI: 10.1016/j.cancergencyto.2010.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 12/11/2022]
|
36
|
Georgitsi M. MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Pract Res Clin Endocrinol Metab 2010; 24:425-37. [PMID: 20833334 DOI: 10.1016/j.beem.2010.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cyclin-dependent kinase inhibitors (CDKIs) are known targets to become deregulated in various tumour types, including endocrine tumours. Typically, these cell cycle regulators are somatically inactivated in sporadic endocrine tumours. Recently, it became known that certain CDKI genes cause inherited susceptibility to endocrine neoplasia. Multiple endocrine neoplasia type 4 (MEN4) emerged as a novel form of multiple endocrine neoplasia, caused by mutations in the CDKI gene CDKN1B/p27(Kip1). The MEN4 phenotype remains unclear, but all MEN4 patients identified thus far present with parathyroid involvement, and less typically with pituitary adenomas and other endocrine features. Moreover, the CDKI gene CDKN2C/p18(INK4C) has been also implicated in endocrine neoplasia susceptibility. This review presents the recent advances in these novel MEN-related states and summarises the current knowledge of how these CDKIs may be implicated in endocrine neoplasia. In addition, it briefly presents data from Cdkn1b/p27(Kip1) and Cdkn2c/p18(INK4C) murine models, which strongly support the protective role of these inhibitors against endocrine tumourigenesis.
Collapse
Affiliation(s)
- Marianthi Georgitsi
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rio, Greece.
| |
Collapse
|
37
|
Su F, Smilenov LB, Ludwig T, Zhou L, Zhu J, Zhou G, Hall EJ. Hemizygosity for Atm and Brca1 influence the balance between cell transformation and apoptosis. Radiat Oncol 2010; 5:15. [PMID: 20175908 PMCID: PMC2834696 DOI: 10.1186/1748-717x-5-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/22/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In recent years data from both mouse models and human tumors suggest that loss of one allele of genes involved in DNA repair pathways may play a central role in genomic instability and carcinogenesis. Additionally several examples in mouse models confirmed that loss of one allele of two functionally related genes may have an additive effect on tumor development. To understand some of the mechanisms involved, we examined the role of monoallelic loss or Atm and Brca1 on cell transformation and apoptosis induced by radiation. METHODS Cell transformation and apoptosis were measured in mouse embryo fibroblasts (MEF) and thymocytes respectively. Combinations of wild type and hemizygous genotypes for ATM and BRCA1 were tested in various comparisons. RESULTS Haploinsufficiency of either ATM or BRCA1 resulted in an increase in the incidence of radiation-induced transformation of MEF and a corresponding decrease in the proportion of thymocytes dying an apoptotic death, compared with cells from wild-type animals. Combined haploinsufficiency for both genes resulted in an even larger effect on apoptosis. CONCLUSIONS Under stress, the efficiency and capacity for DNA repair mediated by the ATM/BRCA1 cell signalling network depends on the expression levels of both proteins.
Collapse
Affiliation(s)
- Fengtao Su
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Nowak D, Le Toriellec E, Stern MH, Kawamata N, Akagi T, Dyer MJ, Hofmann WK, Ogawa S, Koeffler HP. Molecular allelokaryotyping of T-cell prolymphocytic leukemia cells with high density single nucleotide polymorphism arrays identifies novel common genomic lesions and acquired uniparental disomy. Haematologica 2009; 94:518-27. [PMID: 19278963 DOI: 10.3324/haematol.2008.001347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND T-cell prolymphocytic leukemia is a rare aggressive lymphoproliferative disease with a mature T-cell phenotype and characteristic genomic lesions such as inv(14)(q11q34), t(14;14)(q11;q32) or t(X;14)(q28;q11), mutation of the ATM gene on chromosome 11 and secondary alterations such as deletions of chromosome 8p and duplications of 8q. DESIGN AND METHODS We analyzed malignant cells from 18 patients with T-cell prolymphocytic leukemia using high density 250K single nucleotide polymorphism arrays and molecular allelokaryotyping to refine understanding of known alterations and identify new target genes. RESULTS Our analyses revealed that characteristic disruptions of chromosome 14 are frequently unbalanced. In the commonly deleted region on chromosome 11, we found recurrent microdeletions targeting the microRNA 34b/c and the transcription factors ETS1 and FLI1. On chromosome 8, we identified genes such as PLEKHA2, NBS1, NOV and MYST3 to be involved in breakpoints. New recurrent alterations were identified on chromosomes 5p, 12p, 13q, 17 and 22 with a common region of acquired uniparental disomy in four samples on chromosome 17q. Single nucleotide polymorphism array results were confirmed by direct sequencing and quantitative real-time polymerase chain reaction. CONCLUSIONS The first high density single nucleotide polymorphism array allelokaryotyping of T-cell prolymphocytic leukemia genomes added substantial new details about established alterations in this disease and moreover identified numerous new potential target genes in common breakpoints, deletions and regions of acquired uniparental disomy.
Collapse
Affiliation(s)
- Daniel Nowak
- Division of Hematology and Oncology, Cedars Sinai Medical Center, UCLA School of Medicine, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|