1
|
Barreto IV, Machado CB, Almeida DB, Pessoa FMCDP, Gadelha RB, Pantoja LDC, Oliveira DDS, Ribeiro RM, Lopes GS, de Moraes Filho MO, de Moraes MEA, Khayat AS, de Oliveira EHC, Moreira-Nunes CA. Kinase Inhibition in Multiple Myeloma: Current Scenario and Clinical Perspectives. Pharmaceutics 2022; 14:pharmaceutics14091784. [PMID: 36145532 PMCID: PMC9506264 DOI: 10.3390/pharmaceutics14091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a blood cell neoplasm characterized by excessive production of malignant monoclonal plasma cells (activated B lymphocytes) by the bone marrow, which end up synthesizing antibodies or antibody fragments, called M proteins, in excess. The accumulation of this production, both cells themselves and of the immunoglobulins, causes a series of problems for the patient, of a systemic and local nature, such as blood hyperviscosity, renal failure, anemia, bone lesions, and infections due to compromised immunity. MM is the third most common hematological neoplasm, constituting 1% of all cancer cases, and is a disease that is difficult to treat, still being considered an incurable disease. The treatments currently available cannot cure the patient, but only extend their lifespan, and the main and most effective alternative is autologous hematopoietic stem cell transplantation, but not every patient is eligible, often due to age and pre-existing comorbidities. In this context, the search for new therapies that can bring better results to patients is of utmost importance. Protein tyrosine kinases (PTKs) are involved in several biological processes, such as cell growth regulation and proliferation, thus, mutations that affect their functionality can have a great impact on crucial molecular pathways in the cells, leading to tumorigenesis. In the past couple of decades, the use of small-molecule inhibitors, which include tyrosine kinase inhibitors (TKIs), has been a hallmark in the treatment of hematological malignancies, and MM patients may also benefit from TKI-based treatment strategies. In this review, we seek to understand the applicability of TKIs used in MM clinical trials in the last 10 years.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | | | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Renan Brito Gadelha
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | | | | | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil
| | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, PA, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
- Correspondence:
| |
Collapse
|
2
|
Bruton's Tyrosine Kinase Targeting in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22115707. [PMID: 34071917 PMCID: PMC8198777 DOI: 10.3390/ijms22115707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM), a clonal plasma cell disorder, disrupts the bones’ hematopoiesis and microenvironment homeostasis and ability to mediate an immune response against malignant clones. Despite prominent survival improvement with newer treatment modalities since the 2000s, MM is still considered a non-curable disease. Patients experience disease recurrence episodes with clonal evolution, and with each relapse disease comes back with a more aggressive phenotype. Bruton’s Tyrosine Kinase (BTK) has been a major target for B cell clonal disorders and its role in clonal plasma cell disorders is under active investigation. BTK is a cytosolic kinase which plays a major role in the immune system and its related malignancies. The BTK pathway has been shown to provide survival for malignant clone and multiple myeloma stem cells (MMSCs). BTK also regulates the malignant clones’ interaction with the bone marrow microenvironment. Hence, BTK inhibition is a promising therapeutic strategy for MM patients. In this review, the role of BTK and its signal transduction pathways are outlined in the context of MM.
Collapse
|
3
|
Raimondi L, De Luca A, Giavaresi G, Raimondo S, Gallo A, Taiana E, Alessandro R, Rossi M, Neri A, Viglietto G, Amodio N. Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology. Noncoding RNA 2020; 6:ncrna6030037. [PMID: 32916806 PMCID: PMC7549375 DOI: 10.3390/ncrna6030037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies have disclosed the mechanisms underlying increased osteoclast formation and activity triggered by the various cellular components of the MM bone marrow microenvironment, leading to the identification of novel targets for therapeutic intervention. In this regard, recent attention has been given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in bone homeostasis both in physiological and pathological settings. In this review, we will analyze major signaling pathways involved in MMBD pathophysiology, and report emerging evidence of their regulation by different classes of ncRNAs.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| | - Angela De Luca
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
| | - Alessia Gallo
- IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Research Department, 90127 Palermo, Italy;
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| |
Collapse
|
4
|
Maegawa S, Chinen Y, Shimura Y, Tanba K, Takimoto T, Mizuno Y, Matsumura-Kimoto Y, Kuwahara-Ota S, Tsukamoto T, Kobayashi T, Horiike S, Taniwaki M, Kuroda J. Phosphoinositide-dependent protein kinase 1 is a potential novel therapeutic target in mantle cell lymphoma. Exp Hematol 2018; 59:72-81.e2. [DOI: 10.1016/j.exphem.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
|
5
|
Pandey MK, Gowda K, Sung SS, Abraham T, Budak-Alpdogan T, Talamo G, Dovat S, Amin S. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Exp Hematol 2017. [DOI: 10.1016/j.exphem.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Shumilov E, Wulf G, Ströbel P, Hasenkamp J, Hellige N, Bleckmann A, Haase D, Braulke F, Jung W, Schanz J, Binder M, Trümper L, Bacher U. Osteolytic lesions occur rarely in patients with B-CLL and may respond well to ibrutinib. Leuk Lymphoma 2016; 57:2476-80. [DOI: 10.3109/10428194.2016.1151510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Ashjian E, Redic K. Multiple myeloma: Updates for pharmacists in the treatment of relapsed and refractory disease. J Oncol Pharm Pract 2015; 22:289-302. [PMID: 25694345 DOI: 10.1177/1078155215572036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There have been a number of recent advances in the treatment of patients with relapsed and refractory multiple myeloma. However, despite additional FDA-approved therapies including carfilzomib and pomalidomide as well as clinical trials investigating new combinations of existing treatments, multiple myeloma remains an incurable disease. New therapies currently in the drug development pipeline for relapsed and refractory disease include additional proteasome inhibitors (oprozomib, marizomib, ixazomib), histone deacetylase inhibitors (panobinostat, ricolinostat, quisinostat), monoclonal antibodies (daratumumab, elotuzumab, SAR650984), Bruton's tyrosine kinase inhibitors (ibrutinib), a selective inhibitor of nuclear export, and others. This review will focus on these newly developing therapies as well as the ever expanding role of the pharmacist in supportive care for patients with relapsed and refractory multiple myeloma.
Collapse
Affiliation(s)
- Emily Ashjian
- University of Michigan Health System, Department of Pharmacy Services, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Kimberly Redic
- University of Michigan Health System, Department of Pharmacy Services, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Walker RE, Lawson MA, Buckle CH, Snowden JA, Chantry AD. Myeloma bone disease: pathogenesis, current treatments and future targets. Br Med Bull 2014; 111:117-38. [PMID: 25190762 DOI: 10.1093/bmb/ldu016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Patients with myeloma develop localized and generalized bone loss leading to hypercalcaemia, accelerated osteoporosis, vertebral wedge fractures, other pathological fractures, spinal cord compression and bone pain. Bone loss is mediated by a variety of biological modifiers including osteoclast-activating factors (OAF) and osteoblast (OB) inhibitory factors produced either directly by malignant plasma cells (MPCs) or as a consequence of their interaction with the bone marrow microenvironment (BMM). Raised levels of OAFs such as receptor activator of nuclear factor-kappa B ligand (RANKL), macrophage inflammatory protein 1 alpha, tumour necrosis factor-alpha and interleukin 6 stimulate bone resorption by recruiting additional osteoclasts. Via opposing mechanisms, increases in OB inhibitory factors, such as dickkopf-1 (Dkk-1), soluble frizzled-related protein-3 and hepatocyte growth factor (HGF), suppress bone formation by inhibiting the differentiation and recruitment of OBs. These changes result in an uncoupling of physiological bone remodelling, leading to myeloma bone disease (MBD). Moreover, the altered BMM provides a fertile ground for the growth and survival of MPCs. Current clinical management of MBD is both reactive (to pain and fractures) and preventive, with bisphosphonates (BPs) being the mainstay of pharmacological treatment. However, side effects and uncertainties associated with BPs warrant the search for more targeted treatments for MBD. This review will summarize recent developments in understanding the intimate relationship between MBD and the BMM and the novel ways in which they are being therapeutically targeted. SOURCES OF DATA All data included were sourced and referenced from PubMed. AREAS OF AGREEMENT The clinical utility of BP therapy is well established. However, there is general acknowledgement that BPs are only partially successful in the treatment of MBD. The number of skeletal events attributable to myeloma are reduced by BPs but not totally eliminated. Furthermore, existing damage is not repaired. It is widely recognized that more effective treatments are needed. AREAS OF CONTROVERSY There remains controversy concerning the duration of BP therapy. Whether denosumab is a viable alternative to BP therapy is also contested. Many of the new therapeutic strategies discussed are yet to translate to clinical practice and demonstrate equal efficacy or superiority to BP therapy. It also remains controversial whether reported anti-tumour effects of bone-modulating therapies are clinically significant. GROWING POINTS The potential clinical utility of bone anabolic therapies including agents such as anti-Dkk-1, anti-sclerostin and anti-HGF is becoming increasingly recognized. AREAS TIMELY FOR DEVELOPING RESEARCH Further research effectively targeting the mediators of MBD, targeting both bone resorption and bone formation, is urgently needed. This should translate promptly to clinical trials of combination therapy comprising anti-resorptives and bone anabolic therapies to demonstrate efficacy and improved outcomes over BPs.
Collapse
Affiliation(s)
- Rebecca E Walker
- Sheffield Myeloma Research Team (SmaRT), Department of Oncology, University of Sheffield, Sheffield, UK Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michelle A Lawson
- Sheffield Myeloma Research Team (SmaRT), Department of Oncology, University of Sheffield, Sheffield, UK Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Clive H Buckle
- Sheffield Myeloma Research Team (SmaRT), Department of Oncology, University of Sheffield, Sheffield, UK Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John A Snowden
- Sheffield Myeloma Research Team (SmaRT), Department of Oncology, University of Sheffield, Sheffield, UK Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Andrew D Chantry
- Sheffield Myeloma Research Team (SmaRT), Department of Oncology, University of Sheffield, Sheffield, UK Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
9
|
Understanding life and death decisions in human leukaemias. Biochem Soc Trans 2014; 42:747-51. [PMID: 25109952 DOI: 10.1042/bst20140127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human leukaemia cells have an often unique ability to either undergo apoptotic cell death mechanisms or, at other times, undergo proliferative expansion, sometimes to the same stimulus such as the pluripotent cytokine TNFα (tumour necrosis factor α). This potential for life/death switching helps us to understand the molecular signalling machinery that underlies these cellular processes. Furthermore, looking at the involvement of these switching signalling pathways that may be aberrant in leukaemia informs us of their importance in cancer tumorigenesis and how they may be targeted pharmacologically to treat various types of human leukaemias. Furthermore, these important pathways may play a crucial role in acquired chemotherapy resistance and should be studied further to overcome in the clinic many drug-resistant forms of blood cancers. In the present article, we uncover the relationship that exists in human leukaemia life/death switching between the anti-apoptotic pro-inflammatory transcription factor NF-κB (nuclear factor κB) and the cytoprotective antioxidant-responsive transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2). We also discuss recent findings that reveal a major role for Btk (Bruton's tyrosine kinase) in both lymphocytic and myeloid forms of human leukaemias and lymphomas.
Collapse
|
10
|
Novero A, Ravella PM, Chen Y, Dous G, Liu D. Ibrutinib for B cell malignancies. Exp Hematol Oncol 2014; 3:4. [PMID: 24472371 PMCID: PMC3913970 DOI: 10.1186/2162-3619-3-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 02/05/2023] Open
Abstract
Research over the role of Bruton’s agammaglobulinemia tyrosine kinase (BTK) in B-lymphocyte development, differentiation, signaling and survival has led to better understanding of the pathogenesis of B-cell malignancies. Down-regulation of BTK activity is an attractive novel strategy for treating patients with B-cell malignancies. Ibrutinib (PCI-32765), a potent inhibitor of BTK induces impressive responses in B-cell malignancies through irreversible bond with cysteine-481 in the active site of BTK (TH/SH1 domain) and inhibits BTK phosphorylation on Tyr223. This review discussed in details the role of BTK in B-cell signaling, molecular interactions between B cell lymphoma/leukemia cells and their microenvironment. Clinical trials of the novel BTK inhibitor, ibrutinib (PCI-32765), in B cell malignancies were summarized.
Collapse
Affiliation(s)
| | | | | | | | - Delong Liu
- Institute of Hematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Vargas L, Hamasy A, Nore BF, E. Smith CI. Inhibitors of BTK and ITK: State of the New Drugs for Cancer, Autoimmunity and Inflammatory Diseases. Scand J Immunol 2013; 78:130-9. [DOI: 10.1111/sji.12069] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- L. Vargas
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| | | | | | - C. I. E. Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| |
Collapse
|