1
|
Abstract
Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in maintaining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the pathogenesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug–drug interactions and adverse effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125-1089, USA.
| |
Collapse
|
2
|
Bravo MC, Tejiram S, McLawhorn MM, Moffatt LT, Orfeo T, Jett-Tilton M, Pusateri AE, Shupp JW, Brummel-Ziedins KE. Utilizing Plasma Composition Data to Help Determine Procoagulant Dynamics in Patients with Thermal Injury: A Computational Assessment. Mil Med 2019; 184:392-399. [PMID: 30901410 DOI: 10.1093/milmed/usy397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The development of methods that generate individualized assessments of the procoagulant potential of burn patients could improve their treatment. Beyond its role as an essential intermediate in the formation of thrombin, factor (F)Xa has systemic effects as an agonist to inflammatory processes. In this study, we use a computational model to study the FXa dynamics underlying tissue factor-initiated thrombin generation in a small cohort of burn patients. MATERIALS AND METHODS Plasma samples were collected upon admission (Hour 0) from nine subjects (five non-survivors) with major burn injuries and then at 48 hours. Coagulation factor concentrations (II, V, VII, VIII, IX, X, TFPI, antithrombin (AT), protein C (PC)) were measured and used in a computational model to generate time course profiles for thrombin (IIa), FXa, extrinsic tenase, intrinsic tenase and prothrombinase complexes upon a 5 pM tissue factor stimulus in the presence of 1 nM thrombomodulin. Parameters were extracted from the thrombin and FXa profiles (including max rate (MaxRIIa and MaxRFXa) and peak level (MaxLIIa and MaxLFXa)). Procoagulant potential was also evaluated by determining the concentration of the complexes at select times. Parameter values were compared between survivors and non-survivors in the burn cohort and between the burn cohort and a simulation based on the mean physiological (100%) concentration for all factor levels. RESULTS Burn patients differed at Hour 0 (p < 0.05) from 100% mean physiological levels for all coagulation factor levels except FV and FVII. The concentration of FX, FII, TFPI, AT and PC was lower; FIX and FVIII were increased. The composition differences resulted in all nine burn patients at Hour 0 displaying a procoagulant phenotype relative to 100% mean physiological simulation (MaxLIIa (306 ± 90 nM vs. 52 nM), MaxRIIa (2.9 ± 1.1 nM/s vs. 0.3 nM/s), respectively p < 0.001); MaxRFXa and MaxLFXa were also an order of magnitude greater than 100% mean physiological simulation (p < 0.001). When grouped by survival status and compared at the time of admission, non-survivors had lower PC levels (56 ± 18% vs. 82 ± 9%, p < 0.05), and faster MaxRFXa (29 ± 6 pM/s vs. 18 ± 6 pM/s, p < 0.05) than those that survived; similar trends were observed for all other procoagulant parameters. At 48 hours when comparing non-survivors to survivors, TFPI levels were higher (108 ± 18% vs. 59 ± 18%, p < 0.05), and MaxRIIa (1.5 ± 1.4 nM/s vs. 3.6 ± 0.7 nM/s, p < 0.05) and MaxRFXa (13 ± 12 pM/s vs. 35 ± 4 pM/s, p < 0.05) were lower; similar trends were observed with all other procoagulant parameters. Overall, between admission and 48 hours, procoagulant potential, as represented by MaxR and MaxL parameters for thrombin and FXa, in non-survivors decreased while in survivors they increased (p < 0.05). In patients that survived, there was a positive correlation between FX levels and MaxLFXa (r = 0.96) and reversed in mortality (r= -0.91). CONCLUSIONS Thrombin and FXa generation are increased in burn patients at admission compared to mean physiological simulations. Over the first 48 hours, burn survivors became more procoagulant while non-survivors became less procoagulant. Differences between survivors and non-survivors appear to be present in the underlying dynamics that contribute to FXa dynamics. Understanding how the individual specific balance of procoagulant and anticoagulant proteins contributes to thrombin and FXa generation could ultimately guide therapy and potentially reduce burn injury-related morbidity and mortality.
Collapse
Affiliation(s)
- Maria Cristina Bravo
- The Department of Biochemistry, College of Medicine, University of Vermont, 360 South Park Drive, Colchester, VT
| | - Shawn Tejiram
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, 110 Irving Street, NW; Suite 3B-55, Washington, DC
| | - Melissa M McLawhorn
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, 110 Irving Street, NW; Suite 3B-55, Washington, DC
| | - Lauren T Moffatt
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, 110 Irving Street, NW; Suite 3B-55, Washington, DC
| | - Thomas Orfeo
- The Department of Biochemistry, College of Medicine, University of Vermont, 360 South Park Drive, Colchester, VT
| | - Marti Jett-Tilton
- United States Army Center for Environmental Health Research, US Army Medical Command, 568 Doughten Drive, Fort Detrick, MD
| | - Anthony E Pusateri
- US Army Institute of Surgical Research, 3698 Chambers Pass, JBSA - Fort Sam Houston, TX
| | - Jeffrey W Shupp
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, 110 Irving Street, NW; Suite 3B-55, Washington, DC
| | - Kathleen E Brummel-Ziedins
- The Department of Biochemistry, College of Medicine, University of Vermont, 360 South Park Drive, Colchester, VT
| |
Collapse
|
3
|
Urbančič I, Garvas M, Kokot B, Majaron H, Umek P, Cassidy H, Škarabot M, Schneider F, Galiani S, Arsov Z, Koklic T, Matallanas D, Čeh M, Muševič I, Eggeling C, Štrancar J. Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer. NANO LETTERS 2018; 18:5294-5305. [PMID: 30039976 PMCID: PMC6089500 DOI: 10.1021/acs.nanolett.8b02291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Although the link between the inhalation of nanoparticles and cardiovascular disease is well established, the causal pathway between nanoparticle exposure and increased activity of blood coagulation factors remains unexplained. To initiate coagulation tissue factor bearing epithelial cell membranes should be exposed to blood, on the other side of the less than a micrometre thin air-blood barrier. For the inhaled nanoparticles to promote coagulation, they need to bind lung epithelial-cell membrane parts and relocate them into the blood. To assess this hypothesis, we use advanced microscopy and spectroscopy techniques to show that the nanoparticles wrap themselves with epithelial-cell membranes, leading to the membrane's disruption. The membrane-wrapped nanoparticles are then observed to freely diffuse across the damaged epithelial cell layer relocating epithelial cell membrane parts over the epithelial layer. Proteomic analysis of the protein content in the nanoparticles wraps/corona finally reveals the presence of the coagulation-initiating factors, supporting the proposed causal link between the inhalation of nanoparticles and cardiovascular disease.
Collapse
Affiliation(s)
- Iztok Urbančič
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Weatherall
Institute of Molecular Medicine, University
of Oxford, Headley Way, Oxford OX3
9DS, United Kingdom
| | - Maja Garvas
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Boštjan Kokot
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Hana Majaron
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Polona Umek
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Center
of Excellence NAMASTE, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Hilary Cassidy
- Systems
Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Miha Škarabot
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Falk Schneider
- Weatherall
Institute of Molecular Medicine, University
of Oxford, Headley Way, Oxford OX3
9DS, United Kingdom
| | - Silvia Galiani
- Weatherall
Institute of Molecular Medicine, University
of Oxford, Headley Way, Oxford OX3
9DS, United Kingdom
| | - Zoran Arsov
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Center
of Excellence NAMASTE, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Tilen Koklic
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Center
of Excellence NAMASTE, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - David Matallanas
- Systems
Biology Ireland, University College Dublin, Dublin 4, Ireland
- School of
Medicine and Medical Science, University
College Dublin, Dublin 4, Ireland
| | - Miran Čeh
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Igor Muševič
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska
19, SI-1000 Ljubljana, Slovenia
| | - Christian Eggeling
- Weatherall
Institute of Molecular Medicine, University
of Oxford, Headley Way, Oxford OX3
9DS, United Kingdom
- Institute
of Applied Optics, Friedrich-Schiller University, Jena 07749, Germany
- Leibniz
Institute of Photonic Technology (IPHT), Jena 07745, Germany
| | - Janez Štrancar
- “Jožef
Stefan Institute”, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Center
of Excellence NAMASTE, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Paraoxonase-2 regulates coagulation activation through endothelial tissue factor. Blood 2018; 131:2161-2172. [PMID: 29439952 DOI: 10.1182/blood-2017-09-807040] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation of the vessel wall contribute to prothrombotic states. The antioxidative protein paraoxonase-2 (PON2) shows reduced expression in human atherosclerotic plaques and endothelial cells in particular. Supporting a direct role for PON2 in cardiovascular diseases, Pon2 deficiency in mice promotes atherogenesis through incompletely understood mechanisms. Here, we show that deregulated redox regulation in Pon2 deficiency causes vascular inflammation and abnormalities in blood coagulation. In unchallenged Pon2-/- mice, we find increased oxidative stress and endothelial dysfunction. Bone marrow transplantation experiments and studies with endothelial cells provide evidence that increased inflammation, indicated by circulating interleukin-6 levels, originates from Pon2 deficiency in the vasculature. Isolated endothelial cells from Pon2-/- mice display increased tissue factor (TF) activity in vitro. Coagulation times were shortened and platelet procoagulant activity increased in Pon2-/- mice relative to wild-type controls. Coagulation abnormalities of Pon2-/- mice were normalized by anti-TF treatment, demonstrating directly that TF increases coagulation. PON2 reexpression in endothelial cells by conditional reversal of the knockout Pon2 cassette, restoration in the vessel wall using bone marrow chimeras, or treatment with the antioxidant N-acetylcysteine normalized the procoagulant state. These experiments delineate a PON2 redox-dependent mechanism that regulates endothelial cell TF activity and prevents systemic coagulation activation and inflammation.
Collapse
|
5
|
Apostolou C, Klonizakis P, Mainou M, Kapsali E, Kafantari K, Kotsiafti A, Vetsiou E, Vakalopoulou S, Vlachaki E. Rivaroxaban Use in Patients with Hemoglobinopathies. Hemoglobin 2017; 41:223-224. [DOI: 10.1080/03630269.2017.1374969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chrysoula Apostolou
- Adult Thalassemia Unit, Second Department of Internal Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece
| | - Philippos Klonizakis
- Adult Thalassemia Unit, Second Department of Internal Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece
| | - Maria Mainou
- Adult Thalassemia Unit, Second Department of Internal Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece
| | - Eleni Kapsali
- Department of Hematology, University of Ioannina Medical School, Ioannina, Greece
| | - Katerina Kafantari
- Adult Thalassemia Unit, Second Department of Internal Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece
| | - Aggeliki Kotsiafti
- Adult Thalassemia Unit, Second Department of Internal Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece
| | - Evaggelia Vetsiou
- Adult Thalassemia Unit, Second Department of Internal Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece
| | - Sofia Vakalopoulou
- Hemostasis Laboratory, Second Propedeutic Department of Internal Medicine, Aristotle University, Hippokrateon Hospital, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Adult Thalassemia Unit, Second Department of Internal Medicine, Aristotle University, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
6
|
Abstract
Sickle cell disease (SCD) is a hematologic disorder caused by a well-characterized point mutation in the β-globin gene. Abnormal polymerization of hemoglobin tetramers results in the formation of sickle red blood cells that leads to vascular occlusions, hemolytic anemia, vascular inflammation and cumulative, multiple organ damage. Ongoing activation of coagulation is another hallmark of SCD. Recent studies strongly suggested that hypercoagulation in SCD is not just a secondary event but contributes directly to the disease pathophysiology. In this article we summarize mechanisms leading to the activation of coagulation, review data indicating direct contribution of coagulation to the pathology of SCD and, we discuss the anticoagulation as a possible treatment strategy to attenuate the disease progression.
Collapse
Affiliation(s)
- E Sparkenbaugh
- University of North Carolina, School of Medicine, Division of Hematology and Oncology, Chapel Hill, NC, USA
| | - R Pawlinski
- University of North Carolina, School of Medicine, Division of Hematology and Oncology, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Thrombin-independent contribution of tissue factor to inflammation and cardiac hypertrophy in a mouse model of sickle cell disease. Blood 2016; 127:1371-3. [PMID: 26817955 DOI: 10.1182/blood-2015-11-681114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 2015; 12:94-109. [PMID: 26592189 DOI: 10.1038/nrneph.2015.177] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A role of coagulation proteases in kidney disease beyond their function in normal haemostasis and thrombosis has long been suspected, and studies performed in the past 15 years have provided novel insights into the mechanisms involved. The expression of protease-activated receptors (PARs) in renal cells provides a molecular link between coagulation proteases and renal cell function and revitalizes research evaluating the role of haemostasis regulators in renal disease. Renal cell-specific expression and activity of coagulation proteases, their regulators and their receptors are dynamically altered during disease processes. Furthermore, renal inflammation and tissue remodelling are not only associated, but are causally linked with altered coagulation activation and protease-dependent signalling. Intriguingly, coagulation proteases signal through more than one receptor or induce formation of receptor complexes in a cell-specific manner, emphasizing context specificity. Understanding these cell-specific signalosomes and their regulation in kidney disease is crucial to unravelling the pathophysiological relevance of coagulation regulators in renal disease. In addition, the clinical availability of small molecule targeted anticoagulants as well as the development of PAR antagonists increases the need for in-depth knowledge of the mechanisms through which coagulation proteases might regulate renal physiology.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, Nationwide Children's Hospital, 700 Children's Drive, W325 Columbus, Ohio 43205, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| |
Collapse
|