1
|
Pang Y, Ghosh N. Novel and multiple targets for chimeric antigen receptor-based therapies in lymphoma. Front Oncol 2024; 14:1396395. [PMID: 38711850 PMCID: PMC11070555 DOI: 10.3389/fonc.2024.1396395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for lymphomatous malignancies. Despite the success, treatment failure due to CD19 antigen loss, mutation, or down-regulation remains the main obstacle to cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as prolonged B-cell aplasia, limiting the application of therapy in indolent diseases such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-specific CAR are potential solutions to improving cellular therapy outcomes in B-NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens have been studied as CAR targets, some of which already showed promising results in clinical trials. Some antigens are expressed by different lymphomas and could be used for designing tumor-agnostic CAR. Here, we reviewed the antigens that have been studied for novel CAR-based therapies, as well as CARs designed to target two or more antigens in the treatment of lymphoma.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC, United States
| | | |
Collapse
|
2
|
Bhattacharyya P, Christopherson RI, Skarratt KK, Chen JZ, Balle T, Fuller SJ. Combination of High-Resolution Structures for the B Cell Receptor and Co-Receptors Provides an Understanding of Their Interactions with Therapeutic Antibodies. Cancers (Basel) 2023; 15:2881. [PMID: 37296844 PMCID: PMC10251933 DOI: 10.3390/cancers15112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
B cells are central to the adaptive immune response, providing long lasting immunity after infection. B cell activation is mediated by a cell surface B cell receptor (BCR) following recognition of an antigen. BCR signaling is modulated by several co-receptors including CD22 and a complex that contains CD19 and CD81. Aberrant signaling through the BCR and co-receptors promotes the pathogenesis of several B cell malignancies and autoimmune diseases. Treatment of these diseases has been revolutionized by the development of monoclonal antibodies that bind to B cell surface antigens, including the BCR and its co-receptors. However, malignant B cells can escape targeting by several mechanisms and until recently, rational design of antibodies has been limited by the lack of high-resolution structures of the BCR and its co-receptors. Herein we review recently determined cryo-electron microscopy (cryo-EM) and crystal structures of the BCR, CD22, CD19 and CD81 molecules. These structures provide further understanding of the mechanisms of current antibody therapies and provide scaffolds for development of engineered antibodies for treatment of B cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Puja Bhattacharyya
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW 2750, Australia
- Blacktown Hospital, Blacktown, NSW 2148, Australia
| | | | - Kristen K. Skarratt
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW 2750, Australia
- Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Jake Z. Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW 2750, Australia
- Nepean Hospital, Kingswood, NSW 2747, Australia
| |
Collapse
|
3
|
van der Wulp W, Gram AM, Bleijlevens B, Hagedoorn RS, Araman C, Kim RQ, Drijfhout JW, Parren PWHI, Hibbert RG, Hoeben RC, van Kasteren SI, Schuurman J, Ressing ME, Heemskerk MHM. Comparison of methods generating antibody-epitope conjugates for targeting cancer with virus-specific T cells. Front Immunol 2023; 14:1183914. [PMID: 37261346 PMCID: PMC10227578 DOI: 10.3389/fimmu.2023.1183914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Therapeutic antibody-epitope conjugates (AECs) are promising new modalities to deliver immunogenic epitopes and redirect virus-specific T-cell activity to cancer cells. Nevertheless, many aspects of these antibody conjugates require optimization to increase their efficacy. Here we evaluated different strategies to conjugate an EBV epitope (YVL/A2) preceded by a protease cleavage site to the antibodies cetuximab and trastuzumab. Three approaches were taken: chemical conjugation (i.e. a thiol-maleimide reaction) to reduced cysteine side chains, heavy chain C-terminal enzymatic conjugation using sortase A, and genetic fusions, to the heavy chain (HC) C-terminus. All three conjugates were capable of T-cell activation and target-cell killing via proteolytic release of the EBV epitope and expression of the antibody target was a requirement for T-cell activation. Moreover, AECs generated with a second immunogenic epitope derived from CMV (NLV/A2) were able to deliver and redirect CMV specific T-cells, in which the amino sequence of the attached peptide appeared to influence the efficiency of epitope delivery. Therefore, screening of multiple protease cleavage sites and epitopes attached to the antibody is necessary. Taken together, our data demonstrated that multiple AECs could sensitize cancer cells to virus-specific T cells.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna M. Gram
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Can Araman
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I. van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Maaike E. Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
4
|
Meeuwsen MH, Wouters AK, Wachsmann TLA, Hagedoorn RS, Kester MGD, Remst DFG, van der Steen DM, de Ru AH, van Hees EP, Kremer M, Griffioen M, van Veelen PA, Falkenburg JHF, Heemskerk MHM. Broadly applicable TCR-based therapy for multiple myeloma targeting the immunoglobulin J chain. J Hematol Oncol 2023; 16:16. [PMID: 36850001 PMCID: PMC9969645 DOI: 10.1186/s13045-023-01408-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The immunoglobulin J chain (Jchain) is highly expressed in the majority of multiple myeloma (MM), and Jchain-derived peptides presented in HLA molecules may be suitable antigens for T-cell therapy of MM. METHODS Using immunopeptidomics, we identified Jchain-derived epitopes presented by MM cells, and pHLA tetramer technology was used to isolate Jchain-specific T-cell clones. RESULTS We identified T cells specific for Jchain peptides presented in HLA-A1, -A24, -A3, and -A11 that recognized and lysed JCHAIN-positive MM cells. TCRs of the most promising T-cell clones were sequenced, cloned into retroviral vectors, and transferred to CD8 T cells. Jchain TCR T cells recognized target cells when JCHAIN and the appropriate HLA restriction alleles were expressed, while JCHAIN or HLA-negative cells, including healthy subsets, were not recognized. Patient-derived JCHAIN-positive MM samples were also lysed by Jchain TCR T cells. In a preclinical in vivo model for established MM, Jchain-A1, -A24, -A3, and -A11 TCR T cells strongly eradicated MM cells, which resulted in 100-fold lower tumor burden in Jchain TCR versus control-treated mice. CONCLUSIONS We identified TCRs targeting Jchain-derived peptides presented in four common HLA alleles. All four TCRs demonstrated potent preclinical anti-myeloma activity, encouraging further preclinical testing and ultimately clinical development.
Collapse
Affiliation(s)
- Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tassilo L A Wachsmann
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Els P van Hees
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Martijn Kremer
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - J H Frederik Falkenburg
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
5
|
Meeuwsen MH, Wouters AK, Jahn L, Hagedoorn RS, Kester MG, Remst DF, Morton LT, van der Steen DM, Kweekel C, de Ru AH, Griffioen M, van Veelen PA, Falkenburg JF, Heemskerk MH. A broad and systematic approach to identify B cell malignancy-targeting TCRs for multi-antigen-based T cell therapy. Mol Ther 2022; 30:564-578. [PMID: 34371177 PMCID: PMC8821929 DOI: 10.1016/j.ymthe.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
CAR T cell therapy has shown great promise for the treatment of B cell malignancies. However, antigen-negative escape variants often cause disease relapse, necessitating the development of multi-antigen-targeting approaches. We propose that a T cell receptor (TCR)-based strategy would increase the number of potential antigenic targets, as peptides from both intracellular and extracellular proteins can be recognized. Here, we aimed to isolate a broad range of promising TCRs targeting multiple antigens for treatment of B cell malignancies. As a first step, 28 target genes for B cell malignancies were selected based on gene expression profiles. Twenty target peptides presented in human leukocyte antigen (HLA)-A∗01:01, -A∗24:02, -B∗08:01, or -B∗35:01 were identified from the immunopeptidome of B cell malignancies and used to form peptide-HLA (pHLA)-tetramers for T cell isolation. Target-peptide-specific CD8 T cells were isolated from HLA-mismatched healthy donors and subjected to a stringent stepwise selection procedure to ensure potency and eliminate cross-reactivity. In total, five T cell clones specific for FCRL5 in HLA-A∗01:01, VPREB3 in HLA-A∗24:02, and BOB1 in HLA-B∗35:01 recognized B cell malignancies. For all three specificities, TCR gene transfer into CD8 T cells resulted in cytokine production and efficient killing of multiple B cell malignancies. In conclusion, using this systematic approach we successfully identified three promising TCRs for T cell therapy against B cell malignancies.
Collapse
Affiliation(s)
- Miranda H. Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Corresponding author: Miranda H. Meeuwsen, Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Lorenz Jahn
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Michel G.D. Kester
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Dennis F.G. Remst
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Dirk M. van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Christiaan Kweekel
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Corresponding author: Mirjam H.M. Heemskerk, Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
6
|
Pothast CR, Dijkland RC, Thaler M, Hagedoorn RS, Kester MGD, Wouters AK, Hiemstra PS, van Hemert MJ, Gras S, Falkenburg JHF, Heemskerk MHM. SARS-CoV-2-specific CD4 + and CD8 + T cell responses can originate from cross-reactive CMV-specific T cells. eLife 2022; 11:82050. [PMID: 36408799 PMCID: PMC9822249 DOI: 10.7554/elife.82050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific CD4+ and CD8+ T cells in SARS-CoV-2-unexposed donors has been explained by the presence of T cells primed by other coronaviruses. However, based on the relatively high frequency and prevalence of cross-reactive T cells, we hypothesized cytomegalovirus (CMV) may induce these cross-reactive T cells. Stimulation of pre-pandemic cryo-preserved peripheral blood mononuclear cells (PBMCs) with SARS-CoV-2 peptides revealed that frequencies of SARS-CoV-2-specific T cells were higher in CMV-seropositive donors. Characterization of these T cells demonstrated that membrane-specific CD4+ and spike-specific CD8+ T cells originate from cross-reactive CMV-specific T cells. Spike-specific CD8+ T cells recognize SARS-CoV-2 spike peptide FVSNGTHWF (FVS) and dissimilar CMV pp65 peptide IPSINVHHY (IPS) presented by HLA-B*35:01. These dual IPS/FVS-reactive CD8+ T cells were found in multiple donors as well as severe COVID-19 patients and shared a common T cell receptor (TCR), illustrating that IPS/FVS-cross-reactivity is caused by a public TCR. In conclusion, CMV-specific T cells cross-react with SARS-CoV-2, despite low sequence homology between the two viruses, and may contribute to the pre-existing immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Cilia R Pothast
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Romy C Dijkland
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Melissa Thaler
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Michel GD Kester
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical CenterLeidenNetherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia,Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | | | | |
Collapse
|
7
|
Jiang D, Tian X, Bian X, Zhu T, Qin H, Zhang R, Xu Y, Pan Z, Huang H, Fu J, Wu D, Chu J. T cells redirected against Igβ for the immunotherapy of B cell lymphoma. Leukemia 2019; 34:821-830. [PMID: 31624374 DOI: 10.1038/s41375-019-0607-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022]
Abstract
CD19-redirected CAR-T immunotherapy has emerged as a promising strategy for treatment of B cell lymphoma, however, many patients often relapsed due to antigen loss. Therefore, it is urgently needed to explore other suitable antigens targeted by CAR-T cells to cure B cell lymphoma. Igβ is a component of the B cell receptor (BCR) complex, which is highly expressed on the surface of lymphoma cells. In this study, we engineered T cells to express anti-Igβ CAR with CD28 costimulatory signaling moiety and observed that Igβ-CAR T cells could efficiently recognize and eliminate Igβ+ lymphoma cells both in vitro and in two different lymphoma xenograft models. The specificity of Igβ-CAR T cells was further confirmed through wild type or mutated Igβ gene transduction together with Igβ-specific knockout in target cells. Of note, both the in vitro and in vivo effect of Igβ CAR-T cells was comparable with that of CD19 CAR-T cells. Importantly, Igβ CAR-T cells recognized and eradicated patient-derived lymphoma cells in the autologous setting. Lastly, the safety of anti-Igβ CAR-T cells could be further enhanced by introduction of the inducible caspase-9 suicide gene system. Collectively, Igβ-specific CAR-T cells may be a promising immunotherapeutic approach for B cell lymphoma.
Collapse
Affiliation(s)
- Dongpeng Jiang
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Xiaopeng Tian
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaosen Bian
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Tingting Zhu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Huimin Qin
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Ruixi Zhang
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Zhansheng Pan
- Department of General Surgery, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiwen Huang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhong Fu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China.
| | - Jianhong Chu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Pont MJ, Oostvogels R, van Bergen CA, van der Meijden ED, Honders MW, Bliss S, Jongsma ML, Lokhorst HM, Falkenburg JF, Mutis T, Griffioen M, Spaapen RM. T Cells Specific for an Unconventional Natural Antigen Fail to Recognize Leukemic Cells. Cancer Immunol Res 2019; 7:797-804. [DOI: 10.1158/2326-6066.cir-18-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
|
9
|
A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Sci Rep 2019; 9:2615. [PMID: 30796273 PMCID: PMC6385312 DOI: 10.1038/s41598-019-39273-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system that has poor prognosis despite extensive therapy. Therefore, it is essential to identify a gene expression-based signature for predicting GBM prognosis. The RNA sequencing data of GBM patients from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases were employed in our study. The univariate and multivariate regression models were utilized to assess the relative contribution of each gene to survival prediction in both cohorts, and the common genes in two cohorts were identified as a final prognostic model. A prognostic risk score was calculated based on the prognostic gene signature. This prognostic signature stratified the patients into the low- and high-risk groups. Multivariate regression and stratification analyses were implemented to determine whether the gene signature was an independent prognostic factor. We identified a 6-gene signature through univariate and multivariate regression models. This prognostic signature stratified the patients into the low- and high-risk groups, implying improved and poor outcomes respectively. Multivariate regression and stratification analyses demonstrated that the predictive value of the 6-gene signature was independent of other clinical factors. This study highlights the significant implications of having a gene signature as a prognostic predictor in GBM, and its potential application in personalized therapy.
Collapse
|
10
|
A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer. Oncotarget 2018; 7:71536-71547. [PMID: 27689397 PMCID: PMC5342099 DOI: 10.18632/oncotarget.12247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
Abstract
CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.
Collapse
|
11
|
Jahn L, van der Steen DM, Hagedoorn RS, Hombrink P, Kester MGD, Schoonakker MP, de Ridder D, van Veelen PA, Falkenburg JHF, Heemskerk MHM. Generation of CD20-specific TCRs for TCR gene therapy of CD20low B-cell malignancies insusceptible to CD20-targeting antibodies. Oncotarget 2018; 7:77021-77037. [PMID: 27776339 PMCID: PMC5363567 DOI: 10.18632/oncotarget.12778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/13/2016] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy of B-cell leukemia and lymphoma with CD20-targeting monoclonal antibodies (mAbs) has demonstrated clinical efficacy. However, the emergence of unresponsive disease due to low or absent cell surface CD20 urges the need to develop additional strategies. In contrast to mAbs, T-cells via their T-cell receptor (TCR) can recognize not only extracellular but also intracellular antigens in the context of HLA molecules. We hypothesized that T-cells equipped with high affinity CD20-targeting TCRs would be able to recognize B-cell malignancies even in the absence of extracellular CD20. We isolated CD8+ T-cell clones binding to peptide-MHC-tetramers composed of HLA-A*02:01 and CD20-derived peptide SLFLGILSV (CD20SLF) from HLA-A*02:01neg healthy individuals to overcome tolerance towards self-antigens such as CD20. High avidity T-cell clones were identified that readily recognized and lysed primary HLA-A2pos B-cell leukemia and lymphoma in the absence of reactivity against CD20-negative but HLA-A2pos healthy hematopoietic and nonhematopoietic cells. The T-cell clone with highest avidity efficiently lysed malignant cell-lines that had insufficient extracellular CD20 to be targeted by CD20 mAbs. Transfer of this TCR installed potent CD20-specificity onto recipient T-cells and led to lysis of CD20low malignant cell-lines. Moreover, our approach facilitates the generation of an off-the-shelf TCR library with broad applicability by targeting various HLA alleles. Using the same methodology, we isolated a T-cell clone that efficiently lysed primary HLA-B*07:02pos B-cell malignancies by targeting another CD20-derived peptide. TCR gene transfer of high affinity CD20-specific TCRs can be a valuable addition to current treatment options for patients suffering from CD20low B-cell malignancies.
Collapse
Affiliation(s)
- Lorenz Jahn
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Pleun Hombrink
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Department of Hematopoiesis, Sanquin Research, 1006 AD Amsterdam, The Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Daniëlle de Ridder
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
12
|
Adnan Awad S, Kamel MM, Ayoub MA, Kamel AM, Elnoshokaty EH, El Hifnawi N. Immunophenotypic Characterization of Cytogenetic Subgroups in Egyptian Pediatric Patients With B-Cell Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 16 Suppl:S19-S24.e1. [PMID: 27521317 DOI: 10.1016/j.clml.2016.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Identification of prognostic factors in acute lymphoblastic leukemia (ALL) patients is important for stratifying patients into risk groups and tailoring treatment accordingly. Molecular and cytogenetic abnormalities are the most important prognostic factors. Minimal residual disease (MRD) is also an important predictor of relapse in ALL. However, the correlation of both prognostic variables has not been thoroughly studied. METHODS We investigated the correlation between defined cytogenetic abnormalities and selected new MRD markers (CD79b, CD123, and CD200) in 56 newly diagnosed Egyptian pediatric B-cell ALL patients. RESULTS CD123 found to be expressed in 45% of patients, CD200 in 80.3%, and CD79b in 67.9%. MRD analysis during treatment showed stable expression patterns of CD200. There was significant association of CD123 expression with the hyperdiploid ALL group (P = .017). Another association (P = .029) was found between CD79b negativity and the t(12;21) group. CD200 was widely expressed in all groups. CONCLUSION There is a significant correlation between some markers, and certain ALL recurrent cytogenetic subgroups (CD123 and hyperdiploidy, CD79b negativity, and ETV-RUNX1 group) have good prognostic value. CD200 can be used as MRD markers in ALL patients and can also can serve as therapy targets.
Collapse
Affiliation(s)
- Shady Adnan Awad
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud A Ayoub
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed M Kamel
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Essam H Elnoshokaty
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Niveen El Hifnawi
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Heidenreich F, Rücker-Braun E, Walz JS, Eugster A, Kühn D, Dietz S, Nelde A, Tunger A, Wehner R, Link CS, Middeke JM, Stölzel F, Tonn T, Stevanovic S, Rammensee HG, Bonifacio E, Bachmann M, Zeis M, Ehninger G, Bornhäuser M, Schetelig J, Schmitz M. Mass spectrometry-based identification of a naturally presented receptor tyrosine kinase-like orphan receptor 1-derived epitope recognized by CD8 + cytotoxic T cells. Haematologica 2017; 102:e460-e464. [PMID: 28838995 DOI: 10.3324/haematol.2017.167312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Falk Heidenreich
- DKMS German Bone Marrow Donor Center, Clinical Trials Unit, Dresden, Germany .,Department of Medicine I, University Hospital of Dresden, Germany
| | - Elke Rücker-Braun
- Department of Medicine I, University Hospital of Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Juliane S Walz
- Department of Hematology and Oncology, University of Tübingen, Germany
| | - Anne Eugster
- Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Denise Kühn
- Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Sevina Dietz
- Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Annika Nelde
- Department of Hematology and Oncology, University of Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany
| | - Antje Tunger
- Institute of Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Cornelia S Link
- Department of Medicine I, University Hospital of Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Jan M Middeke
- Department of Medicine I, University Hospital of Dresden, Germany
| | | | - Torsten Tonn
- German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Stefan Stevanovic
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany.,German Cancer Consortium (DKTK), Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany.,German Cancer Consortium (DKTK), Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, TU Dresden, Germany
| | - Michael Bachmann
- Center for Regenerative Therapies Dresden, TU Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, Dresden, Germany
| | | | - Gerhard Ehninger
- Department of Medicine I, University Hospital of Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital of Dresden, Germany.,Center for Regenerative Therapies Dresden, TU Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Johannes Schetelig
- DKMS German Bone Marrow Donor Center, Clinical Trials Unit, Dresden, Germany.,Department of Medicine I, University Hospital of Dresden, Germany
| | - Marc Schmitz
- Center for Regenerative Therapies Dresden, TU Dresden, Germany.,Institute of Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| |
Collapse
|
14
|
TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood 2017; 129:1284-1295. [PMID: 28053195 DOI: 10.1182/blood-2016-09-737536] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy for hematological malignancies or solid tumors by administration of monoclonal antibodies or T cells engineered to express chimeric antigen receptors or T-cell receptors (TCRs) has demonstrated clinical efficacy. However, antigen-loss tumor escape variants and the absence of currently targeted antigens on several malignancies hamper the widespread application of immunotherapy. We have isolated a TCR targeting a peptide of the intracellular B cell-specific transcription factor BOB1 presented in the context of HLA-B*07:02. TCR gene transfer installed BOB1 specificity and reactivity onto recipient T cells. TCR-transduced T cells efficiently lysed primary B-cell leukemia, mantle cell lymphoma, and multiple myeloma in vitro. We also observed recognition and lysis of healthy BOB1-expressing B cells. In addition, strong BOB1-specific proliferation could be demonstrated for TCR-modified T cells upon antigen encounter. Furthermore, clear in vivo antitumor reactivity was observed of BOB1-specific TCR-engineered T cells in a xenograft mouse model of established multiple myeloma. Absence of reactivity toward a broad panel of BOB1- but HLA-B*07:02+ nonhematopoietic and hematopoietic cells indicated no off-target toxicity. Therefore, administration of BOB1-specific TCR-engineered T cells may provide novel cellular treatment options to patients with B-cell malignancies, including multiple myeloma.
Collapse
|
15
|
Pont MJ, Honders MW, Kremer AN, van Kooten C, Out C, Hiemstra PS, de Boer HC, Jager MJ, Schmelzer E, Vries RG, Al Hinai AS, Kroes WG, Monajemi R, Goeman JJ, Böhringer S, Marijt WAF, Falkenburg JHF, Griffioen M. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies. PLoS One 2016; 11:e0155165. [PMID: 27171398 PMCID: PMC4865094 DOI: 10.1371/journal.pone.0155165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage)-restricted expression as potential targets for immunotherapy of hematological cancers.
Collapse
Affiliation(s)
- M. J. Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. W. Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - A. N. Kremer
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - C. van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - C. Out
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - P. S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - H. C. de Boer
- Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - M. J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - E. Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - R. G. Vries
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - A. S. Al Hinai
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - W. G. Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - R. Monajemi
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - J. J. Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
- Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S. Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - W. A. F. Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - J. H. F. Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - M. Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
16
|
Pont MJ, van der Lee DI, van der Meijden ED, van Bergen CAM, Kester MGD, Honders MW, Vermaat M, Eefting M, Marijt EWA, Kielbasa SM, Hoen PAC', Falkenburg JHF, Griffioen M. Integrated Whole Genome and Transcriptome Analysis Identified a Therapeutic Minor Histocompatibility Antigen in a Splice Variant of ITGB2. Clin Cancer Res 2016; 22:4185-96. [PMID: 26964570 DOI: 10.1158/1078-0432.ccr-15-2307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE In HLA-matched allogeneic hematopoietic stem cell transplantation (alloSCT), donor T cells recognizing minor histocompatibility antigens (MiHAs) can mediate desired antitumor immunity as well as undesired side effects. MiHAs with hematopoiesis-restricted expression are relevant targets to augment antitumor immunity after alloSCT without side effects. To identify therapeutic MiHAs, we analyzed the in vivo immune response in a patient with strong antitumor immunity after alloSCT. EXPERIMENTAL DESIGN T-cell clones recognizing patient, but not donor, hematopoietic cells were selected for MiHA discovery by whole genome association scanning. RNA-sequence data from the GEUVADIS project were analyzed to investigate alternative transcripts, and expression patterns were determined by microarray analysis and qPCR. T-cell reactivity was measured by cytokine release and cytotoxicity. RESULTS T-cell clones were isolated for two HLA-B*15:01-restricted MiHA. LB-GLE1-1V is encoded by a nonsynonymous SNP in exon 6 of GLE1 For the other MiHAs, an associating SNP in intron 3 of ITGB2 was found, but no SNP disparity was present in the normal gene transcript between patient and donor. RNA-sequence analysis identified an alternative ITGB2 transcript containing part of intron 3. qPCR demonstrated that this transcript is restricted to hematopoietic cells and SNP-positive individuals. In silico translation revealed LB-ITGB2-1 as HLA-B*15:01-binding peptide, which was validated as hematopoietic MiHA by T-cell experiments. CONCLUSIONS Whole genome and transcriptome analysis identified LB-ITGB2-1 as MiHAs encoded by an alternative transcript. Our data support the therapeutic relevance of LB-ITGB2-1 and illustrate the value of RNA-sequence analysis for discovery of immune targets encoded by alternative transcripts. Clin Cancer Res; 22(16); 4185-96. ©2016 AACR.
Collapse
Affiliation(s)
- Margot J Pont
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria W Honders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn Vermaat
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Eefting
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik W A Marijt
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
17
|
Falkenburg JHF, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol 2015; 9:1894-903. [PMID: 26578450 DOI: 10.1016/j.molonc.2015.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several mechanisms can be responsible for control of hematological tumors by allo-reactive T cells. Following allogeneic stem cell transplantation (alloSCT) donor T cells recognizing genetic disparities presented on recipient cells and not on donor cells are main effectors of tumor control, but also of the detrimental graft versus host disease (GVHD). Since after transplantation normal hematopoiesis is of donor origin, any T cell response directed against polymorphic antigens expressed on hematopoietic recipient cells but not on donor cells will result in an anti-tumor response not affecting normal hematopoiesis. After fully HLA-matched alloSCT, T cells recognizing polymorphic peptides derived from proteins encoded by genes selectively expressed in hematopoietic lineages may result in anti-tumor responses without GVHD. Due to the high susceptibility of hematopoietic cells for T cell recognition, a low amplitude of the overall T cell response may also be in favor of the anti-tumor reactivity in hematological malignancies. A mismatch between donor and patient for specific HLA-alleles can also be exploited to induce a selective T cell response against patient (malignant) hematopoietic cells. If restricting HLA class II molecules are selectively expressed on hematopoietic cells under non-inflammatory circumstances, allo HLA class-II responses may control the tumor with limited risk of GVHD. Alternatively, T cells recognizing hematopoiesis-restricted antigens presented in the context of mismatched HLA alleles may be used to treat patients with hematological cancers. This review discusses various ways to manipulate the allo-immune response aiming to exploit the powerful ability of allo-reactive T-cells to control the malignancies without causing severe damage to non-hematopoietic tissues.
Collapse
Affiliation(s)
- J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Netherlands
| | - I Jedema
- Department of Hematology, Leiden University Medical Center, Netherlands.
| |
Collapse
|