1
|
Madonna R, Ghelardoni S. Sotatercept in pulmonary hypertension and beyond. Eur J Clin Invest 2025; 55:e14386. [PMID: 39825683 DOI: 10.1111/eci.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2. In this way, sotatercept activates an antiproliferative signalling to the cells of the pulmonary arteries and arterioles with the aim of rebalancing the proliferative and antiproliferative pathway that characterizes the pulmonary arterial hypertension (PAH). Sotatercept is indicated for the treatment of group 1 PAH in combination with drugs that act through the endothelin receptor, nitric oxide or prostacyclin. Its effects, demonstrated in the STELLAR study, are the improvement of exercise capacity and the FC-WHO functional class, together with the reduction of the risk of clinical worsening events. In addition to its antiremodeling effects on the pulmonary circulation, sotatercept has several haematological effects that could suggest its use in the treatment of some blood disorders other than PAH. In this review, we will discuss the effects of the drug on PAH and in parallel provide an in-depth overview of its application in haematological disorders, focusing on clinical and preclinical studies.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Surgical, Medical and Molecular Pathology and Critical Area, Cardiology Division, University of Pisa, Pisa, Italy
| | - Sandra Ghelardoni
- Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Xin X, Zhang W, Li Z, Gui R, Wang J, Ji L, Zhang Y, Fang B, Song Y, Zu Y, Zhou J. Luspatercept for the treatment of anemia in allo-HSCT for patients with hematological diseases. Blood Cancer J 2025; 15:12. [PMID: 39910033 PMCID: PMC11799135 DOI: 10.1038/s41408-025-01218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Affiliation(s)
- Xiangke Xin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Wenli Zhang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ruirui Gui
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Juan Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Liyun Ji
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yanli Zhang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Baijun Fang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingling Zu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Jian Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Vissers LTW, van der Burg M, Lankester AC, Smiers FJW, Bartels M, Mohseny AB. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J Clin Med 2023; 12:7185. [PMID: 38002797 PMCID: PMC10672506 DOI: 10.3390/jcm12227185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Irreversible severe bone marrow failure (BMF) is a life-threatening condition in pediatric patients. Most important causes are inherited bone marrow failure syndromes (IBMFSs) and (pre)malignant diseases, such as myelodysplastic syndrome (MDS) and (idiopathic) aplastic anemia (AA). Timely treatment is essential to prevent infections and bleeding complications and increase overall survival (OS). Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for most types of BMF but cannot restore non-hematological defects. When using a matched sibling donor (MSD) or a matched unrelated donor (MUD), the OS after HSCT ranges between 60 and 90%. Due to the introduction of post-transplantation cyclophosphamide (PT-Cy) to prevent graft versus host disease (GVHD), alternative donor HSCT can reach similar survival rates. Although HSCT can restore ineffective hematopoiesis, it is not always used as a first-line therapy due to the severe risks associated with HSCT. Therefore, depending on the underlying cause, other treatment options might be preferred. Finally, for IBMFSs with an identified genetic etiology, gene therapy might provide a novel treatment strategy as it could bypass certain limitations of HSCT. However, gene therapy for most IBMFSs is still in its infancy. This review summarizes current clinical practices for pediatric BMF, including HSCT as well as other disease-specific treatment options.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Frans J. W. Smiers
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Alexander B. Mohseny
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| |
Collapse
|
4
|
Lan Z, Lv Z, Zuo W, Xiao Y. From bench to bedside: The promise of sotatercept in hematologic disorders. Biomed Pharmacother 2023; 165:115239. [PMID: 37516019 DOI: 10.1016/j.biopha.2023.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Sotatercept (ACE-011) is an activin receptor IIA-Fc (ActRIIA-Fc) fusion protein currently under investigation for its potential in the treatment of hematologic diseases. By impeding the activities of the overexpressed growth and differentiation factor 11 (GDF11), activin A, and other members of the transforming growth factor-β (TGF-β) superfamily, commonly found in hematologic disorders, sotatercept aims to restore the normal functioning of red blood cell maturation and osteoblast differentiation. This action is anticipated to enhance anemia management and hinder the progression of myeloma. Simultaneously, comprehensive research is ongoing to investigate sotatercept's pharmacokinetics and potential adverse reactions, thus laying a robust foundation for its prospective clinical use. In this review, we provide a detailed overview of TGF-β pathways in physiological and hematologic disorder contexts, outline the potential mechanism of sotatercept, and delve into its pharmacokinetics and clinical research advancements in various hematologic diseases. A particular emphasis is given to the relationship between sotatercept dosage and its efficacy or associated adverse reactions.
Collapse
Affiliation(s)
- Zehao Lan
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China; Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhaohua Lv
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China; Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Wanyun Zuo
- Department of Hematology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China.
| |
Collapse
|
5
|
Yi ZN, Chen XK, Ma ACH. Modeling leukemia with zebrafish (Danio rerio): Towards precision medicine. Exp Cell Res 2022; 421:113401. [PMID: 36306826 DOI: 10.1016/j.yexcr.2022.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
Leukemia is a type of blood cancer characterized by high genetic heterogeneity and fatality. While chemotherapy remains the primary form of treatment for leukemia, its effectiveness was profoundly diminished by the genetic heterogeneity and cytogenetic abnormalities of leukemic cells. Therefore, there is an unmet need to develop precision medicine for leukemia with distinct genetic backgrounds. Zebrafish (Danio rerio), a freshwater fish with exceptional feasibility in genome editing, is a powerful tool for rapid human cancer modeling. In the past decades, zebrafish have been adopted in modeling human leukemia, exploring the molecular mechanisms of underlying genetic abnormalities, and discovering novel therapeutic agents. Although many recurrent mutations of leukemia have been modeled in zebrafish for pathological study and drug discovery, its great potential in leukemia modeling was not yet fully exploited, particularly in precision medicine. In this review, we evaluated the current zebrafish models of leukemia/pre-leukemia and genetic techniques and discussed the potential of zebrafish models with novel techniques, which may contribute to the development of zebrafish as a disease model for precision medicine in treating leukemia.
Collapse
Affiliation(s)
- Zhen-Ni Yi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
6
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
7
|
Lee SS, Verstovsek S, Pemmaraju N. Novel Therapies in Myeloproliferative Neoplasms: Beyond JAK Inhibitor Monotherapy. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:117-128. [PMID: 35663101 PMCID: PMC9138435 DOI: 10.36401/jipo-20-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 06/15/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders that consist classically of polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). Janus kinase (JAK) inhibitors have become the standard of therapy in treating patients with intermediate- to higher-risk MF. However, JAK inhibitor (JAKi) treatment can be associated with development of resistance, suboptimal response, relapse, or treatment-related adverse effects. With no approved therapies beyond the JAKi class, the estimated median survival, post JAKi failure, is approximately two years or less; therefore, novel therapies are urgently needed in the MF field. In this review, we discuss ruxolitinib use in MPNs as well as causes of ruxolitinib failure or discontinuation. In addition, we review novel therapies being investigated alone or in combination with JAKi administration. We summarize concepts and mechanisms behind emerging novel therapies being studied for MPNs. This review of emerging novel therapies outlines several novel mechanisms of agents, including via promotion of apoptosis, alteration of the microenvironment, activation or inactivation of various pathways, targeting fibrosis, and telomerase inhibition.
Collapse
Affiliation(s)
- Sophia S. Lee
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Taylor AM, Macari ER, Chan IT, Blair MC, Doulatov S, Vo LT, Raiser DM, Siva K, Basak A, Pirouz M, Shah AN, McGrath K, Humphries JM, Stillman E, Alter BP, Calo E, Gregory RI, Sankaran VG, Flygare J, Ebert BL, Zhou Y, Daley GQ, Zon LI. Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia. Sci Transl Med 2021; 12:12/566/eabb5831. [PMID: 33087503 DOI: 10.1126/scitranslmed.abb5831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare hematopoietic disease characterized by a block in red cell differentiation. Most DBA cases are caused by mutations in ribosomal proteins and characterized by higher than normal activity of the tumor suppressor p53. Higher p53 activity is thought to contribute to DBA phenotypes by inducing apoptosis during red blood cell differentiation. Currently, there are few therapies available for patients with DBA. We performed a chemical screen using zebrafish ribosomal small subunit protein 29 (rps29) mutant embryos that have a p53-dependent anemia and identified calmodulin inhibitors that rescued the phenotype. Our studies demonstrated that calmodulin inhibitors attenuated p53 protein amount and activity. Treatment with calmodulin inhibitors led to decreased p53 translation and accumulation but does not affect p53 stability. A U.S. Food and Drug Administration-approved calmodulin inhibitor, trifluoperazine, rescued hematopoietic phenotypes of DBA models in vivo in zebrafish and mouse models. In addition, trifluoperazine rescued these phenotypes in human CD34+ hematopoietic stem and progenitor cells. Erythroid differentiation was also improved in CD34+ cells isolated from a patient with DBA. This work uncovers a potential avenue of therapeutic development for patients with DBA.
Collapse
Affiliation(s)
- Alison M Taylor
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth R Macari
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Iris T Chan
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Megan C Blair
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Sergei Doulatov
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Linda T Vo
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - David M Raiser
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kavitha Siva
- Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Anindita Basak
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Mehdi Pirouz
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Arish N Shah
- MIT Department of Biology and David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Katherine McGrath
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Jessica M Humphries
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Emma Stillman
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20850, USA
| | - Eliezer Calo
- MIT Department of Biology and David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Richard I Gregory
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Johan Flygare
- Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Benjamin L Ebert
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Yi Zhou
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA. .,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA.,Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Zebrafish, an In Vivo Platform to Screen Drugs and Proteins for Biomedical Use. Pharmaceuticals (Basel) 2021; 14:ph14060500. [PMID: 34073947 PMCID: PMC8225009 DOI: 10.3390/ph14060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the gap between in vitro evidence from cell lines and in vivo evidence, the lower vertebrate zebrafish possesses many advantages over higher vertebrates, such as low maintenance, high fecundity, light-induced spawning, transparent embryos, short generation interval, rapid embryonic development, fully sequenced genome, and some phenotypes similar to human diseases. Such merits have popularized the zebrafish as a model system for biomedical and pharmaceutical studies, including drug screening. Here, we reviewed the various ways in which zebrafish serve as an in vivo platform to perform drug and protein screening in the fields of rare human diseases, social behavior and cancer studies. Since zebrafish mutations faithfully phenocopy many human disorders, many compounds identified from zebrafish screening systems have advanced to early clinical trials, such as those for Adenoid cystic carcinoma, Dravet syndrome and Diamond-Blackfan anemia. We also reviewed and described how zebrafish are used to carry out environmental pollutant detection and assessment of nanoparticle biosafety and QT prolongation.
Collapse
|
10
|
Bao B, An W, Lu Q, Wang Y, Lu Z, Tu J, Zhang H, Duan Y, Yuan W, Zhu X, Jia H. Sfxn1 is essential for erythrocyte maturation via facilitating hemoglobin production in zebrafish. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166096. [PMID: 33524530 DOI: 10.1016/j.bbadis.2021.166096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Previous reports revealed that mutation of mitochondrial inner-membrane located protein SFXN1 led to pleiotropic hematological and skeletal defects in mice, associated with the presence of hypochromic erythroid cell, iron overload in mitochondrion of erythroblast and the development of sideroblastic anemia (SA). However, the potential role of sfxn1 during erythrocyte differentiation and the development of anemia, especially the pathological molecular mechanism still remains elusive. In this study, the correlation between sfxn1 and erythroid cell development is explored through zebrafish in vivo coupled with human hematopoietic cells assay ex vivo. Both knockdown and knockout of sfxn1 result in hypochromic anemia phenotype in zebrafish. Further analyses demonstrate that the development of anemia attributes to the biosynthetic deficiency of hemoglobin, which is caused by the biosynthetic disorder of heme that associates with one‑carbon (1C) metabolism process of mitochondrial branch in erythrocyte. Sfxn1 is also involved in the differentiation and maturation of erythrocyte in inducible human umbilical cord blood stem cells. In addition, we found that functional disruption of sfxn1 causes hypochromic anemia that is distinct from SA. These findings reveal that sfxn1 is genetically conserved and essential for the maturation of erythrocyte via facilitating the production of hemoglobin, which may provide a possible guidance for the future clinical treatment of sfxn1 mutation associated hematological disorders.
Collapse
Affiliation(s)
- Binghao Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, ,China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Wang
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjuan Duan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, ,China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, ,China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, ,China.
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Verma A, Suragani RN, Aluri S, Shah N, Bhagat TD, Alexander MJ, Komrokji R, Kumar R. Biological basis for efficacy of activin receptor ligand traps in myelodysplastic syndromes. J Clin Invest 2020; 130:582-589. [PMID: 31961337 DOI: 10.1172/jci133678] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signaling by the TGF-β superfamily is important in the regulation of hematopoiesis and is dysregulated in myelodysplastic syndromes (MDSs), contributing to ineffective hematopoiesis and clinical cytopenias. TGF-β, activins, and growth differentiation factors exert inhibitory effects on red cell formation by activating canonical SMAD2/3 pathway signaling. In this Review, we summarize evidence that overactivation of SMAD2/3 signaling pathways in MDSs causes anemia due to impaired erythroid maturation. We also describe the basis for biological activity of activin receptor ligand traps, novel fusion proteins such as luspatercept that are promising as erythroid maturation agents to alleviate anemia and related comorbidities in MDSs and other conditions characterized by impaired erythroid maturation.
Collapse
Affiliation(s)
- Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | | | - Srinivas Aluri
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Nishi Shah
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | | | | | - Ravi Kumar
- Acceleron Pharma, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Ribosomopathies: New Therapeutic Perspectives. Cells 2020; 9:cells9092080. [PMID: 32932838 PMCID: PMC7564184 DOI: 10.3390/cells9092080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Ribosomopathies are a group of rare diseases in which genetic mutations cause defects in either ribosome biogenesis or function, given specific phenotypes. Ribosomal proteins, and multiple other factors that are necessary for ribosome biogenesis (rRNA processing, assembly of subunits, export to cytoplasm), can be affected in ribosomopathies. Despite the need for ribosomes in all cell types, these diseases result mainly in tissue-specific impairments. Depending on the type of ribosomopathy and its pathogenicity, there are many potential therapeutic targets. The present manuscript will review our knowledge of ribosomopathies, discuss current treatments, and introduce the new therapeutic perspectives based on recent research. Diamond–Blackfan anemia, currently treated with blood transfusion prior to steroids, could be managed with a range of new compounds, acting mainly on anemia, such as L-leucine. Treacher Collins syndrome could be managed by various treatments, but it has recently been shown that proteasomal inhibition by MG132 or Bortezomib may improve cranial skeleton malformations. Developmental defects resulting from ribosomopathies could be also treated pharmacologically after birth. It might thus be possible to treat certain ribosomopathies without using multiple treatments such as surgery and transplants. Ribosomopathies remain an open field in the search for new therapeutic approaches based on our recent understanding of the role of ribosomes and progress in gene therapy for curing genetic disorders.
Collapse
|
13
|
Tyagi A, Gupta A, Dutta A, Potluri P, Batti B. A Review of Diamond-Blackfan Anemia: Current Evidence on Involved Genes and Treatment Modalities. Cureus 2020; 12:e10019. [PMID: 32983714 PMCID: PMC7515741 DOI: 10.7759/cureus.10019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a congenital cause of bone marrow failure predominantly involving the erythroid cell line, with occasional impact on other cell lines. In the vast majority of cases, it is diagnosed by one year of age. We looked at the existing literature on the disease presentation along with established as well as upcoming treatment options. Numerous genes have been identified and extensively studied in the context of their part in the pathogenesis of DBA. Treatment revolves around the use of steroids and regular blood transfusions, with hematopoietic stem cell transplantation reserved for steroid-resistant cases. Newer modalities such as gene therapy, l-leucine, sotatercept, trifluoperazine, SMER28, and danazol are also concisely discussed. The purpose of this article is to review the previous literature on DBA and weigh the role of newer therapeutic agents.
Collapse
Affiliation(s)
- Anshika Tyagi
- Medicine, Maulana Azad Medical College, New Delhi, IND
| | - Apurv Gupta
- Medicine, Maulana Azad Medical College, New Delhi, IND
| | | | - Pooja Potluri
- Medicine, Jawaharlal Nehru Medical College, Belgaum, IND
| | - Badie Batti
- Medicine, Alkindi Teaching Hospital, Baghdad, IRQ
| |
Collapse
|
14
|
De Rosa G, Andolfo I, Marra R, Manna F, Rosato BE, Iolascon A, Russo R. RAP-011 Rescues the Disease Phenotype in a Cellular Model of Congenital Dyserythropoietic Anemia Type II by Inhibiting the SMAD2-3 Pathway. Int J Mol Sci 2020; 21:ijms21155577. [PMID: 32759740 PMCID: PMC7432210 DOI: 10.3390/ijms21155577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/12/2023] Open
Abstract
Congenital dyserythropoietic anemia type II (CDA II) is a hypo-productive anemia defined by ineffective erythropoiesis through maturation arrest of erythroid precursors. CDA II is an autosomal recessive disorder due to loss-of-function mutations in SEC23B. Currently, management of patients with CDA II is based on transfusions, splenectomy, or hematopoietic stem-cell transplantation. Several studies have highlighted benefits of ACE-011 (sotatercept) treatment of ineffective erythropoiesis, which acts as a ligand trap against growth differentiation factor (GDF)11. Herein, we show that GDF11 levels are increased in CDA II, which suggests sotatercept as a targeted therapy for treatment of these patients. Treatment of stable clones of SEC23B-silenced erythroleukemia K562 cells with the iron-containing porphyrin hemin plus GDF11 increased expression of pSMAD2 and reduced nuclear localization of the transcription factor GATA1, with subsequent reduced gene expression of erythroid differentiation markers. We demonstrate that treatment of these SEC23B-silenced K562 cells with RAP-011, a "murinized" ortholog of sotatercept, rescues the disease phenotype by restoring gene expression of erythroid markers through inhibition of the phosphorylated SMAD2 pathway. Our data also demonstrate the effect of RAP-011 treatment in reducing the expression of erythroferrone in vitro, thus suggesting a possible beneficial role of the use of sotatercept in the management of iron overload in patients with CDA II.
Collapse
Affiliation(s)
- Gianluca De Rosa
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (R.M.); (B.E.R.); (A.I.)
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy;
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (R.M.); (B.E.R.); (A.I.)
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy;
- Correspondence: (I.A.); (R.R.); Tel.: +39-081-3737736 (I.A.); +39-081-3737736 (R.R.)
| | - Roberta Marra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (R.M.); (B.E.R.); (A.I.)
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy;
| | | | - Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (R.M.); (B.E.R.); (A.I.)
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy;
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (R.M.); (B.E.R.); (A.I.)
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy;
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (R.M.); (B.E.R.); (A.I.)
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy;
- Correspondence: (I.A.); (R.R.); Tel.: +39-081-3737736 (I.A.); +39-081-3737736 (R.R.)
| |
Collapse
|
15
|
Feld J, Navada SC, Silverman LR. Myelo-deception: Luspatercept & TGF-Beta ligand traps in myeloid diseases & anemia. Leuk Res 2020; 97:106430. [PMID: 32763582 DOI: 10.1016/j.leukres.2020.106430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Myelodysplastic syndromes (MDS) encompass a clinically heterogenous group of diseases defined by a clonal bone marrow failure state. Patients with lower-risk MDS primarily suffer from the consequences of anemia, with a subset having increased risks of bleeding and infection. There are few good therapeutic options for this patient population, as patients are dependent on cytokine support to improve hematopoiesis. Our review will discuss luspatercept, a transforming growth factor (TGF)-Beta ligand trap, the first new Food & Drug Administration (FDA)-approved treatment in MDS in over a decade. We will explore the different TGF-Beta ligand traps that have been developed for a number of diseases, with a focus on myeloid malignancies.
Collapse
Affiliation(s)
- Jonathan Feld
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY, 10029, United States.
| | - Shyamala C Navada
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY, 10029, United States.
| | - Lewis R Silverman
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY, 10029, United States.
| |
Collapse
|
16
|
Abstract
Ribosome is a vital molecular machine for protein translation in the cell. Defects in several ribosomal proteins including RPS19, RPL11 and RPS14 have been observed in two types of anemia: Diamond Blackfan Anemia and 5q- syndrome. In zebrafish, deficiency of these ribosomal proteins shows similar anemic phenotype. It remains to be determined if any other ribosome proteins are similarly involved in regulating erythropoiesis. Here we generated mutations in zebrafish rps9, a rarely studied ribosomal protein gene, and investigated its function. Analysis of this mutant demonstrates that rps9 disruption leads to impairment of erythrocyte maturation, resulting in anemia. In addition, the overall phenotype including the anemic state is p53-dependent in rps9 mutants. Furthermore, this anemic state can be partially relieved by the treatment of L-leucine, and dexamethasone, which have been previously used in rescuing the phenotype of other ribosomal protein mutants. Finally, by comparing the phenotype, we show that there are considerable differences in morphology, cytomorphology, and hemoglobin levels for four ribosomal protein mutants in zebrafish. Based on the observed difference, we suggest that the level of anemic severity correlates with the delayed status of erythrocyte maturation in zebrafish models.
Collapse
|
17
|
Uechi T, Kenmochi N. Zebrafish Models of Diamond-Blackfan Anemia: A Tool for Understanding the Disease Pathogenesis and Drug Discovery. Pharmaceuticals (Basel) 2019; 12:ph12040151. [PMID: 31600948 PMCID: PMC6958429 DOI: 10.3390/ph12040151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome characterized by red blood cell aplasia. Currently, mutations in 19 ribosomal protein genes have been identified in patients. However, the pathogenic mechanism of DBA remains unknown. Recently, several DBA models were generated in zebrafish (Danio rerio) to elucidate the molecular pathogenesis of disease and to explore novel treatments. Zebrafish have strong advantages in drug discovery due to their rapid development and transparency during embryogenesis and their applicability to chemical screens. Together with mice, zebrafish have now become a powerful tool for studying disease mechanisms and drug discovery. In this review, we introduce recent advances in DBA drug development and discuss the usefulness of zebrafish as a disease model.
Collapse
Affiliation(s)
- Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
18
|
Aspesi A, Borsotti C, Follenzi A. Emerging Therapeutic Approaches for Diamond Blackfan Anemia. Curr Gene Ther 2019; 18:327-335. [PMID: 30411682 PMCID: PMC6637096 DOI: 10.2174/1566523218666181109124538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan Anemia (DBA) is an inherited erythroid aplasia with onset in childhood. Patients carry heterozygous mutations in one of 19 Ribosomal Protein (RP) genes, that lead to defective ribosome biogenesis and function. Standard treatments include steroids or blood transfusions but the only definitive cure is allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Although advances in HSCT have greatly improved the success rate over the last years, the risk of adverse events and mor-tality is still significant. Clinical trials employing gene therapy are now in progress for a variety of monogenic diseases and the development of innovative stem cell-based strategies may open new alternatives for DBA treatment as well. In this review, we summarize the most recent progress toward the implementation of new thera-peutic approaches for this disorder. We present different DNA- and RNA-based technologies as well as new candidate pharmacological treatments and discuss their relevance and potential applicability for the cure of DBA.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy
| |
Collapse
|
19
|
Novel Therapies in Myeloproliferative Neoplasms (MPN): Beyond JAK Inhibitors. Curr Hematol Malig Rep 2019; 14:460-468. [DOI: 10.1007/s11899-019-00538-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Development of two complementary LC–HRMS methods for analyzing sotatercept in dried blood spots for doping controls. Bioanalysis 2019; 11:923-940. [DOI: 10.4155/bio-2018-0313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: sotatercept is a therapeutic Fc-fusion protein with erythropoiesis-stimulating activity. Due to a potential abuse of the drug by athletes in professional sports, a sensitive detection method is required. In sports drug testing, alternative matrices such as dried blood spots (DBS) are gaining increasing attention as they can provide several advantages over conventional matrices. Materials & methods: Herein, two complementary LC–high-resolution mass spectrometry (HRMS) detection methods for sotatercept from DBS, an initial testing procedure (ITP) and a confirmation procedure (CP) were developed and validated for the first time. Both methods comprise an ultrasonication-assisted extraction, affinity enrichment, proteolytic digestion and HRMS detection. Results & conclusion: For the multianalyte ITP, artificial samples fortified with sotatercept, luspatercept and bimagrumab, and authentic specimens containing bimagrumab were successfully analyzed as proof-of-concept. The validated detection methods for sotatercept are fit for purpose and the ITP was shown to be suitable for the detection of novel IgG-based pharmaceuticals in doping control DBS samples.
Collapse
|
21
|
Oyarbide U, Topczewski J, Corey SJ. Peering through zebrafish to understand inherited bone marrow failure syndromes. Haematologica 2018; 104:13-24. [PMID: 30573510 PMCID: PMC6312012 DOI: 10.3324/haematol.2018.196105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Inherited bone marrow failure syndromes are experiments of nature characterized by impaired hematopoiesis with cancer and leukemia predisposition. The mutations associated with inherited bone marrow failure syndromes affect fundamental cellular pathways, such as DNA repair, telomere maintenance, or proteostasis. How these disturbed pathways fail to produce sufficient blood cells and lead to leukemogenesis are not understood. The rarity of inherited cytopenias, the paucity of affected primary human hematopoietic cells, and the sometime inadequacy of murine or induced pluripotential stem cell models mean it is difficult to acquire a greater understanding of them. Zebrafish offer a model organism to study gene functions. As vertebrates, zebrafish share with humans many orthologous genes involved in blood disorders. As a model organism, zebrafish provide advantages that include rapid development of transparent embryos, high fecundity (providing large numbers of mutant and normal siblings), and a large collection of mutant and transgenic lines useful for investigating the blood system and other tissues during development. Importantly, recent advances in genomic editing in zebrafish can speedily validate the new genes or novel variants discovered in clinical investigation as causes for marrow failure. Here we review zebrafish as a model organism that phenocopies Fanconi anemia, Diamond-Blackfan anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, congenital amegakaryocytic thrombocytopenia, and severe congenital neutropenia. Two important insights, provided by modeling inherited cytopenias in zebrafish, widen understanding of ribosome biogenesis and TP53 in mediating marrow failure and non-hematologic defects. They suggest that TP53-independent pathways contribute to marrow failure. In addition, zebrafish provide an attractive model organism for drug development.
Collapse
Affiliation(s)
- Usua Oyarbide
- Department of Pediatrics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, VA, USA
| | - Jacek Topczewski
- Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Poland
| | - Seth J Corey
- Department of Pediatrics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, VA, USA .,Department of Microbiology/Immunology, Virginia Commonwealth University, USA.,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
22
|
Li H, Lodish HF, Sieff CA. Critical Issues in Diamond-Blackfan Anemia and Prospects for Novel Treatment. Hematol Oncol Clin North Am 2018; 32:701-712. [PMID: 30047421 DOI: 10.1016/j.hoc.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a severe congenital hypoplastic anemia caused by mutation in a ribosomal protein gene. Major clinical issues concern the optimal management of patients resistant to steroids, the first-line therapy. Hematopoietic stem cell transplantation is indicated in young patients with an HLA-matched unaffected sibling donor, and recent results with matched unrelated donor transplants indicate that these patients also do well. When neither steroids nor a transplant is possible red cell transfusions are required, and iron loading is rapid in some DBA patients, so effective chelation is vital. Also discussed are novel treatments under investigation for DBA.
Collapse
Affiliation(s)
- Hojun Li
- Division of Hematology/Oncology, Dana Farber and Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Colin A Sieff
- Division of Hematology/Oncology, Dana Farber and Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Potts KS, Bowman TV. Modeling Myeloid Malignancies Using Zebrafish. Front Oncol 2017; 7:297. [PMID: 29255698 PMCID: PMC5722844 DOI: 10.3389/fonc.2017.00297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS) and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
24
|
Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD. How Ribosomes Translate Cancer. Cancer Discov 2017; 7:1069-1087. [PMID: 28923911 PMCID: PMC5630089 DOI: 10.1158/2159-8290.cd-17-0550] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium.
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.
| |
Collapse
|
25
|
Bradford YM, Toro S, Ramachandran S, Ruzicka L, Howe DG, Eagle A, Kalita P, Martin R, Taylor Moxon SA, Schaper K, Westerfield M. Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN. ILAR J 2017; 58:4-16. [PMID: 28838067 PMCID: PMC5886338 DOI: 10.1093/ilar/ilw040] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
The Zebrafish Model Organism Database (ZFIN; https://zfin.org) is the central resource for genetic, genomic, and phenotypic data for zebrafish (Danio rerio) research. ZFIN continuously assesses trends in zebrafish research, adding new data types and providing data repositories and tools that members of the research community can use to navigate data. The many research advantages and flexibility of manipulation of zebrafish have made them an increasingly attractive animal to model and study human disease.To facilitate disease-related research, ZFIN developed support to provide human disease information as well as annotation of zebrafish models of human disease. Human disease term pages at ZFIN provide information about disease names, synonyms, and references to other databases as well as a list of publications reporting studies of human diseases in which zebrafish were used. Zebrafish orthologs of human genes that are implicated in human disease etiology are routinely studied to provide an understanding of the molecular basis of disease. Therefore, a list of human genes involved in the disease with their corresponding zebrafish ortholog is displayed on the disease page, with links to additional information regarding the genes and existing mutations. Studying human disease often requires the use of models that recapitulate some or all of the pathologies observed in human diseases. Access to information regarding existing and published models can be critical, because they provide a tractable way to gain insight into the phenotypic outcomes of the disease. ZFIN annotates zebrafish models of human disease and supports retrieval of these published models by listing zebrafish models on the disease term page as well as by providing search interfaces and data download files to access the data. The improvements ZFIN has made to annotate, display, and search data related to human disease, especially zebrafish models for disease and disease-associated gene information, should be helpful to researchers and clinicians considering the use of zebrafish to study human disease.
Collapse
Affiliation(s)
- Yvonne M. Bradford
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sabrina Toro
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sridhar Ramachandran
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Leyla Ruzicka
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Douglas G. Howe
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Anne Eagle
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Patrick Kalita
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Ryan Martin
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sierra A. Taylor Moxon
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Kevin Schaper
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Monte Westerfield
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| |
Collapse
|
26
|
Bose P, Verstovsek S. Developmental Therapeutics in Myeloproliferative Neoplasms. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2017; 17S:S43-S52. [PMID: 28760302 PMCID: PMC5540010 DOI: 10.1016/j.clml.2017.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
The unprecedented success of the Janus kinase (JAK) 1/2 inhibitor ruxolitinib in myelofibrosis (MF) provided much-needed impetus for clinical drug development for the Philadelphia chromosome-negative myeloproliferative neoplasms. The survival benefit conferred by this agent, along with its marked efficacy with regard to spleen volume and symptom reduction, have made ruxolitinib the cornerstone of drug therapy in MF. However, there remain significant unmet needs in the treatment of patients with MF, and many novel classes of agents continue to be investigated in efforts to build on the progress made with ruxolitinib. These include inhibitors of histone deacetylases (HDACs) and DNA methyltransferases, phosphatidylinositol-3-kinase isoforms, heat shock protein 90, cyclin-dependent kinases 4/6, and Hedgehog signaling, among others. In parallel, other JAK inhibitors with potential for less myelosuppression or even improvement of anemia, greater selectivity for JAK1 or JAK2, and the ability to overcome JAK inhibitor persistence are in various stages of development. First-in-class agents such as the activin receptor IIA ligand trap sotatercept (for anemia of MF), the telomerase inhibitor imetelstat, and the antifibrotic agent PRM-151 (recombinant human pentraxin-2) are also in clinical trials. In polycythemia vera, a novel interferon administered every 2 weeks is being developed for front-line therapy in high-risk individuals, and inhibitors of human double minute 2 (HDM2) have shown promise in preclinical studies, as have HDAC inhibitors such as givinostat (both in the laboratory and in the clinic). Ruxolitinib is approved for second-line therapy of polycythemia vera and is being developed for essential thrombocythemia.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
27
|
[Clinical features and pathogenic gene detection of Diamond-Blackfan anemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28202115 PMCID: PMC7389462 DOI: 10.7499/j.issn.1008-8830.2017.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To investigate the clinical features of Diamond-Blackfan anemia (DBA) and related pathogenic genes. METHODS A retrospective analysis was performed for the clinical data of two children with DBA, and related literature was reviewed. RESULTS The two children with DBA (2-3 months old) manifested with severe normochromic normocytic anemia, decreased reticulocyte count, and increased serum iron and serum ferritin. Normal white blood cell and platelet counts were noted in the two patients. Bone marrow examination showed a decreased percentage of erythrocytes and rare normoblasts in the two patients. Gene screening showed a reported pathogenic heterozygous mutation in RPS19 gene, c.212G>A (p. Gly71Glu), in one patient, and there were no mutations in his parents. In the other patient, gene screening showed a heterozygous mutation in RPL5 gene, c.740T>C (p. I247L), which had not been reported in literature, and there were no mutations in her parents. A bioinformatic analysis showed that this might be a pathogenic mutation. CONCLUSIONS The onset age of DBA is early infancy in most children, with a manifestation of erythroid deficiency. RPS19 and RPL5 gene mutations are common causes of this disease. Molecular detection helps with the early diagnosis of DBA.
Collapse
|
28
|
Kwan W, North TE. Netting Novel Regulators of Hematopoiesis and Hematologic Malignancies in Zebrafish. Curr Top Dev Biol 2017; 124:125-160. [DOI: 10.1016/bs.ctdb.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Arlet JB, Guillem F, Lamarque M, Dussiot M, Maciel T, Moura I, Hermine O, Courtois G. Protein-based therapeutic for anemia caused by dyserythropoiesis. Expert Rev Proteomics 2016; 13:983-992. [PMID: 27661264 DOI: 10.1080/14789450.2016.1240622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Major advances have been recently made in understanding the molecular determinants of dyserythropoiesis, particularly due to recent works in β-thalassemia. The purpose of this review is devoted to underline the role of some proteins recently evidenced in the field, that may be new alternative therapeutic targets in the near future to alleviate different types of anemia. Areas covered: This review covers the contemporary aspects of some proteins involved in various types of dyserythropoiesis, including the transcriptional factor GATA-1 and its protective chaperone HSP70, but also cytokines of the transforming growth factor beta (TFG-β) family, TGF-β1 and GDF-11, and hormones as erythroferrone. It will be not exhaustive, but based on major recent published works from the literature in the past three years. Expert commentary: Sotatercept and lustatercept, two activin receptor II ligand traps that block GDF-11, are candidate drugs providing therapeutic hope in different types of ineffective erythropoiesis, including myelodysplastic syndromes (MDS) and β-thalassemia. Furthermore, a new concept emerges to consider erythroid lineage in the bone marrow as an endocrine gland.
Collapse
Affiliation(s)
- Jean-Benoît Arlet
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,b Service de Médecine Interne, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris , Hôpital européen Georges Pompidou , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Flavia Guillem
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Mathilde Lamarque
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France.,e Service d'Hématologie, Faculté de Médecine Paris Descartes , Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker , Paris , France
| | - Michael Dussiot
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Thiago Maciel
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Ivan Moura
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Olivier Hermine
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France.,e Service d'Hématologie, Faculté de Médecine Paris Descartes , Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker , Paris , France
| | - Geneviève Courtois
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| |
Collapse
|
30
|
Robertson AL, Avagyan S, Gansner JM, Zon LI. Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett 2016; 590:4016-4033. [PMID: 27616157 DOI: 10.1002/1873-3468.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders and discuss their application for investigating stem cell dysfunction in disease and for the development of new therapeutics.
Collapse
Affiliation(s)
- Anne L Robertson
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Serine Avagyan
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, MA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
A Zebrafish Model of 5q-Syndrome Using CRISPR/Cas9 Targeting RPS14 Reveals a p53-Independent and p53-Dependent Mechanism of Erythroid Failure. J Genet Genomics 2016; 43:307-18. [DOI: 10.1016/j.jgg.2016.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/21/2016] [Accepted: 03/06/2016] [Indexed: 11/23/2022]
|