1
|
Aminov S, Giricz O, Melnekoff DT, Sica RA, Polishchuk V, Papazoglu C, Yates B, Wang HW, Sahu S, Wang Y, Gordon-Mitchell S, Leshchenko VV, Schinke C, Pradhan K, Aluri S, Sohn M, Barta SK, Agarwal B, Goldfinger M, Mantzaris I, Shastri A, Matsui W, Steidl U, Brody JD, Shah NN, Parekh S, Verma A. Immunotherapy-resistant acute lymphoblastic leukemia cells exhibit reduced CD19 and CD22 expression and BTK pathway dependency. J Clin Invest 2024; 134:e175199. [PMID: 38376944 PMCID: PMC11014656 DOI: 10.1172/jci175199] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
While therapies targeting CD19 by antibodies, chimeric antigen receptor T cells (CAR-T), and T cell engagers have improved the response rates in B cell malignancies, the emergence of resistant cell populations with low CD19 expression can lead to relapsed disease. We developed an in vitro model of adaptive resistance facilitated by chronic exposure of leukemia cells to a CD19 immunotoxin. Single-cell RNA-Seq (scRNA-Seq) showed an increase in transcriptionally distinct CD19lo populations among resistant cells. Mass cytometry demonstrated that CD22 was also decreased in these CD19lo-resistant cells. An assay for transposase-accessible chromatin with sequencing (ATAC-Seq) showed decreased chromatin accessibility at promoters of both CD19 and CD22 in the resistant cell populations. Combined loss of both CD19 and CD22 antigens was validated in samples from pediatric and young adult patients with B cell acute lymphoblastic leukemia (B-ALL) that relapsed after CD19 CAR-T-targeted therapy. Functionally, resistant cells were characterized by slower growth and lower basal levels of MEK activation. CD19lo resistant cells exhibited preserved B cell receptor signaling and were more sensitive to both Bruton's tyrosine kinase (BTK) and MEK inhibition. These data demonstrate that resistance to CD19 immunotherapies can result in decreased expression of both CD19 and CD22 and can result in dependency on BTK pathways.
Collapse
Affiliation(s)
- Sarah Aminov
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Orsi Giricz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - David T. Melnekoff
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - R. Alejandro Sica
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Veronika Polishchuk
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Cristian Papazoglu
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research and
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Srabani Sahu
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Yanhua Wang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shanisha Gordon-Mitchell
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Violetta V. Leshchenko
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Schinke
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Kith Pradhan
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Srinivas Aluri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Moah Sohn
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefan K. Barta
- Department of Medicine, Division of Hematology/Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mendel Goldfinger
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Ioannis Mantzaris
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - William Matsui
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| | - Joshua D. Brody
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research and
| | - Samir Parekh
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, USA
| |
Collapse
|
2
|
Talleur AC, Myers R, Annesley C, Shalabi H. Chimeric Antigen Receptor T-cell Therapy: Current Status and Clinical Outcomes in Pediatric Hematologic Malignancies. Hematol Oncol Clin North Am 2022; 36:701-727. [PMID: 35780062 DOI: 10.1016/j.hoc.2022.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor T-cell (CART) therapy has transformed the treatment paradigm for pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL), with complete remission rates in key pivotal CD19-CART trials ranging from 65% to 90%. Alongside this new therapy, new toxicity profiles and treatment limitations have emerged, necessitating toxicity consensus grading systems, cooperative group trials, and novel management approaches. This review highlights the results of key clinical trials of CART for pediatric hematologic malignancies, discusses the most common toxicities seen to date, and elucidates challenges, opportunities, and areas of active research to optimize this therapy.
Collapse
Affiliation(s)
- Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS1130, Memphis, TN 38105, USA
| | - Regina Myers
- Division of Oncology, Children's Hospital of Philadelphia, Office 2568A, 3500 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Colleen Annesley
- Seattle Children's Research Institute, 4800 Sand Point Way NE, M/S MB8.501, Seattle, WA 98145-5005, USA
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 1W-5750, 9000 Rockville Pike, Bethesda, MD 20892-1104, USA.
| |
Collapse
|
3
|
CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Adv 2020; 3:3539-3549. [PMID: 31738832 DOI: 10.1182/bloodadvances.2019000692] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Tisagenlecleucel, a chimeric antigen receptor (CAR) T-cell product targeting CD19 is approved for relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, the impact of pretreatment variables, such as CD19 expression level, on leukemic blasts, the presence of CD19- subpopulations, and especially prior CD19-targeted therapy, on the response to CAR T-cell therapy has not been determined. We analyzed 166 patients treated with CAR T-cell therapy at our institution. Eleven patients did not achieve a minimal residual disease (MRD)- deep remission, whereas 67 patients had a recurrence after achieving a MRD- deep remission: 28 patients with CD19+ leukemia and 39 patients with CD19- leukemia. Return of CD19+ leukemia was associated with loss of CAR T-cell function, whereas CD19- leukemia was associated with continued CAR T-cell function. There were no significant differences in efficacy of CAR T cells in CD19-dim B-ALL, compared with CD19-normal or -bright B-ALL. Consistent with this, CAR T cells recognized and lysed cells with very low levels of CD19 expression in vitro. The presence of dim CD19 or rare CD19- events by flow cytometry did not predict nonresponse or recurrence after CAR T-cell therapy. However, prior therapy with the CD19-directed, bispecific T-cell engager blinatumomab was associated with a significantly higher rate of failure to achieve MRD- remission or subsequent loss of remission with antigen escape. Finally, immunophenotypic heterogeneity and lineage plasticity were independent of underlying clonotype and cytogenetic abnormalities.
Collapse
|
4
|
Yadav RK, Ali A, Kumar S, Sharma A, Baghchi B, Singh P, Das S, Singh C, Sharma S. CAR T cell therapy: newer approaches to counter resistance and cost. Heliyon 2020; 6:e03779. [PMID: 32322738 PMCID: PMC7171532 DOI: 10.1016/j.heliyon.2020.e03779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/05/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
The genetically engineered Chimeric Antigen Receptor bearing T-cell (CAR T cell) therapy has been emerged as the new paradigm of cancer immunotherapy. However, recent studies have reported an increase in the number of relapsed haematological malignancies. This review provides newer insights into how the efficacy of CAR T cells might be increased by the application of new genome editing technologies, monitoring the complexity of tumor types and T cells sub-types. Next, tumor mutation burden along with tumormicroenvironment and epigenetic mechanisms of CAR T cell as well as tumor cell may play a vital role to tackle the cancer resistance mechanisms. These studies highlight the need to consider traditional cancer therapy in conjunction with CAR T cell therapy for relapsed or cases unresponsive to treatment. Of note, this therapy is highly expensive and requires multi-skill for successful implementation, which results in reduction of its accessibility/affordability to the patients. Here, we also propose a model for cost minimization of CAR T cell therapy by a collaboration of academia, hospitals and industry.
Collapse
Affiliation(s)
- Rajesh Kumar Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi, India
| | - Basab Baghchi
- Department of Medical Oncology/Haematology, All India Institute of Medical Sciences, Patna, India
| | - Pritanjali Singh
- Department of Radiotherapy, All India Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Chandramani Singh
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Patna, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
5
|
Asnani M, Hayer KE, Naqvi AS, Zheng S, Yang SY, Oldridge D, Ibrahim F, Maragkakis M, Gazzara MR, Black KL, Bagashev A, Taylor D, Mourelatos Z, Grupp SA, Barrett D, Maris JM, Sotillo E, Barash Y, Thomas-Tikhonenko A. Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia 2020; 34:1202-1207. [PMID: 31591467 PMCID: PMC7214268 DOI: 10.1038/s41375-019-0580-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katharina E Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- DBHi Bioinformatics Group, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ammar S Naqvi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- DBHi Bioinformatics Group, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Scarlett Y Yang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Derek Oldridge
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fadia Ibrahim
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manolis Maragkakis
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn L Black
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lonza Biologics, Portsmouth, NH, USA
| | - Asen Bagashev
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Deanne Taylor
- DBHi Bioinformatics Group, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zissimos Mourelatos
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephan A Grupp
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Barrett
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elena Sotillo
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Abstract
The successes with chimeric antigen receptor (CAR) T cell therapy in early clinical trials involving patients with pre-B cell acute lymphoblastic leukaemia (ALL) or B cell lymphomas have revolutionized anticancer therapy, providing a potentially curative option for patients who are refractory to standard treatments. These trials resulted in rapid FDA approvals of anti-CD19 CAR T cell products for both ALL and certain types of B cell lymphoma - the first approved gene therapies in the USA. However, growing experience with these agents has revealed that remissions will be brief in a substantial number of patients owing to poor CAR T cell persistence and/or cancer cell resistance resulting from antigen loss or modulation. Furthermore, the initial experience with CAR T cells has highlighted challenges associated with manufacturing a patient-specific therapy. Understanding the limitations of CAR T cell therapy will be critical to realizing the full potential of this novel treatment approach. Herein, we discuss the factors that can preclude durable remissions following CAR T cell therapy, with a primary focus on the resistance mechanisms that underlie disease relapse. We also provide an overview of potential strategies to overcome these obstacles in an effort to more effectively incorporate this unique therapeutic strategy into standard treatment paradigms.
Collapse
Affiliation(s)
- Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Terry J Fry
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|