1
|
Relevance of NLRP3 Inflammasome-Related Pathways in the Pathology of Diabetic Wound Healing and Possible Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9687925. [PMID: 35814271 PMCID: PMC9262551 DOI: 10.1155/2022/9687925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Wound healing is a major secondary complication in type 2 diabetes, which results in significant disability and mortality, imposing a significant clinical and social burden. Sustained activation of the Nod-like receptor protein (NLRP) inflammasome in wounds is responsible for excessive inflammatory responses and aggravates wound damage. The activation of the NLRP3 inflammasome is regulated by a two-step process: the priming/licensing (signal 1) step involved in transcription and posttranslation and the protein complex assembly (signal 2) step triggered by danger molecules. This review focuses on the advances made in understanding the pathophysiological mechanisms underlying wound healing in the diabetic microenvironment. Simultaneously, this review summarizes the molecular mechanisms of the main regulatory pathways associated with signal 1 and signal 2, which trigger the NLRP3 inflammasome complex assembly in the development of diabetic wounds (DW). Activation of the NLRP3 inflammasome-related pathway, involving the disturbance in Nrf2 and the NF-κB/NLRP3 inflammasome, TLR receptor-mediated activation of the NF-κB/NLRP3 inflammasome, and various stimuli inducing NLRP3 inflammasome assembly play a pivotal role in DW healing. Furthermore, therapeutics targeting the NLRP3 inflammasome-related pathways may promote angiogenesis, reprogram immune cells, and improve DW healing.
Collapse
|
2
|
Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ 2021; 28:3125-3139. [PMID: 34031543 PMCID: PMC8142290 DOI: 10.1038/s41418-021-00805-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.
Collapse
|
3
|
Huang W, Jiao J, Liu J, Huang M, Hu Y, Ran W, Yan L, Xiong Y, Li M, Quan Z, Rao Y, Chen J, Huang Y, Zhang D. MFG-E8 accelerates wound healing in diabetes by regulating "NLRP3 inflammasome-neutrophil extracellular traps" axis. Cell Death Discov 2020; 6:84. [PMID: 32963812 PMCID: PMC7484765 DOI: 10.1038/s41420-020-00318-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Sustained activation of NLRP3 inflammasome and release of neutrophil extracellular traps (NETs) impair wound healing of diabetic foot ulcers (DFUs). Our previous study reported that milk fat globule epidermal growth factor VIII (MFG-E8) attenuates tissue damage in systemic lupus erythematosus. However, the functional effect of MFG-E8 on "NLRP3 inflammasome-NETs" inflammatory loop in wound healing of diabetes is not completely elucidated. In this study, neutrophils from DFU patients are susceptible to undergo NETosis, releasing more NETs. The circulating levels of NET components neutrophil elastase and proteinase 3 and inflammatory cytokines IL-1β and IL-18 were significantly elevated in DFU patients compared with healthy controls or diabetic patients, in spite of higher levels of MFG-E8 in DFU patients. In Mfge8-/- diabetic mice, skin wound displayed exaggerated inflammatory response, including leukocyte infiltration, excessive activation of NLRP3 inflammasome (release of higher IL-1β, IL-18, and TNF-α), largely lodged NETs, resulting in poor angiogenesis and wound closure. When stimulated with high-dose glucose or IL-18, MFG-E8-deficient neutrophils release more NETs than WT neutrophils. After administration of recombinant MFG-E8, IL-18-primed NETosis of WT or Mfge8-/- neutrophils was significantly inhibited. Furthermore, NET and mCRAMP (component of NETs, the murine equivalent of cathelicidin LL-37 in human)-mediated activation of NLRP3 inflammasome and production of IL-1β/IL-18 were significantly elevated in Mfge8-/- macrophages compared with WT macrophages, which were also significantly dampened by the administration of rmMFG-E8. Therefore, our study demonstrated that as inhibitor of the "NLRP3 inflammasome-NETs" inflammatory loop, exogenous rMFG-E8 improves angiogenesis and accelerates wound healing, highlighting possible therapeutic potential for DFUs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jinyu Jiao
- Department of Cardiac Function, Wuhan Asian Heart Hospital, Wuhan University of Science and Technology, Wuhan, Hubei China
| | - Ju Liu
- Department of Geriatrics, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Meng Huang
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yanyan Hu
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenzhuo Ran
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Li Yan
- Clinical Laboratory of Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yin Xiong
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Mei Li
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Ziyao Quan
- Clinical Laboratory of Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yahua Rao
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jiayi Chen
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yan Huang
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Dongxin Zhang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|