1
|
Boiko JR, Hill GR. Chronic Graft-versus-host Disease: Immune Insights, Therapeutic Advances, and Parallels for Solid Organ Transplantation. Transplantation 2025; 109:955-966. [PMID: 39682018 PMCID: PMC12097962 DOI: 10.1097/tp.0000000000005298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Chronic graft-versus-host disease (cGVHD) remains a frequent and morbid outcome of allogeneic hematopoietic cell transplantation (HCT), in which the donor-derived immune system attacks healthy recipient tissue. Preceding tissue damage mediated by chemoradiotherapy and alloreactive T cells compromise central and peripheral tolerance mechanisms, leading to aberrant donor T cell and germinal center B cell differentiation, culminating in pathogenic macrophage infiltration and differentiation in target tissue, with ensuant fibrosis. This process results in a heterogeneous clinical syndrome with significant morbidity and mortality, frequently requiring prolonged therapy. In this review, we discuss the processes that interrupt immune tolerance, the subsequent clinical manifestations, and new FDA-approved therapeutic approaches that have been born from a greater understanding of disease pathogenesis in preclinical systems, linking to parallel processes following solid organ transplantation.
Collapse
Affiliation(s)
- Julie R. Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Lee SJ, Williams KM, Sarantopoulos S, Kitko CL, Cutler C, Pidala J, Hill GR, DeFilipp Z, Greinix HT, Wolff D, Paczesny S, Cuvelier GDE, Schultz KR, Pavletic SZ. NIH Chronic Graft-Versus-Host Disease Consensus Conference 2025 Update. Transplant Cell Ther 2025:S2666-6367(25)01202-3. [PMID: 40409691 DOI: 10.1016/j.jtct.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
In 2020, the third NIH Consensus Development Project on Criteria for Chronic Graft-versus-Host Disease (GVHD) Clinical Trials was held with the goals of identifying gaps in understanding, prevention and treatment of chronic graft-versus-host disease (GVHD) and making actionable recommendations that would advance the field. An interim meeting was held in October 2024 to review progress on the 2020 recommendations. Each group was charged with reviewing their previous recommendations, assessing whether the field is on track to eventually achieve the goals, and considering whether recommendations should be modified in light of new data or insufficient progress. This manuscript summarizes the Working Groups' reports and helps define the research agenda for future studies in chronic GVHD. Overall, modest progress has been made on most initiatives. Some studies in progress will address key recommendations and results are eagerly anticipated.
Collapse
Affiliation(s)
- Stephanie J Lee
- Clinical Research Division and Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Kirsten M Williams
- Aflac Blood and Cancer Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta Georgia
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carrie L Kitko
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Corey Cutler
- Division of Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Geoffrey R Hill
- Clinical Research Division and Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Sophie Paczesny
- Hollings Cancer Center, Department of Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Geoffrey D E Cuvelier
- Pediatric Oncology and Transplantation, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Kirk R Schultz
- BC Children's Hospital Research Institute and University of BC, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- National Cancer Institute, Center for Cancer Research, Immune Deficiency Cellular Therapy Program, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Emborg ME, Metzger JM, D'Amour K, Colwell JC, Neumann LC, Zhang A, Federoff HJ. Advantages and challenges of using allogeneic vs. autologous sources for neuronal cell replacement in Parkinson's disease: Insights from non-human primate studies. Brain Res Bull 2025; 224:111297. [PMID: 40086764 PMCID: PMC12036832 DOI: 10.1016/j.brainresbull.2025.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Intracerebral grafting of dopamine-producing cells is proposed as a strategy to replace the typical neurons lost to Parkinson's disease (PD) and improve PD motor symptoms. Non-human primate studies have provided clues on the relationship between the host's immune response and grafting success. Herein, we discuss how the host's immune system differentially affects the graft depending on the origin of the cells and reflect on the advantages and limitations of the immune paradigms utilized to assess graft-related outcomes. We also consider new strategies to minimize or circumvent the host's immunological response and related preclinical research needed to identify the most promising new approaches to be translated into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Medical Physics, University of Wisconsin-Madison, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, USA.
| | - Jeanette M Metzger
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | | | - Julia C Colwell
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, USA
| | - Lindsey C Neumann
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | - Ai Zhang
- Genentech, South San Francisco, CA, USA
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, USA; Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
4
|
Jeong MR, Hwang JW, Choi M, Seok SH. MHC class II + macrophage differentiation is impaired in metastasized lungs via PGE 2 receptor EP2. Cell Rep 2025; 44:115574. [PMID: 40232933 DOI: 10.1016/j.celrep.2025.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Monocytes differentiate into macrophages (Mφs) to facilitate lung metastasis, but the monocyte-to-Mφ transition during this process is not well understood. To investigate, we performed bulk RNA sequencing on Mφs isolated from the lungs of mice bearing Lewis lung carcinoma tumors and from naive lungs. Our results showed impaired differentiation of monocytes into major histocompatibility complex (MHC) class II+ Mφs, with an upregulation of PGE2-inducible genes, including Arg1, in tumor-associated Mφs (TAMs). In vitro experiments confirmed that prostaglandin E2 (PGE2) inhibits the differentiation of MHC class II+ Mφs while promoting Arg1+ Mφs via the E prostanoid 2 (EP2) receptor, accompanied by DNA methylation. Whole-genome bisulfite sequencing revealed that PGE2-EP2 signaling drives the hypermethylation and downregulation of gene sets related to myeloid cells in non-neoplastic tissues. Our study highlights PGE2-EP2-driven DNA methylation in the monocyte-to-TAM transition, suggesting potential therapeutic avenues for lung metastasis.
Collapse
Affiliation(s)
- Mi Reu Jeong
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Woo Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
5
|
Dexter T, Anthias C, Nicholson E. Evaluating Axatilimab as a treatment option for chronic graft-versus-host disease. Immunotherapy 2025; 17:409-418. [PMID: 40338737 DOI: 10.1080/1750743x.2025.2501928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025] Open
Abstract
Allogeneic stem cell transplantation represents the only curative option for many patients with high risk hematological malignancies but is associated with a number of severe complications. Of these, chronic graft versus host disease (cGVHD) is the leading cause of late non-relapse mortality and of much morbidity. For over 30 years, glucocorticoids have been the mainstay of first line therapy, yet approximately 50% patients are refractory or dependent and traditionally there have been few options for these patients. In recent years, newer treatments including ruxolitinib and belumosudil have shown success in the second and third line settings. However, further effective nontoxic treatments are a necessary to address this complex debilitating disease. Axatilimab is an antibody to colony stimulating factor 1 (CSF-1), a tyrosine kinase receptor. CSF1R signaling dependent macrophages and monocytes are key mediators of inflammation and fibrosis in chronic GVHD, and thus, this therapy offers a targeted approach. Here we summarize the key clinical studies that have been performed to date of this novel therapy.
Collapse
Affiliation(s)
- Tania Dexter
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
- Anthony Nolan, London, UK
- Institute of Cancer Research, London, UK
| | - Chloe Anthias
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
- Anthony Nolan, London, UK
- Institute of Cancer Research, London, UK
| | - Emma Nicholson
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
- Institute of Cancer Research, London, UK
| |
Collapse
|
6
|
Desai N, Khaire N, Cyriac S, Alrumeh AS, Diamandis P, Mandell DM, Moya TA, Al-Shaibani E, Novitzky-Basso I, Pasic I, Law AD, Michelis FV, Kumar R, Kim DDH, Mattsson J, Viswabandya A. Central Nervous System Manifestations of Graft-Versus-Host Disease. Eur J Haematol 2025. [PMID: 40098446 DOI: 10.1111/ejh.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Nihar Desai
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Niranjan Khaire
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Sunu Cyriac
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Amala Institute of Medical Sciences, Thrissur, Kerala, India
| | - Aseem Saleh Alrumeh
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Phedias Diamandis
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Daniel M Mandell
- Department of Medical Imaging, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Tommy Alfaro Moya
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Eshrak Al-Shaibani
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Igor Novitzky-Basso
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ivan Pasic
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Arjun Datt Law
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Fotios V Michelis
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rajat Kumar
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dennis Dong Hwan Kim
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jonas Mattsson
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Auro Viswabandya
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Adams RC, MacDonald KPA, Hill GR. The contribution of the monocyte-macrophage lineage to immunotherapy outcomes. Blood 2025; 145:1010-1021. [PMID: 39576958 DOI: 10.1182/blood.2024025680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
ABSTRACT Macrophages execute core functions in maintaining tissue homeostasis, in which their extensive plasticity permits a spectrum of functions from tissue remodeling to immune defense. However, perturbations to tissue-resident macrophages during disease, and the subsequent emergence of monocyte-derived macrophages, can hinder tissue recovery and promote further damage through inflammatory and fibrotic programs. Gaining a fundamental understanding of the critical pathways defining pathogenic macrophage populations enables the development of targeted therapeutic approaches to improve disease outcomes. In the setting of chronic graft-versus-host disease (cGVHD), which remains the major complication of allogeneic hematopoietic stem cell transplantation, colony-stimulating factor 1 (CSF1)-dependent donor-derived macrophages have been identified as key pathogenic mediators of fibrotic skin and lung disease. Antibody blockade of the CSF1 receptor (CSF1R) to induce macrophage depletion showed remarkable capacity to prevent fibrosis in preclinical models and has subsequently demonstrated impressive efficacy for improving cGVHD in ongoing clinical trials. Similarly, macrophage depletion approaches are currently under investigation for their potential to augment responses to immune checkpoint inhibition. Moreover, both monocyte and tissue-resident macrophage populations have recently been implicated as mediators of the numerous toxicities associated with chimeric antigen receptor T-cell therapy, further highlighting potential avenues of macrophage-based interventions to improve clinical outcomes. Herein, we examine the current literature on basic macrophage biology and contextualize this in the setting of cellular and immunotherapy. Additionally, we highlight mechanisms by which macrophages can be targeted, largely by interfering with the CSF1/CSF1R signaling axis, for therapeutic benefit in the context of both cellular and immunotherapy.
Collapse
Affiliation(s)
- Rachael C Adams
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kelli P A MacDonald
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
8
|
Hudda Z, Flannery A, Dillhoff P, Webster K, Jacobs J, Strong S, Detzel J, Davies SM, Khandelwal P. Chronic Graft-Versus-Host Disease Adversely Impacts School Performance in Children and Young Adults. Transplant Cell Ther 2025; 31:99.e1-99.e11. [PMID: 39675631 DOI: 10.1016/j.jtct.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) adversely impacts return to work for adult allogeneic hematopoietic stem cell transplant (HSCT) survivors, but no data exist on children with cGVHD transitioning back to school. We hypothesized that cGVHD adversely impacts broad aspects of school experience of children compared to their allogeneic-HSCT peers without cGVHD. METHODS We conducted a single center cross-sectional pilot study using a 42-item questionnaire, investigating academic performance and social-emotional aspects of schooling pre- and post-HSCT. Forty allogeneic-HSCT patients of school-age completed the questionnaire, and responses were compared between patients with and without cGVHD. RESULTS Twenty patients had cGVHD while 20 age or gender matched allogeneic-HSCT patients without cGVHD were controls. Ten of the 20 cGVHD patients experienced academic delays, of whom 2 were unable to resume or commence school due to cGVHD. All controls resumed/commenced school post-HSCT. Patients with cGVHD were chronically absent, as 8 of the 18 cGVHD patients missed ≥4 days of school per month post-HSCT compared to 0/20 controls (P ≤ .001). Profound barriers to school participation specific to cGVHD were appreciated with an average of 3 concurrent barriers (range 1-7) ranging from physical appearance to clothing discomfort. Significant gaps in school services were identified as only 6 (33%) cGVHD had school accommodations post-HSCT. CONCLUSIONS Academic challenges and emotional and psychosocial impacts are profound. Future studies evaluating the feasibility of standardizing early school-based interventions are required.
Collapse
Affiliation(s)
- Zahra Hudda
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Amanda Flannery
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patricia Dillhoff
- Center for School Services and Educational Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kristen Webster
- Anderson Center- Patient Safety, Accreditation, and Regulatory Affairs, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jodi Jacobs
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sarah Strong
- Center for School Services and Educational Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jennifer Detzel
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Pooja Khandelwal
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
9
|
Elliott J, Koldej R, Khot A, Ritchie D. Graft-Versus-Host Disease Mouse Models: A Clinical-Translational Perspective. Methods Mol Biol 2025; 2907:1-56. [PMID: 40100591 DOI: 10.1007/978-1-0716-4430-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A variety of graft-versus-host disease (GVHD) models have been developed in mice for the purpose of allowing laboratory investigation of the pathobiology, prevention, and treatment of GVHD in humans. While such models are crucial in advancing our knowledge in this field, there are some key limitations that need to be considered when translating laboratory discoveries into the clinical context. This chapter will discuss current clinical practices in transplantation and GVHD and the relative strengths and weaknesses of mouse models that attempt to replicate these states.
Collapse
Affiliation(s)
- Jessica Elliott
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Amit Khot
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Ritchie DS. The brain may devise laws for the blood. Blood 2024; 143:841-842. [PMID: 38451516 DOI: 10.1182/blood.2023023291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
|
11
|
Adams RC, Carter-Cusack D, Llanes GT, Hunter CR, Vinnakota JM, Ruitenberg MJ, Vukovic J, Bertolino P, Chand KK, Wixey JA, Nayler SP, Hill GR, Furlan SN, Zeiser R, MacDonald KPA. CSF1R inhibition promotes neuroinflammation and behavioral deficits during graft-versus-host disease in mice. Blood 2024; 143:912-929. [PMID: 38048572 DOI: 10.1182/blood.2023022040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) remains a significant complication of allogeneic hematopoietic stem cell transplantation. Central nervous system (CNS) involvement is becoming increasingly recognized, in which brain-infiltrating donor major histocompatibility complex (MHC) class II+ bone marrow-derived macrophages (BMDM) drive pathology. BMDM are also mediators of cutaneous and pulmonary cGVHD, and clinical trials assessing the efficacy of antibody blockade of colony-stimulating factor 1 receptor (CSF1R) to deplete macrophages are promising. We hypothesized that CSF1R antibody blockade may also be a useful strategy to prevent/treat CNS cGVHD. Increased blood-brain barrier permeability during acute GVHD (aGVHD) facilitated CNS antibody access and microglia depletion by anti-CSF1R treatment. However, CSF1R blockade early after transplant unexpectedly exacerbated aGVHD neuroinflammation. In established cGVHD, vascular changes and anti-CSF1R efficacy were more limited. Anti-CSF1R-treated mice retained donor BMDM, activated microglia, CD8+ and CD4+ T cells, and local cytokine expression in the brain. These findings were recapitulated in GVHD recipients, in which CSF1R was conditionally depleted in donor CX3CR1+ BMDM. Notably, inhibition of CSF1R signaling after transplant failed to reverse GVHD-induced behavioral changes. Moreover, we observed aberrant behavior in non-GVHD control recipients administered anti-CSF1R blocking antibody and naïve mice lacking CSF1R in CX3CR1+ cells, revealing a novel role for homeostatic microglia and indicating that ongoing clinical trials of CSF1R inhibition should assess neurological adverse events in patients. In contrast, transfer of Ifngr-/- grafts could reduce MHC class II+ BMDM infiltration, resulting in improved neurocognitive function. Our findings highlight unexpected neurological immune toxicity during CSF1R blockade and provide alternative targets for the treatment of cGVHD within the CNS.
Collapse
Affiliation(s)
- Rachael C Adams
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dylan Carter-Cusack
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis T Llanes
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R Hunter
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University, Freiburg, Germany
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD, Australia
| | - Samuel P Nayler
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Scott N Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robert Zeiser
- Department of Medicine I, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- German Cancer Consortium, Partner Site Freiburg, Freiburg, Germany, and German Cancer Research Centre, Heidelberg, Germany
| | - Kelli P A MacDonald
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Emborg ME, Gambardella JC, Zhang A, Federoff HJ. Autologous vs heterologous cell replacement strategies for Parkinson disease and other neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:41-56. [PMID: 39341662 DOI: 10.1016/b978-0-323-90120-8.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States.
| | - Julia C Gambardella
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Ai Zhang
- Aspen Neuroscience, San Diego, CA, United States
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, United States; Georgetown University Medical Center, Georgetown, Washington, DC, United States
| |
Collapse
|
13
|
Shaikh SN, Willis EF, Dierich M, Xu Y, Stuart SJS, Gobe GC, Bashaw AA, Rawashdeh O, Kim SJ, Vukovic J. CSF-1R inhibitor PLX3397 attenuates peripheral and brain chronic GVHD and improves functional outcomes in mice. J Neuroinflammation 2023; 20:300. [PMID: 38102698 PMCID: PMC10725001 DOI: 10.1186/s12974-023-02984-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a serious complication of otherwise curative allogeneic haematopoietic stem cell transplants. Chronic GVHD induces pathological changes in peripheral organs as well as the brain and is a frequent cause of late morbidity and death after bone-marrow transplantation. In the periphery, bone-marrow-derived macrophages are key drivers of pathology, but recent evidence suggests that these cells also infiltrate into cGVHD-affected brains. Microglia are also persistently activated in the cGVHD-affected brain. To understand the involvement of these myeloid cell populations in the development and/or progression of cGVHD pathology, we here utilized the blood-brain-barrier permeable colony stimulating factor-1 receptor (CSF-1R) inhibitor PLX3397 (pexidartinib) at varying doses to pharmacologically deplete both cell types. We demonstrate that PLX3397 treatment during the development of cGVHD (i.e., 30 days post-transplant) improves disease symptoms, reducing both the clinical scores and histopathology of multiple cGVHD target organs, including the sequestration of T cells in cGVHD-affected skin tissue. Cognitive impairments associated with cGVHD and neuroinflammation were also attenuated by PLX3397 treatment. PLX3397 treatment prior to the onset of cGVHD (i.e., immediately post-transplant) did not change in clinical scores or histopathology. Overall, our data demonstrate significant benefits of using PLX3397 for the treatment of cGVHD and associated organ pathologies in both the periphery and brain, highlighting the therapeutic potential of pexidartinib for this condition.
Collapse
Affiliation(s)
- Samreen N Shaikh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Emily F Willis
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Max Dierich
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yi Xu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Samuel J S Stuart
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Glenda C Gobe
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Abate A Bashaw
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Nolan EE, Durose W, Taghizadeh LA, King CJ, Gupta AO, Orchard PJ, Lorentson M, Braaten K, Furcich JW, Lund TC. Loss of early myeloid donor cell engraftment into the central nervous system with nonmyeloablative conditioning. Blood Adv 2023; 7:7290-7294. [PMID: 37871310 PMCID: PMC10711164 DOI: 10.1182/bloodadvances.2023010923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Affiliation(s)
- Erin E. Nolan
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Willa Durose
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Leyla A. Taghizadeh
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Carina J. King
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Ashish O. Gupta
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Maggie Lorentson
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Kai Braaten
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Justin W. Furcich
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Troy C. Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| |
Collapse
|
15
|
Wang Z, Hu D, Pei G, Zeng R, Yao Y. Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning. Front Immunol 2023; 14:1288699. [PMID: 38130724 PMCID: PMC10733527 DOI: 10.3389/fimmu.2023.1288699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background Lupus nephritis (LN) is a common and severe glomerulonephritis that often occurs as an organ manifestation of systemic lupus erythematosus (SLE). However, the complex pathological mechanisms associated with LN have hindered the progress of targeted therapies. Methods We analyzed glomerular tissues from 133 patients with LN and 51 normal controls using data obtained from the GEO database. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was utilized to identify key gene modules. The least absolute shrinkage and selection operator (LASSO) and random forest were used to identify hub genes. We also analyzed immune cell infiltration using CIBERSORT. Additionally, we investigated the relationships between hub genes and clinicopathological features, as well as examined the distribution and expression of hub genes in the kidney. Results A total of 270 DEGs were identified in LN. Using weighted gene co-expression network analysis (WGCNA), we clustered these DEGs into 14 modules. Among them, the turquoise module displayed a significant correlation with LN (cor=0.88, p<0.0001). Machine learning techniques identified four hub genes, namely CD53 (AUC=0.995), TGFBI (AUC=0.997), MS4A6A (AUC=0.994), and HERC6 (AUC=0.999), which are involved in inflammation response and immune activation. CIBERSORT analysis suggested that these hub genes may contribute to immune cell infiltration. Furthermore, these hub genes exhibited strong correlations with the classification, renal function, and proteinuria of LN. Interestingly, the highest hub gene expression score was observed in macrophages. Conclusion CD53, TGFBI, MS4A6A, and HERC6 have emerged as promising candidate driver genes for LN. These hub genes hold the potential to offer valuable insights into the molecular diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Zheng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Doering J, Perl M, Weber D, Banas B, Schulz C, Hamer OW, Angstwurm K, Holler E, Herr W, Edinger M, Wolff D, Fante MA. Incidence and Outcome of Atypical Manifestations of Chronic Graft-versus-Host Disease: Results From a Retrospective Single-Center Analysis. Transplant Cell Ther 2023; 29:772.e1-772.e10. [PMID: 37777112 DOI: 10.1016/j.jtct.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) is the leading cause of late nonrelapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (alloHSCT) and defined by 8 diagnostic target organs. Recently, provisional criteria for atypical manifestations of cGVHD that include manifestations in nonclassic organs as well as atypical manifestations in National Institutes of Health (NIH)-defined organs, were proposed by a NIH task force. Little is known about the incidence, risk factors, and impact on survival of atypical cGVHD, however. The aim of the present study was to analyze these parameters in a sequential patient population. We retrospectively screened 623 patients who underwent alloHSCT at the University Medical Center Regensburg between January 2008 and December 2020 for atypical cGVHD manifestations, applying the provisional NIH taskforce criteria. A total of 102 patients (16.4%) met the criteria, representing 25% of all cGVHD cases, and 14 patients (2.2%) had only atypical cGVHD. The most frequent manifestations were immune-mediated cytopenias (24.5%), renal cGVHD (13.7%) and (poly)serositis (13.7%). Multivariate analysis identified prior acute GVHD (odds ratio [OR], 2.28 and 2.93) and infusion of donor lymphocytes (OR, 1.77 for both) as risk factors for classic cGVHD and atypical cGVHD, whereas total body irradiation was an independent risk factor for atypical cGVHD manifestations only (OR, 1.76). Compared to patients without cGVHD, those with atypical and NIH-defined cGVHD showed similarly better overall survival (P = .034 and < .001) and low relapse-related mortality (P < .001 for both). NRM was significantly increased by atypical GVHD, but not by NIH-defined cGVHD (P = .019 and .10), which was driven only by a few atypical organ manifestations (eg, renal, restrictive lung disease, peripheral neuropathy), whereas others did not contribute to NRM (eg, thyroid gland, musculoskeletal, pancreas). In summary, atypical cGVHD is more common than previously estimated and has both similarities with and differences from NIH-defined cGVHD. In particular, the increased NRM and a subset of patients with only atypical cGVHD point to the urgent need to capture these manifestations in cGVHD cohorts, including analysis of treatment outcomes.
Collapse
Affiliation(s)
- Jana Doering
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany
| | - Markus Perl
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany
| | - Bernhard Banas
- Department of Nephrology, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Okka W Hamer
- Department of Diagnostic Radiology, University Medical Center Regensburg, Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University Medical Center Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany
| | - Matthias A Fante
- Department of Internal Medicine III, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
17
|
Boga C, Eliacik E, Yalcin C, Kocer NE, Durdag E, Gereklioglu C. Diagnostic clues in a stem cell transplant patient manifested with chronic central nervous system GVHD and IRIS. Transpl Immunol 2023; 81:101916. [PMID: 37567484 DOI: 10.1016/j.trim.2023.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Transplant physicians should be aware of the immune deviation-related clinical conditions as allogeneic hematopoietic stem cell transplantation is widely used for the treatment of patients with malignant and non-malignant disorders. Neurological manifestations and graft-versus-host disease (GVHD) may commonly develop in transplant recipients. However, overlapping clinical immunological conditions may lead to diagnostic challenges. Herein, we discussed the differential diagnosis of a patient with immune reconstitution inflammatory syndrome (IRIS) developing on the basis of chronic GVHD.
Collapse
Affiliation(s)
- Can Boga
- Adana Adult Bone Marrow Transplantation Center, Department of Hematology, Başkent University Faculty of Medicine, Ankara, Turkiye.
| | - Eylem Eliacik
- Adana Adult Bone Marrow Transplantation Center, Department of Hematology, Başkent University Faculty of Medicine, Ankara, Turkiye
| | - Cigdem Yalcin
- Department of Radiology, Başkent University Faculty of Medicine, Ankara, Turkiye
| | - Nazım Emrah Kocer
- Department of Pathology, Başkent University Faculty of Medicine, Ankara, Turkiye
| | - Emre Durdag
- Department of Neurosurgery, Baskent University Faculty of Medicine, Ankara, Turkiye
| | - Cigdem Gereklioglu
- Department of Family Medicine, Başkent University Faculty of Medicine, Ankara, Turkiye
| |
Collapse
|
18
|
Butera S, Tavarozzi R, Brunello L, Rivela P, Sofia A, Viero L, Salvio M, Ladetto M, Zallio F. The black swan: a case of central nervous system graft-versus-host disease. J Basic Clin Physiol Pharmacol 2023; 34:805-809. [PMID: 37843253 DOI: 10.1515/jbcpp-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES Graft-versus-host disease (GVHD) of central nervous system is an atypical and rare manifestation of chronic GVHD, presenting with a heterogeneous spectrum of signs and symptoms. Diagnosis of neurological manifestations of GVHD can be highly challenging and remain associated with dismal prognosis, significant morbidity, and reduced quality of life. CASE PRESENTATION In this report, we describe a 39-year-old woman developing neurological signs and symptoms 8 months after allogeneic HSCT magnetic resonance imaging showed multifocal hyperintense lesions involving the periventricular region and frontal subcortical white matter. There was no laboratory evidence of infective or malignant etiology, and the case was diagnosed as CNS-GVHD. The patient was treated with intravenous methylprednisolone pulse therapy and the clinical conditions gradually improved. After few months, patient symptoms progressed despite the addition of high-dose intravenous immunoglobulin, tacrolimus, and a new course of high dose steroids. To engage targeted therapy, the patient underwent brain biopsy that revealed a loss of myelin fibers, perivascular and diffuse infiltration of T cells, and macrophages associated with reactive gliosis, representing a demyelinating disease. We intensified treatment with cyclophosphamide and subsequently introduced ibrutinib as salvage strategy. Despite a magnetic resonance imaging showing great regression of the demyelinating lesions, patient's conditions deteriorated and she died 16 months after HSCT. CONCLUSIONS CNS-GVHD is a rare complication of HSCT that is difficult to diagnose. Based on our experience, brain biopsy may represent a useful diagnostic tool when the clinical features of neurological symptoms are ambiguous or in patients without evidence of preceding chronic GVHD.
Collapse
Affiliation(s)
- Sara Butera
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Rita Tavarozzi
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Lucia Brunello
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Rivela
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Antonella Sofia
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Lorenzo Viero
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Michela Salvio
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Marco Ladetto
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Francesco Zallio
- Struttura Complessa di Ematologia a Direzione Universitaria, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
19
|
Kundalia R, Hanini A, Kareem SS, Gonzalez R, Gatewood T, Mishra A, Pina Y, Mokhtari S. Successful management of central nervous system manifestations of chronic graft-vs-host disease: a case report. Leuk Lymphoma 2023; 64:1485-1489. [PMID: 37322898 DOI: 10.1080/10428194.2023.2214828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Ronak Kundalia
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anas Hanini
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Syeda Saba Kareem
- Department of Bone Marrow & Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rebecca Gonzalez
- Department of Bone Marrow & Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tyra Gatewood
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Asmita Mishra
- Department of Bone Marrow & Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yolanda Pina
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sepideh Mokhtari
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
20
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
21
|
Wang Y, Huang R, Wang Z, Xiong J, Wang X, Zhang X. Facing challenges with hope: universal immune cells for hematologic malignancies. Cancer Biol Med 2023; 20:229-247. [PMID: 37144558 PMCID: PMC10157807 DOI: 10.20892/j.issn.2095-3941.2022.0759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
Many patients have achieved a favorable overall survival rate since allogenic hematopoietic stem cell transplantation (allo-HSCT) has been widely implemented to treat hematologic malignancies. However, graft-versus-host disease (GVHD) and complications of immunosuppressive drugs after allo-HSCT are the main causes of non-relapse mortality and a poor quality of life. In addition, GVHD and infusion-induced toxicity still occur with donor lymphocyte infusions (DLIs) and chimeric antigen receptor (CAR) T-cell therapy. Because of the special immune tolerance characteristics and anti-tumor ability of universal immune cells, universal immune cell therapy may strongly reduce GVHD, while simultaneously reducing tumor burden. Nevertheless, widespread application of universal immune cell therapy is mainly restricted by poor expansion and persistence efficacy. Many strategies have been applied to improve universal immune cell proliferation and persistence efficacy, including the use of universal cell lines, signaling regulation and CAR technology. In this review we have summarized current advances in universal immune cell therapy for hematologic malignancies with a discussion of future perspectives.
Collapse
Affiliation(s)
- Yuqing Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Zheng Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 400037, China
| |
Collapse
|
22
|
Cognitive impairments correlate with increased central nervous system immune activation after allogeneic haematopoietic stem cell transplantation. Leukemia 2023; 37:888-900. [PMID: 36792657 PMCID: PMC10079537 DOI: 10.1038/s41375-023-01840-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Murine studies indicate that, after allogeneic haematopoietic stem cell transplantation (aHSCT), donor-derived macrophages replace damaged microglia and alloreactive T-cells invade the central nervous system (CNS). The clinical relevance of this is unknown. We assessed CNS immune surveillance and metabolic activity involved in neuronal survival, in relation to fatigue and cognitive dysfunction in 25 long-term survivors after aHSCT. Patients with cognitive dysfunction exhibited increased proportions of activated T-cells and CD16 + NK-cells in the cerebrospinal fluid (CSF). Immune cell activation was paralleled with reduced levels of anti-inflammatory factors involved in T-cell suppression (transforming growth factor-β, programmed death ligand-1), NK-cell regulation (poliovirus receptor, nectin-2), and macrophage and microglia activation (CD200, chemokine [C-X3-C motif] ligand-1). Additionally, the CSF mRNA expression pattern was associated with neuroinflammation and oxidative stress. Furthermore, proteomic, and transcriptomic studies demonstrated decreased levels of neuroprotective factors, and an upregulation of apoptosis pathway genes. The kynurenine pathway of tryptophan metabolism was activated in the CNS of all aHSCT patients, resulting in accumulation of neurotoxic and pro-inflammatory metabolites. Cognitive decline and fatigue are overlooked but frequent complications of aHSCT. This study links post-transplant CNS inflammation and neurotoxicity to our previously reported hypoactivation in the prefrontal cortex during cognitive testing, suggesting novel treatment targets.
Collapse
|
23
|
Chronic GVHD of the CNS. Blood 2022; 139:1271-1272. [PMID: 35238888 DOI: 10.1182/blood.2021014079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
|