1
|
Bouchla A, Papageorgiou SG, Kotsianidis I, Diamantopoulos P, Gavriilaki E, Bouronikou E, Symeonidis A, Zikos P, Cetiner M, Vlachaki E, Kostourou A, Galanopoulos A, Hatzimichael E, Vervesou EC, Bozdağ SC, Viniou NA, Christoulas D, Dellatola M, Papaioannou M, Papoutselis M, Vlachopoulou D, Syrigou A, Mainou M, Chatzileontiadou S, Pappa V. Real-life experience of luspatercept in transfusion-dependent lower risk myelodysplastic syndrome patients. Br J Haematol 2025. [PMID: 40325906 DOI: 10.1111/bjh.20102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Luspatercept has been approved for the treatment of anaemia in transfusion-dependent (TD) patients with lower risk (LR) myelodysplastic syndromes (MDS) after erythroid-stimulated agent (ESA) failure, according to the results of the MEDALIST trial. In this multicentre retrospective study, we report efficacy and safety data of luspatercept administered in 98 TD LR-MDS patients after ESA failure. The percentage of patients that stopped luspatercept due to adverse events was comparable to that reported in the MEDALIST study. Furthermore, we observed that 44.3% patients who had completed 24 weeks of follow-up achieved transfusion independence lasting longer than 8 weeks, compared to 38% in the MEDALIST trial. These positive results may be attributed to the inclusion of patients with lower transfusion needs in our study. All responses were observed within 8 months since luspatercept onset and many were long-lasting, even in the high-transfusion burden patient group. In addition, response to luspatercept and the presence of less than two mutations independently predicted for longer overall survival. Overall, our results confirm luspatercept's safety and efficacy in TD LR-MDS patients who have experienced ESA failure in a real-world setting.
Collapse
Affiliation(s)
- Anthi Bouchla
- 2nd Department of Internal Medicine and Research Institute, Hematology Unit, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios G Papageorgiou
- 2nd Department of Internal Medicine and Research Institute, Hematology Unit, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Panagiotis Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Gavriilaki
- Hematology Department BMT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Eleni Bouronikou
- Department of Hematology, University Hospital of Larissa, Larissa, Greece
| | - Argiris Symeonidis
- Department of Hematology, University General Hospital of Patras, Patras, Greece
| | - Panagiotis Zikos
- Department of Hematology, Aghios Andreas General Hospital, Patras, Greece
| | - Mustafa Cetiner
- Acibadem MAA University School of Medicine, Department of Hematology, Istanbul, Turkey
| | - Efthymia Vlachaki
- Department of Hematology, Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences University of Ioannina, Ioannina, Greece
| | | | - Sinem Civriz Bozdağ
- Department of Hematology, Koc University School of Medicine, Istanbul, Turkey
| | - Nora-Athina Viniou
- Hematology Department, Medical Centre of Athens, Faliro Clinic, Athens, Greece
| | | | - Maria Dellatola
- Department of Hematology, Metropolitan Hospital, Athens, Greece
| | - Maria Papaioannou
- Hematology Unit, 1st Internal Medicine Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Menelaos Papoutselis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Dimitra Vlachopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Syrigou
- Hematology Department BMT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Maria Mainou
- Department of Hematology, Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Chatzileontiadou
- Hematology Unit, 1st Internal Medicine Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Vasiliki Pappa
- 2nd Department of Internal Medicine and Research Institute, Hematology Unit, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Zhang Z, Wang L, Liu Z, Yang C, Chen M, Han B. Long-Term Experience with Luspatercept in Relapsed/Refractory Myelodysplastic Neoplasms: A Chinese Real-World Study. Adv Ther 2025; 42:1907-1918. [PMID: 40025395 DOI: 10.1007/s12325-025-03141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Luspatercept has been shown to be efficacious for patients with relapsed or refractory lower-risk myelodysplastic neoplasms (LR-MDS) in both clinical trials and real-world studies. Nevertheless, long-term follow-up data in real-world settings remain scarce, particularly in Asia. METHODS Data from patients diagnosed with relapsed or refractory LR-MDS who had been treated with luspatercept at our center between June 2022 and May 2024 were retrospectively collected. RESULTS In total, 60 patients were included in this study (63.4% males). The median duration of luspatercept exposure was 9 (range 3-25) months, and the median follow-up time was 15 (range 3-26) months. The hematologic improvement-erythroid (HI-E) rate was 46.7%, 51.0%, 48.6%, and 43.3% at the 3rd, 6th, and 12th months, and at the end of follow-up, respectively. Among patients who were transfusion-dependent prior to luspatercept, 48.3%, 38.7%, and 25.8% achieved transfusion independence for 8, 12, and 16 weeks or longer at the 6th month. Over time, patients treated with luspatercept had a significant increase in hemoglobin level compared with that of the baseline from the 1st month to the end of follow-up (all P < 0.05). At the end of follow-up, 5 of 32 (15.6%) patients who had response had experienced a relapse, 1 patient (1.7%) had progressed to higher-risk myelodysplastic neoplasms (MDS), and 2 patients (3.3%) had progressed to acute myeloid leukemia. Three patients (5.0%) died of pulmonary infection. Serum erythropoietin (EPO) ≤ 500 IU/l at baseline was the only independent predictive factor for HI-E at the 3rd month (P = 0.007). CONCLUSION Luspatercept is proved efficacious and well tolerated in relapsed/refractory LR-MDS and appears to be beneficial in reducing disease progression and prolonging survival.
Collapse
Affiliation(s)
- Zhuxin Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Leyu Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Ziwei Liu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
3
|
Abaza Y, DeZern AE. Imetelstat: a new addition to the therapeutic landscape of lower-risk MDS. Blood 2025; 145:469-474. [PMID: 39541576 DOI: 10.1182/blood.2024025702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Anemia is the most prevalent cytopenia in lower-risk myelodysplastic neoplasms (LR-MDS). There is a paucity of drugs for red blood cell transfusion dependence (RBC-TD), and erythropoiesis-stimulating agents (ESAs) are the mainstay of therapy in many centers. Imetelstat, an oligonucleotide telomerase inhibitor, was recently approved for adults with RBC-TD LR-MDS who are ineligible for or failed prior ESA therapy. Although not yet approved worldwide, here we spotlight the current data for imetelstat and where it may fit in the therapeutic landscape of LR-MDS.
Collapse
Affiliation(s)
- Yasmin Abaza
- Leukemia Program, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Amy E DeZern
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| |
Collapse
|
4
|
Fahim SM, Tice JA, Luu L, Carlson JJ, Richardson M, Herce-Hagiwara B, Dickerson R, Ollendorf DA. Imetelstat for anemia in lower-risk myelodysplastic syndromes: A summary from the Institute for Clinical and Economic Review's California Technology Assessment Forum. J Manag Care Spec Pharm 2024; 30:1479-1485. [PMID: 39612256 DOI: 10.18553/jmcp.2024.30.12.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Affiliation(s)
| | - Jeffrey A Tice
- Division of General Internal Medicine, University of California San Francisco
| | - Linda Luu
- Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle
| | - Josh J Carlson
- Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle
| | | | | | - Ronald Dickerson
- Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle
| | | |
Collapse
|
5
|
Patsialos I, Kontandreopoulou CN, Vlachopoulou D, Stafylidis C, Syriopoulou S, Kalala F, Anastasopoulou A, Mantzourani M, Diamantopoulos P. A myelodysplastic neoplasm with del(5q) treated with luspatercept uncovers unexplored mechanisms of action for the drug. Br J Haematol 2024; 205:1641-1644. [PMID: 39155048 DOI: 10.1111/bjh.19708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Iraklis Patsialos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Vlachopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Syriopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fani Kalala
- Cancer Immunology Unit, Department of Immunology and Histocompatibility, School of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Amalia Anastasopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mantzourani
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Madanat YF, DeZern AE. A stimulating advance in erythropoiesis for patients with myelodysplastic syndromes. Lancet Haematol 2024; 11:e630-e631. [PMID: 39038478 DOI: 10.1016/s2352-3026(24)00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Yazan F Madanat
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
7
|
Li Y, Ye L, Zhou K, Fan HH, Li JP, Xiong YZ, Yang Y, Peng GX, Yang WR, Zhao X, Jing LP, Zhang L, Zhang FK. Luspatercept enhances hemoglobin levels in a Chinese boy with congenital sideroblastic anemia: A case report. World J Clin Cases 2024; 12:3978-3984. [PMID: 38994307 PMCID: PMC11235451 DOI: 10.12998/wjcc.v12.i19.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Congenital sideroblastic anemia (CSA) is a rare and heterogeneous group of genetic disorders. Conventional treatment include pyridoxine (vitamin B6) and allogeneic hematopoietic stem cell transplantation (allo-HSCT), and can alleviate anemia in the majority of cases. Nevertheless, some CSA cases remain unresponsive to pyridoxine or are unable to undergo allo-HSCT. Novel management approaches is necessary to be developed. To explore the response of luspatercept in treating congenital sideroblastic anemia. CASE SUMMARY We share our experience in luspatercept in a 4-year-old male patient with CSA. Luspatercept was administered subcutaneously at doses of 1.0 mg/kg/dose to 1.25 mg/kg/dose every 3 wk, three consecutive doses, evaluating the hematological response. Luspatercept leading to a significant improvement in the patient's anemia. The median hemoglobin during the overall treatment with three doses of luspatercept was 90 (75-101) g/L, the median absolute reticulocyte count was 0.0593 (0.0277-0.1030) × 1012/L, the median serum ferritin was 304.3 (234.4-399) ng/mL, and the median lifespan of mature red blood cells was 80 (57-92) days. Notably, no adverse reactions, such as headaches, dizziness, vomiting, joint pain, or back pain, were observed during the treatment period. CONCLUSION We believe that luspatercept might emerge as a viable therapeutic option for the maintenance treatment of CSA or as a bridging treatment option before hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Yuan Li
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Lei Ye
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Kang Zhou
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Hui-Hui Fan
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Jian-Ping Li
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - You-Zhen Xiong
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Yang Yang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Guang-Xin Peng
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Wen-Rui Yang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Xin Zhao
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Li-Ping Jing
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Li Zhang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| | - Feng-Kui Zhang
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
8
|
Kewan T, Stahl M, Bewersdorf JP, Zeidan AM. Treatment of Myelodysplastic Syndromes for Older Patients: Current State of Science, Challenges, and Opportunities. Curr Hematol Malig Rep 2024; 19:138-150. [PMID: 38632155 DOI: 10.1007/s11899-024-00733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE OF REVIEW Myelodysplastic syndromes/neoplasms (MDS) represent a diverse group of pathologically distinct diseases with varying prognoses and risks of leukemia progression. This review aims to discuss current treatment options for elderly patients with MDS, focusing on patients ineligible for intensive chemotherapy or allogenic hematopoietic stem cell transplantation (HSCT). The challenges associated with treatment in this population and emerging therapeutic prospects are also explored. RECENT FINDINGS Recent advancements in molecular diagnostics have enhanced risk stratification by incorporating genetic mutations, notably through the molecular International Prognostic Scoring System (IPSS-M). Lower-risk MDS (LR-MDS) treatment ranges from observation to supportive measures and erythropoiesis-stimulating agents (ESAs), with emerging therapies like luspatercept showing promise. High-risk MDS (HR-MDS) is treated with hypomethylating agents (HMAs) or allogenic HSCT, but outcomes remain poor. Elderly MDS patients, often diagnosed after 70, pose challenges in treatment decision-making. The IPSS-M aids risk stratification, guiding therapeutic choices. For LR-MDS, supportive care, ESAs, and novel agents like luspatercept are considered. Treatment of HR-MDS involves HMAs or allogenic HSCT. Emerging treatments, including oral HMAs and novel agents targeting FLT3, and IDH 1/2 mutations, show promise. Future research should refine treatment strategies for this elderly population focusing on quality-of-life improvement.
Collapse
Affiliation(s)
- Tariq Kewan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, and Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA
| | - Maximillian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, and Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Rombaut D, Lefèvre C, Rached T, Bondu S, Letessier A, Mangione RM, Farhat B, Lesieur-Pasquier A, Castillo-Guzman D, Boussaid I, Friedrich C, Tourville A, De Carvalho M, Levavasseur F, Leduc M, Le Gall M, Battault S, Temple M, Houy A, Bouscary D, Willems L, Park S, Raynaud S, Cluzeau T, Clappier E, Fenaux P, Adès L, Margueron R, Wassef M, Alsafadi S, Chapuis N, Kosmider O, Solary E, Constantinou A, Stern MH, Droin N, Palancade B, Miotto B, Chédin F, Fontenay M. Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation. Nat Commun 2024; 15:3016. [PMID: 38589367 PMCID: PMC11001894 DOI: 10.1038/s41467-024-46547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Carine Lefèvre
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
| | - Tony Rached
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Sabrina Bondu
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Anne Letessier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | | | - Batoul Farhat
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Auriane Lesieur-Pasquier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Ismael Boussaid
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Chloé Friedrich
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Aurore Tourville
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Magali De Carvalho
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Françoise Levavasseur
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marjorie Leduc
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Sarah Battault
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marie Temple
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Didier Bouscary
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Lise Willems
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Sophie Park
- Department of Hematology, Centre Hospitalier Universitaire, Université de Grenoble Alpes, Grenoble, France
| | - Sophie Raynaud
- Laboratory of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Thomas Cluzeau
- Clinical Department of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Emmanuelle Clappier
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Laboratory of Hematology, Paris, France
| | - Pierre Fenaux
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Lionel Adès
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Raphael Margueron
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Michel Wassef
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nicolas Chapuis
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Olivier Kosmider
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Eric Solary
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nathalie Droin
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Miotto
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Michaela Fontenay
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France.
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France.
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France.
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France.
| |
Collapse
|
10
|
Sébert M. Next-generation therapy for lower-risk MDS. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:59-64. [PMID: 38066862 PMCID: PMC10727062 DOI: 10.1182/hematology.2023000520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Myelodysplastic syndromes (MDS) are malignant myeloid neoplasms characterized by ineffective clonal hematopoiesis leading to peripheral blood cytopenia and a variable risk of transformation to acute myeloid leukemia. In lower-risk (LR) MDS, as defined by prognostic scoring systems recently updated with the addition of a mutation profile, therapeutic options aim to reduce cytopenia, mainly anemia. Although options for reducing the transfusion burden have recently been improved, erythropoiesis-stimulating agents (ESAs), lenalidomide, hypomethylating agents, and, more recently, luspatercept have shown efficacy in rarely more than 50% of patients with a duration of response often far inferior to the patient's life expectancy. Nevertheless, several new therapies are currently under investigation aiming at improving cytopenia in patients with LR-MDS, mostly by targeting different biological pathways. Targeting ligands of the transforming growth factor β pathway has led to the approval of luspatercept in LR-MDS with ring sideroblasts or SF3B1 mutation, potentially replacing first-line ESAs in this population. Here, we also discuss the evolving standard of care for the treatment of LR-MDS and explore some of the most promising next-generation agents under investigation.
Collapse
Affiliation(s)
- Marie Sébert
- Saint-Louis Hospital (AP-HP) and Université de Paris Cité and INSERM U944, Paris, France
| |
Collapse
|
11
|
Madanat YF, Zeidan AM. Treatment Considerations of Myelodysplastic Syndromes/Neoplasms for Pathologists. Clin Lab Med 2023; 43:685-698. [PMID: 37865511 DOI: 10.1016/j.cll.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
The diagnosis of myelodysplastic syndromes/neoplasms (MDS) has evolved over the years with the incorporation of genetic abnormalities to establish a diagnosis, their impact on risk stratification, prognostication, and therapeutic options. Hematopathologists are the cornerstone to establish an accurate diagnosis and ensure patients receive the best available treatment option. Hematopathologists and clinicians must work closely together to establish the best disease subclassification, by combining pathologic findings with the clinical presentation. This will ensure patients receive the best therapeutic approach by better understanding the disease entity. In this review, we discuss how we approach a bone marrow biopsy report in the management of MDS.
Collapse
Affiliation(s)
- Yazan F Madanat
- Eugene P. Frenkel M.D. Scholar in Clinical Medicine, Division of Hematology and Medical Oncology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA. https://twitter.com/MadanatYazan
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, Smilow Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Platzbecker U, Santini V, Komrokji RS, Zeidan AM, Garcia-Manero G, Buckstein R, Miteva D, Keeperman K, Holot N, Nadal JA, Lai Y, Vodala S, Rosettani B, Giuseppi AC, Yucel A, Fenaux P. Long-term utilization and benefit of luspatercept in transfusion-dependent, erythropoiesis-stimulating agent-refractory or -intolerant patients with lower-risk myelodysplastic syndromes with ring sideroblasts. Leukemia 2023; 37:2314-2318. [PMID: 37752285 PMCID: PMC10624606 DOI: 10.1038/s41375-023-02031-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Affiliation(s)
- Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany.
| | - Valeria Santini
- MDS Unit, AOU Careggi, University of Florence, Florence, Italy
| | | | - Amer M Zeidan
- Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT, USA
| | | | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Dimana Miteva
- Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland
| | | | | | - Jose Alberto Nadal
- Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland
| | - Yinzhi Lai
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | - Barbara Rosettani
- Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland
| | | | | | - Pierre Fenaux
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris and Université Paris 7, Paris, France
| |
Collapse
|
13
|
Guerra A, Parhiz H, Rivella S. Novel potential therapeutics to modify iron metabolism and red cell synthesis in diseases associated with defective erythropoiesis. Haematologica 2023; 108:2582-2593. [PMID: 37345473 PMCID: PMC10542825 DOI: 10.3324/haematol.2023.283057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Under normal conditions, iron metabolism is carefully regulated to sustain normal cellular functions and the production of hemoglobin in erythroid cells. Perturbation to the erythropoiesis-iron metabolism axis can result in iron imbalances and cause anemia or organ toxicity. Various congenital and acquired diseases associated with abnormal red cell production are characterized by aberrant iron absorption. Several recent studies have shown that improvements in red blood cell production also ameliorate iron metabolism and vice versa. Many therapeutics are now under development with the potential to improve a variety of hematologic diseases, from β-thalassemia and iron-refractory iron deficiency anemia to anemia of inflammation and polycythemia vera. This review summarizes selected mechanisms related to red cell production and iron metabolism and describes potential therapeutics and their current uses. We also consider the potential application of the discussed therapeutics on various diseases, alone or in combination. The vast repertoire of drugs under development offers new opportunities to improve the clinical care of patients suffering from congenital or acquired red blood cell disorders with limited or no treatment options.
Collapse
Affiliation(s)
- Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA
| | - Hamideh Parhiz
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania, Philadelphia, PA, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics-CHOP; Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
14
|
Lucero J, Al-Harbi S, Yee KWL. Management of Patients with Lower-Risk Myelodysplastic Neoplasms (MDS). Curr Oncol 2023; 30:6177-6196. [PMID: 37504319 PMCID: PMC10377892 DOI: 10.3390/curroncol30070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Myelodysplastic neoplasms (MDS) are a heterogenous group of clonal hematologic disorders characterized by morphologic dysplasia, ineffective hematopoiesis, and cytopenia. In the past year, the classification of MDS has been updated in the 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid Tumours and the International Consensus Classification (ICC) of Myeloid Neoplasms and Acute Leukemia with incorporation of morphologic, clinical, and genomic data. Furthermore, the more comprehensive International Prognostic Scoring System-Molecular (IPSS-M) allows for improved risk stratification and prognostication. These three developments allow for more tailored therapeutic decision-making in view of the expanding treatment options in MDS. For patients with lower risk MDS, treatment is aimed at improving cytopenias, usually anemia. The recent approval of luspatercept and decitabine/cedazuridine have added on to the current armamentarium of erythropoietic stimulating agents and lenalidomide (for MDS with isolated deletion 5q). Several newer agents are being evaluated in phase 3 clinical trials for this group of patients, such as imetelstat and oral azacitidine. This review provides a summary of the classification systems, the prognostic scores and clinical management of patients with lower risk MDS.
Collapse
Affiliation(s)
- Josephine Lucero
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 700 University Avenue, 6th Floor, Toronto, ON M5G 1Z5, Canada; (J.L.); (S.A.-H.)
| | - Salman Al-Harbi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 700 University Avenue, 6th Floor, Toronto, ON M5G 1Z5, Canada; (J.L.); (S.A.-H.)
| | - Karen W. L. Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 700 University Avenue, 6th Floor, Toronto, ON M5G 1Z5, Canada; (J.L.); (S.A.-H.)
- Division of Hematology, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
15
|
Gurnari C, Xie Z, Zeidan AM. How I Manage Transplant Ineligible Patients with Myelodysplastic Neoplasms. Clin Hematol Int 2023; 5:8-20. [PMID: 36574201 PMCID: PMC10063738 DOI: 10.1007/s44228-022-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022] Open
Abstract
Myelodysplastic neoplasms, formerly known as myelodysplastic syndromes (MDS), represent a group of clonal disorders characterized by a high degree of clinical and molecular heterogeneity, and an invariable tendency to progress to acute myeloid leukemia. MDS typically present in the elderly with cytopenias of different degrees and bone marrow dysplasia, the hallmarks of the disease. Allogeneic hematopoietic stem cell transplant is the sole curative approach to date. Nonetheless, given the disease's demographics, only a minority of patients can benefit from this procedure. Currently used prognostic schemes such as the Revised International Prognostic Scoring System (R-IPSS), and most recently the molecular IPSS (IPSS-M), guide clinical management by dividing MDS into two big categories: lower- and higher-risk cases, based on a cut-off score of 3.5. The main clinical problem of the lower-risk group is represented by the management of cytopenias, whereas the prevention of secondary leukemia progression is the goal for the latter. Herein, we discuss the non-transplant treatment of MDS, focusing on current practice and available therapeutic options, while also presenting new investigational agents potentially entering the MDS therapeutic arsenal in the near future.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Medicine, Yale School of Medicine, and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
16
|
Madanat YF, Xie Z, Zeidan AM. Advances in myelodysplastic syndromes: promising novel agents and combination strategies. Expert Rev Hematol 2023; 16:51-63. [PMID: 36620919 DOI: 10.1080/17474086.2023.2166923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are heterogeneous group of clonal hematopoietic stem cell neoplasms that have limited approved treatment options. Multiple novel agents are currently being tested in a clinical trial setting. From a therapeutic perspective, MDS is generally divided into lower-risk and higher-risk disease. In this review, we summarize some of the most prominent novel agents currently in development. AREAS COVERED This review focuses on select clinical trials in both lower- and higher-risk MDS, elucidating the mechanisms of action and rationale for drug combinations and summarizing early safety and efficacy data using novel agents in MDS. EXPERT OPINION Advances in understanding the innate immune system, telomere biology, as well as genomic drivers of the disease have led to the development of multiple novel agents that are currently in late stages of clinical development in MDS. Imetelstat is being tested in lower-risk disease and the phase III clinical trial recently completed accrual. Magrolimab, sabatolimab, and venetoclax in addition to novel oral hypomethylating agents (HMA) are being investigated in higher-risk MDS. These advances will hopefully bring better treatment options to patients and lead to a shift in the treatment paradigm. Post HMA therapy remains an area of dire unmet need.
Collapse
Affiliation(s)
- Yazan F Madanat
- Simmons Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|