1
|
Tischer A, Moon-Tasson L, Auton M. Structure-resolved dynamics of type 2M von Willebrand disease. J Thromb Haemost 2025; 23:1215-1228. [PMID: 39756657 PMCID: PMC11972889 DOI: 10.1016/j.jtha.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Genetically determined amino acid substitutions in the platelet adhesive A1 domain alter von Willebrand factor's (VWF) platelet agglutination competence, resulting in both gain- (type 2B) and loss-of-function (type 2M) phenotypes of von Willebrand disease. Prior studies of variants in both phenotypes revealed defects in secondary structure that altered stability and folding of the domain. An intriguing observation was that loss of function arose from both misfolding of A1 and, in a few cases, hyperstabilization of the native structure. OBJECTIVES To fully understand the 2M phenotype, we thoroughly investigated the structure/function relationships of 15 additional type 2M variants and 2 polymorphisms in the A1 domain. METHODS These variants were characterized using circular dichroism, fluorescence, calorimetry, hydrogen-deuterium exchange mass spectrometry, surface plasmon resonance, and platelet adhesion under shear flow. RESULTS Six variants were natively folded, with 4 being hyperstabilized. Nine variants disordered A1, causing a loss in α-helical structure and unfolding enthalpy. GPIbα binding affinity and platelet adhesion dynamics were highly correlated to helical structure. Hydrogen-deuterium exchange resolved specific C-terminal secondary structure elements that differentially diminish the GPIbα binding affinity of A1. These localized structural perturbations were highly correlated to GPIbα binding affinity and shear-dependent platelet adhesion. CONCLUSION While hyperstabilized dynamics in A1 do impair stable platelet attachment to VWF under flow, variant-induced localized disorder in specific regions of the domain misfolds A1 and abrogates platelet adhesion. These 2 opposing conformational properties represent 2 structural classes of VWF that drive the loss-of-function phenotype that is type 2M von Willebrand disease.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
2
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
3
|
Tischer A, Moon-Tasson L, Auton M. The epitope of the antibody used in the REAADS VWF activity assay is quaternary. Thromb J 2025; 23:3. [PMID: 39825354 PMCID: PMC11740576 DOI: 10.1186/s12959-025-00688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The REAADS VWF activity assay is often assumed to be specific for the A1 domain, the portion of VWF that binds platelet GPIbα. We tested this assay on the A1A2A3 region of VWF with each domain expressed independently of one another and together in combination as a tri-domain. The monoclonal antibody used in this assay is found to be insensitive to the single A domains and does not recognize free A1 domains as it is often assumed. Rather, we find the assay to effectively recognize A1A2A3 with the domains together in their natural glycosylated sequence context. Furthermore, type 2M and 2B Von Willebrand Disease mutations differentially disrupt the sensitivity of the assay, indicating that mutational effects on the structure of A1 in the A1A2A3 context concomitantly disrupt the epitope of the antibody. The REAADS VWF activity assay therefore is conformationally sensitive to the native quaternary association of the A domains together and it is not specific to freely exposed A1 domains.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Machha V, Tischer A, Moon-Tasson L, Tange J, Santiago-Davis A, Pruthi R, Chen D, Maher LJ, Auton M. Conformation-specific RNA aptamers for phenotypic distinction between normal von Willebrand factor and type 2B von Willebrand disease. NAR MOLECULAR MEDICINE 2024; 1:ugae021. [PMID: 39719968 PMCID: PMC11664255 DOI: 10.1093/narmme/ugae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
The A1 domain in Von Willebrand Factor (VWF) initiates coagulation through binding to platelet glycoprotein GPIbα receptors. Von Willebrand Disease (VWD)-Mutations in A1 that either impair (type 2M) or enhance (type 2B) platelet adhesion to VWF can locally destabilize and even misfold the domain. We leveraged misfolding in the gain-of-function type 2B VWD phenotype as a target, distinct from the normal conformation. Two nuclease-resistant 2'-fluoropyrimidine RNA aptamers were selected to discriminate normal A1 domains from a type 2B V1314D A1 variant in a glycosylated A1A2A3 tri-domain VWF-fragment. Two aptamers, W9 and V1, were isolated that selectively recognize, bind, and inhibit the A1-GPIbα interaction with WT A1A2A3 and V1314D A1A2A3, respectively. These aptamers were tested against their respective recombinant targets, plasma VWF, VWF concentrates, and patient plasma with the heterozygous type 2B VWD R1306W variant using clinical assays, surface plasmon resonance and inhibition assays of platelet adhesion to recombinant A1 and A1A2A3 domains under shear stress. The specificity of W9 and V1 aptamers confirms that pathological conformations of VWD Type 2B proteins are different from normal VWF. The availability of aptamers that distinguish normal plasma-derived VWF from VWD suggests potential applicability in clinical diagnosis of severe gain-of-function phenotypes.
Collapse
Affiliation(s)
- Venkata R Machha
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Julie Tange
- Special Coagulation Laboratory, Mayo Medical Laboratories, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Annyoceli Santiago-Davis
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Rajiv K Pruthi
- Division of Hematopathology, Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Matthew Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Hu H, Xia L, Wang J, Huang X, Zhao Q, Song X, Hu L, Ren S, Lu C, Ren Y, Qian X, Feng W, Wang Z, Chen Y. Bionanoengineered 2D monoelemental selenene for piezothrombolysis. Biomaterials 2024; 305:122468. [PMID: 38219628 DOI: 10.1016/j.biomaterials.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Thrombosis-related diseases represent the leading causes of disability or death worldwide. However, conventional thrombolytic therapies are subjected to narrow therapeutic window, short circulation half-life and bleeding. Herein, we rationally design and develop a safe and efficient nonpharmaceutical thrombolysis strategy based on a specific piezocatalytic effect arising from platelet membrane (PM)-conjugated two-dimensional (2D) piezoelectric selenene, Se-PM nanosheets (NSs). The 2D selenene is fabricated from nonlayered bulk selenium powder by a facile liquid-phase exfoliation method, and the PM conjugation confers selenene with the distinct thrombus-homing feature. Under ultrasonic activation, the piezoelectric characteristic of selenene triggers electrons and holes separation, resulting in generation of reactive oxygen species (ROS) by reacting with surrounding H2O and O2 in the thrombosis microenvironment for thrombolysis. Both systematic in vitro and in vivo assessments demonstrate that the biocompatible Se-PM NSs efficiently degrade erythrocytes, fibrin and artificial blood clots under ultrasound irradiation. Compared to the clinical thrombolytic drug urokinase plasminogen activator, the engineered Se-PM NSs possess excellent thrombolytic efficacy by single treatment in the tail thrombosis animal model without bleeding risk. The engineered Se-PM nanoplatform marks an exciting jumping-off point for research into the application of piezocatalysis in clinical treatment of thrombosis.
Collapse
Affiliation(s)
- Hui Hu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China; Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China; Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, PR China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Junfeng Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China
| | - Xuefei Huang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China
| | - Qianqian Zhao
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xinyu Song
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Lei Hu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China
| | - Chao Lu
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, PR China
| | - Yongzhen Ren
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, PR China
| | - Xiaoqin Qian
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, PR China; Department of Ultrasound Medicine, Northen Jiangsu People's Hospital, Yangzhou, Jiangsu, 225009 PR China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, PR China.
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, PR China.
| |
Collapse
|
6
|
Yee A. Keeping it together. Blood 2023; 141:1374-1376. [PMID: 36951886 DOI: 10.1182/blood.2022019547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
|