1
|
Liu H, Tan S, Li Z, Qi J, Tang X, Zhang J. OTUB1 promotes glioma progression by stabilizing TRAF4. Cell Signal 2025; 131:111704. [PMID: 40090557 DOI: 10.1016/j.cellsig.2025.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Glioma is a highly heterogeneous brain tumor with poor prognosis. This study aims to investigate the functional role of OTUB1 in glioma and its impact on TRAF4 stability, seeking potential therapeutic targets. METHODS We mined single-cell sequencing data from 12 glioma patients to analyze the heterogeneity of 20,145 glioma cells. The expression of OTUB1 in glioma tissues and cell lines was assessed using Western blot and qPCR. Additionally, immunoprecipitation and ubiquitination assays were conducted to evaluate the effect of OTUB1 on TRAF4 and its role in regulating TRAF4 stability. In vitro assays were performed to assess the effects of OTUB1 on cell proliferation, migration, and clonogenicity, while in vivo experiments using xenograft models in nude mice validated the impact of OTUB1 on tumor growth. RESULTS OTUB1 was found to be significantly overexpressed in glioma tissues, correlating with poor patient outcomes. Knockdown of OTUB1 markedly inhibited the proliferation and migration of LN229 and U87MG cells while increasing apoptosis. Immunoprecipitation studies revealed that OTUB1 stabilizes TRAF4 by inhibiting its ubiquitination, thereby promoting glioma cell proliferation and invasion. In vivo, tumors with OTUB1 knockdown demonstrated significantly reduced growth rates. CONCLUSION OTUB1 plays a critical role in glioma progression and may serve as a novel therapeutic target. The development of inhibitors targeting OTUB1 could potentially improve outcomes for glioma patients.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shasha Tan
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Jian Qi
- Department of Neurosurgery, Nanchong Fifth People's Hospital, Nanchong, Sichuan, China
| | - Xiaoping Tang
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Junhao Zhang
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Wang C, Wan S, Li K, Chen S, Shu Y, Liu S, Yang L. TPI1 promotes p53 ubiquitination in bladder cancer by recruiting AKT to enhance MDM2 phosphorylation. Pharmacol Res 2025; 215:107695. [PMID: 40097123 DOI: 10.1016/j.phrs.2025.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Bladder cancer (BCa) is an aggressive malignancy with limited effective treatment options, and its poor outcomes largely result from delayed detection and therapeutic resistance. Triosephosphate isomerase 1 (TPI1) has been associated with tumor progression in various cancers, but its specific function in BCa remains poorly characterized. This study evaluated cancer-related markers and identified glycolysis as a key factor negatively impacting survival in BCa. Additionally, TPI1 was recognized as a potential prognostic marker, with its expression significantly elevated in BCa tissues compared to normal counterparts. Higher TPI1 levels were strongly linked to unfavorable clinical outcomes. Functional assays demonstrated that TPI1 overexpression significantly promoted BCa cell growth, migration, and invasive capabilities in vitro and in vivo. Mechanistically, TPI1 interacted with serine/threonine kinase B (AKT) and murine double minute 2 (MDM2) to form a protein complex, which enhanced the AKT-driven phosphorylation of MDM2 at serine 166 site, thereby promoting tumor protein p53 (p53) ubiquitination degradation. Furthermore, the truncated MDM2-F2 mutant (spanning 181-360) bound to TPI1, with amino acid 317 playing a critical role in this interaction. Notably, reducing AKT expression counteracted the p53 ubiquitination triggered by elevated TPI1.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Kunpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yuncong Shu
- School of life science, Lanzhou university, Lanzhou, China
| | - Shanhui Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China.
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China; Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
3
|
Mao J, Xu C, Hu D, Bao H. Exploring the mechanisms of cinobufotalin in ovarian cancer treatment: An integrated approach combining network pharmacology, molecular docking and RNA Sequencing. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04200-0. [PMID: 40293497 DOI: 10.1007/s00210-025-04200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Cinobufotalin (CINO), a bioactive compound derived from toad skin secretions, has demonstrated clinical efficacy in cancer treatment. However, its molecular mechanisms in ovarian cancer (OC) remain poorly characterized. This study systematically investigated the anti-OC mechanisms of CINO through an integrated strategy combining network pharmacology, molecular docking, and RNA sequencing. Potential CINO targets were predicted via Swiss Target Prediction, while OC-related genes were retrieved from GeneCards and OMIM. Intersecting targets were analyzed using PPI networks and functional enrichment (GO/KEGG). Molecular docking validated ligand-target interactions, and RNA-seq quantified differential gene expression in CINO-treated SKOV3 cells. Among 69 overlapping targets, 10 hub genes (EGFR, PTGS2, MDM2, MAPK1, MAPK3, MTOR, ESR1, PIK3CA, MMP9, and GSK3B) were identified. KEGG analysis highlighted the MAPK signaling and endocrine resistance pathways. RNA-seq revealed 1488 upregulated and 3253 downregulated DEGs, which were mainly enriched in axon development, axonogenesis, and primarily involved in the MAPK signaling pathway. CINO significantly suppressed EGFR, ESR1, MAPK1, MDM2, and mTOR expression (p < 0.05), aligning with pathway predictions. CINO exerts anti-OC effects by modulating endocrine resistance and MAPK signaling, providing a mechanistic foundation for its clinical application.
Collapse
Affiliation(s)
- Jiajie Mao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chen Xu
- The 4th Central Hospital, Laboratory Science Department, Tianjin, 300100, China
| | - Dongsheng Hu
- Tianjin Children's Hospital/Tianjin University Children's Hospital, Laboratory Science Department, Tianjin, 300400, China
- Tianjin Nankai Hospital, Tianjin, 300134, China
| | - Huijing Bao
- Tianjin Children's Hospital/Tianjin University Children's Hospital, Laboratory Science Department, Tianjin, 300400, China.
- Tianjin Nankai Hospital, Tianjin, 300134, China.
| |
Collapse
|
4
|
Brea-Iglesias J, Gallardo-Gómez M, Oitabén A, Lázaro-Quintela ME, León L, Alves JM, Pino-González M, Juaneda-Magdalena L, García-Benito C, Abdulkader I, Muinelo L, Paramio JM, Martínez-Fernández M. Genomics guiding personalized first-line immunotherapy response in lung and bladder tumors. J Transl Med 2025; 23:404. [PMID: 40188131 PMCID: PMC11972471 DOI: 10.1186/s12967-025-06323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment, particularly in advanced non-small cell lung cancer (NSCLC) and muscle-invasive bladder cancer (MIBC). However, identifying reliable predictive biomarkers for ICI response remains a significant challenge. In this study, we analyzed real-world cohorts of advanced NSCLC and MIBC patients treated with ICI as first-line therapy. METHODS Tumor samples underwent Whole Genome Sequencing (WGS) to identify specific somatic variants and assess tumor mutational burden (TMB). Additionally, mutational signature extraction and pathway enrichment analyses were performed to uncover the underlying mechanisms of ICI response. We also characterized HLA-I haplotypes and investigated LINE-1 retrotransposition. RESULTS Distinct mutation patterns were identified in patients who responded to treatment, suggesting potential biomarkers for predicting ICI effectiveness. In NSCLC, tumor mutational burden (TMB) did not differ significantly between responders and non-responders, while in MIBC, higher TMB was linked to better responses. Specific mutational signatures and HLA haplotypes were associated with ICI response in both cancers. Pathway analysis showed that NSCLC responders had active inflammatory and immune pathways, while pathways enriched in non-responders related to FGFR3 and neural crest differentiation, associated to resistance mechanisms. In MIBC, responders had alterations in DNA repair, leading to more neoantigens and a stronger ICI response. Importantly, for the first time, we found that LINE-1 activation was positively linked to ICI response, especially in MIBC. CONCLUSION These findings reveal promising biomarkers and mechanistic insights, offering a new perspective on predicting ICI response and opening up exciting possibilities for more personalized immunotherapy strategies in NSCLC and MIBC.
Collapse
Affiliation(s)
- Jenifer Brea-Iglesias
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
- Mobile Genomes Lab, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Avda, Barcelona 31, 15706, Santiago de Compostela, Spain
| | - María Gallardo-Gómez
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Ana Oitabén
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
- Mobile Genomes Lab, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Avda, Barcelona 31, 15706, Santiago de Compostela, Spain
| | - Martin E Lázaro-Quintela
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Luis León
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Joao M Alves
- CINBIO, Universidade de Vigo, Vigo, Spain
- Cancer Genomics Research group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Manuel Pino-González
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Laura Juaneda-Magdalena
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
| | - Carme García-Benito
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain
- Digestive Oncology Research Group of Ourense (GIODO), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Oncology Department, Complexo Hospitalario Universitario de Ourense, Calle Ramon Puga Noguerol, 54, 32005, Ourense, Spain
| | - Ihab Abdulkader
- Pathological Anatomy Department, University Clinical Hospital and Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Laura Muinelo
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Division, CIEMAT (Ed 70A), Ave Complutense 40, 28040, Madrid, Spain
- Cell and Molecular Oncology Group Inst Inv Biomed Univ Hosp "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Translational Oncology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Estrada de Clara Campoamor, 341, 36213, Vigo, Spain.
| |
Collapse
|
5
|
Li Z, Zhu T, Wu Y, Yu Y, Zang Y, Yu L, Zhang Z. Functions and mechanisms of non-histone post-translational modifications in cancer progression. Cell Death Discov 2025; 11:125. [PMID: 40164592 PMCID: PMC11958777 DOI: 10.1038/s41420-025-02410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Protein post-translational modifications (PTMs) refer to covalent and enzymatic alterations to folded or nascent proteins during or after protein biosynthesis to alter the properties and functions of proteins. PTMs are modified in a variety of types and affect almost all aspects of cell biology. PTMs have been reported to be involved in cancer progression by influencing multiple signaling pathways. The mechanism of action of histone PTMs in cancer has been extensively studied. Notably, evidence is mounting that PTMs of non-histone proteins also play a vital role in cancer progression. In this review, we provide a systematic description of main non-histone PTMs associated with cancer progression, including acetylation, lactylation, methylation, ubiquitination, phosphorylation, and SUMOylation, based on recent studies.
Collapse
Affiliation(s)
- Zongyang Li
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261041, China
| | - Tao Zhu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Yushu Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261041, China
| | - Yongbo Yu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Yunjiang Zang
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Lebo Yu
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China
| | - Zhilei Zhang
- Department of Urology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, China.
| |
Collapse
|
6
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Ding C, Cao L, Wang R, Wu Q, Li M, Zhang J, Thorne RF, Li J, Ma J, Wu M, Cang S. OTUD7B is a new deubiquitinase targeting p53. Theranostics 2025; 15:2121-2138. [PMID: 39990225 PMCID: PMC11840744 DOI: 10.7150/thno.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/04/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: The tumor suppressor p53 safeguards against cellular transformation, with its expression regulated by diverse post-translational modifications (PTMs). While polyubiquitination by Mdm2 principally drives its proteasomal degradation, the identity of p53 deubiquitinases (DUBs) remains less well defined. This study investigates the role of the deubiquitinase enzyme OTUD7B in hepatocellular carcinoma (HCC), where it is notably downregulated and proposed to function as a tumor suppressor. Methods: Mass spectrometry screening of immunoprecipitates from HCC cells was used to identify OTUD7B-binding proteins. Co-immunoprecipitation assays with endogenous, ectopic, and mutant forms of OTUD7B and p53 assessed binding interactions and p53 polyubiquitination levels, respectively. Regulatory mechanisms were explored via luciferase reporter and chromatin immunoprecipitation (ChIP) assays. OTUD7B function was evaluated in vitro and in xenograft models using shRNA knockdown, overexpression, and CRISPR-Cas9 knockout. OTUD7B expression in normal and HCC tissues was analyzed by immunohistochemistry and immunoblotting. Results: We identified p53 as a binding partner of OTUD7B, confirming interactions with both wild-type and mutant p53 in HCC cells. OTUD7B was shown to remove lysine-linked polyubiquitin chains in p53, including those mediated by Mdm2, thereby stabilizing p53 by inhibiting its proteasomal degradation. Overexpression of OTUD7B suppressed growth in HCC cultures and xenografts through p53-dependent mitochondrial apoptosis, marked by PUMA and BAX induction. Conversely, OTUD7B knockdown promoted tumor growth. These effects were absent in p53-null or CRISPR-knockout cells, underscoring p53 as a key OTUD7B substrate. Additionally, OTUD7B expression was found to be transcriptionally repressed via p53-dependent mechanisms. Bioinformatics and ex vivo analysis revealed a positive correlation between OTUD7B and p53 protein levels in HCC tissues. Conclusion: OTUD7B plays a critical role in stabilizing both wild-type and mutant p53 in HCC cells, with its expression regulated through a mutual feedback loop involving p53. By inhibiting cell growth, OTUD7B exhibits tumor-suppressive properties, underscored by its atypical downregulation in patient tissues and its positive correlation with p53 expression. These findings highlight the clinical significance of OTUD7B and position it as a promising therapeutic target for modulating the p53 pathway in HCC.
Collapse
Affiliation(s)
- Caoyuan Ding
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Leixi Cao
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Ruijie Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Qichen Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Mengfan Li
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Jinjing Zhang
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Rick F. Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Jinming Li
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang, China
| | - Mian Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Shundong Cang
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| |
Collapse
|
8
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Wang Z, Zou X, Wang H, Hao Z, Li G, Wang S. Companion diagnostics and predictive biomarkers for PD-1/PD-L1 immune checkpoint inhibitors therapy in malignant melanoma. Front Immunol 2024; 15:1454720. [PMID: 39530091 PMCID: PMC11550933 DOI: 10.3389/fimmu.2024.1454720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death receptor 1 (PD-1), when bound to the ligand programmed death-ligand 1 (PD-L1), can suppress cellular immunity and play a critical role in the initiation and development of cancer. Immune drugs targeting these two sites have been developed for different cancers, including malignant melanoma. The accompanying diagnostic method has been approved by the FDA to guide patient medication. However, the method of immunohistochemical staining, which varies widely due to the antibody and staining cut-off values, has certain limitations in application and does not benefit all patients. Increasing researches begin to focus on new biomarkers to improve objective response rates and survival in cancer patients. In this article, we enumerated three major groups, including tumour microenvironment, peripheral circulation, and gene mutation, which covered the current main research directions. In the future, we hope those biomarkers may be used to guide the treatment of patients with malignant melanoma.
Collapse
Affiliation(s)
- Zeping Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaojing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiyan Wang
- Beijing Biomedical Science and Technology Center, Zhaofenghua Biotechnology (Nanjing) Company Limited, Beijing, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
10
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
11
|
Nie H, Yu Y, Wang F, Huang X, Wang H, Wang J, Tao M, Ning Y, Zhou J, Zhao Q, Xu F, Fang J. Comprehensive analysis of the relationship between ubiquitin-specific protease 21 (USP21) and prognosis, tumor microenvironment infiltration, and therapy response in colorectal cancer. Cancer Immunol Immunother 2024; 73:156. [PMID: 38834869 PMCID: PMC11150338 DOI: 10.1007/s00262-024-03731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Ubiquitin-specific proteases family is crucial to host immunity against pathogens. However, the correlations between USP21 and immunosurveillance and immunotherapy for colorectal cancer (CRC) have not been reported. METHODS The differential expression of USP21 between CRC tissues and normal tissues was analyzed using multiple public databases. Validation was carried out in clinical samples through qRT-PCR and IHC. The correlation between USP21 and the prognosis, as well as clinical pathological characteristics of CRC patients, was investigated. Moreover, cell models were established to assess the influence of USP21 on CRC growth and progression, employing CCK-8 assays, colony formation assays, and wound-healing assays. Subsequently, gene set variation analysis (GSVA) was used to explore the potential biological functions of USP21 in CRC. The study also examined the impact of USP21 on cytokine levels and immune cell infiltration in the tumor microenvironment (TME). Finally, the effect of USP21 on the response to immunotherapy and chemotherapy in CRC was analyzed. RESULTS The expression of USP21 was significantly upregulated in CRC. High USP21 is correlated with poor prognosis in CRC patients and facilitates the proliferation and migration capacities of CRC cells. GSVA indicated an association between low USP21 and immune activation. Moreover, low USP21 was linked to an immune-activated TME, characterized by high immune cell infiltration. Importantly, CRC with low USP21 exhibited higher tumor mutational burden, high PD-L1 expression, and better responsiveness to immunotherapy and chemotherapeutic drugs. CONCLUSION This study revealed the role of USP21 in TME, response to therapy, and clinical prognosis in CRC, which provided novel insights for the therapeutic application in CRC.
Collapse
Affiliation(s)
- Haihang Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yali Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mi Tao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JingKai Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China.
- Department of General Medical, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Sun D, Qian H, Li J, Xing P. Targeting MDM2 in malignancies is a promising strategy for overcoming resistance to anticancer immunotherapy. J Biomed Sci 2024; 31:17. [PMID: 38281981 PMCID: PMC10823613 DOI: 10.1186/s12929-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
MDM2 has been established as a biomarker indicating poor prognosis for individuals undergoing immune checkpoint inhibitor (ICI) treatment for different malignancies by various pancancer studies. Specifically, patients who have MDM2 amplification are vulnerable to the development of hyperprogressive disease (HPD) following anticancer immunotherapy, resulting in marked deleterious effects on survival rates. The mechanism of MDM2 involves its role as an oncogene during the development of malignancy, and MDM2 can promote both metastasis and tumor cell proliferation, which indirectly leads to disease progression. Moreover, MDM2 is vitally involved in modifying the tumor immune microenvironment (TIME) as well as in influencing immune cells, eventually facilitating immune evasion and tolerance. Encouragingly, various MDM2 inhibitors have exhibited efficacy in relieving the TIME suppression caused by MDM2. These results demonstrate the prospects for breakthroughs in combination therapy using MDM2 inhibitors and anticancer immunotherapy.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|