1
|
Fujita Y, Matsuoka H, Chiba Y, Tsurutani J, Yoshida T, Sakai K, Nakura M, Sakamoto R, Makimura C, Ohtake Y, Tanaka K, Hayashi H, Takahama T, Tanizaki J, Koyama A, Nishio K, Nakagawa K. Dual single‑nucleotide polymorphism biomarker combination for opioid selection to treat cancer pain. Mol Clin Oncol 2025; 22:14. [PMID: 39720462 PMCID: PMC11667419 DOI: 10.3892/mco.2024.2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 12/26/2024] Open
Abstract
We have been exploring biomarkers that could help physicians select the appropriate opioid for individualized treatment of cancer pain. Recently, we identified a single nucleotide polymorphism (SNP) of CCL11 (rs17809012) as one such biomarker that was significantly associated with the analgesic effect of morphine. The current study measured the plasma concentrations of chemokines/cytokines in pre-treatment plasma samples of a total of 138 patients who were randomized to receive morphine (n=70) or oxycodone (n=68). Based on the results, one cytokine, IL-16, was identified whose plasma concentrations showed a clear bias between patients with cancer pain who responded well and responded poorly to oxycodone. A genotypic analysis also identified a SNP of the IL-16 gene (rs4778889) as being significantly associated with the analgesic effect of oxycodone. Whether both of the SNPs identified as being significant (CCL11 rs17809012 and IL-16 rs4778889) could be used in combination to accurately predict which opioid might be the most suitable to provide pain relief in patients with cancer was assessed. Morphine tended to provide superior analgesic effect over oxycodone in patients with the IL-16 rs4778889 TT genotype and the CCL11 rs17809012 AG/GG genotype (n=45), while a trend towards a greater analgesic effect of oxycodone was observed in patients with other genotype combinations of these SNPs (n=93) (P=0.0012 for the interaction), suggesting that the IL-16 rs4778889 and CCL11 rs17809012 SNPs could serve as a potential dual-biomarker combination for personalized analgesic therapy in patients with cancer pain.
Collapse
Affiliation(s)
- Yoshihiko Fujita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Hiromichi Matsuoka
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Palliative Care Center, Kindai University Hospital, Osaka 589-8511, Japan
- Palliative Care Team, National Cancer Center, Tokyo 104-0045, Japan
| | - Yasutaka Chiba
- Department of Biostatics, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Takeshi Yoshida
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kiyohiro Sakai
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Palliative Care Center, Kindai University Hospital, Osaka 589-8511, Japan
| | - Miki Nakura
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Ryo Sakamoto
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Chihiro Makimura
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Yoichi Ohtake
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Atsuko Koyama
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Palliative Care Center, Kindai University Hospital, Osaka 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
2
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
3
|
Li T, Conroy KL, Kim AM, Halmai J, Gao K, Moreno E, Wang A, Passerini AG, Nolta JA, Zhou P. Role of MEF2C in the Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cells 2023; 41:341-353. [PMID: 36639926 PMCID: PMC10128960 DOI: 10.1093/stmcls/sxad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) not only provide an abundant source of vascular cells for potential therapeutic applications in vascular disease but also constitute an excellent model for understanding the mechanisms that regulate the differentiation and the functionality of vascular cells. Here, we reported that myocyte enhancer factor 2C (MEF2C) transcription factor, but not any other members of the MEF2 family, was robustly upregulated during the differentiation of vascular progenitors and endothelial cells (ECs) from hiPSCs. Vascular endothelial growth factors (VEGF) strongly induced MEF2C expression in endothelial lineage cells. The specific upregulation of MEF2C during the commitment of endothelial lineage was dependent on the extracellular signal regulated kinase (ERK). Moreover, knockdown of MEF2C with shRNA in hiPSCs did not affect the differentiation of ECs from these hiPSCs, but greatly reduced the migration and tube formation capacity of the hiPSC-derived ECs. Through a chromatin immunoprecipitation-sequencing, genome-wide RNA-sequencing, quantitative RT-PCR, and immunostaining analyses of the hiPSC-derived endothelial lineage cells with MEF2C inhibition or knockdown compared to control hiPSC-derived ECs, we identified TNF-related apoptosis inducing ligand (TRAIL) and transmembrane protein 100 (TMEM100) as novel targets of MEF2C. This study demonstrates an important role for MEF2C in regulating human EC functions and highlights MEF2C and its downstream effectors as potential targets to treat vascular malfunction-associated diseases.
Collapse
Affiliation(s)
- Tao Li
- School of Medicine, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Kelsey L Conroy
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Amy M Kim
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Julian Halmai
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| | - Kewa Gao
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Emily Moreno
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Jan A Nolta
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| | - Ping Zhou
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| |
Collapse
|
4
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
5
|
Huang HL, Liu HL, Cheng YS. Development of innovative marker detection methods for high-fertility ducks (Anas plastyrhynchos). Theriogenology 2023; 197:275-282. [PMID: 36527864 DOI: 10.1016/j.theriogenology.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
We previously analyzed the genome-wide gene expression at the transcription level in pre-hierarchical ovarian follicles (approximate 5 mm in diameter) between two groups of ducks representing high and low fertility. Orthodenticle homeobox 2 (otx2) was identified with significantly differential expression in the high-fertility group versus the low-fertility group. To identify the relationships between genotypes and phenotypes, we recorded the reproductive performance in advance, including fertility, hatchability, and fertile period of female ducks. To ensure coverage of the entire duration of the fertile period, we extended the egg collection period after artificial insemination. Naturally, sperm cannot survive after a certain period of time in the female reproductive tract (sperm is not immortal); therefore, lower average values for fertility were observed in this study than that observed after a normal egg collection period, i.e., the lower average values of fertility (18 days after artificial insemination), were not due to the effect of otx2. The otx2 genomic sequence of Tsaiya ducks was firstly amplified with a primer pair of i3F and i3R for polymerase chain reaction based on Pekin duck sequence and a resultant 444-base pair fragment was obtained for DNA sequencing. Using multiple sequence alignment, new single-nucleotide polymorphisms g.366T > C and g.182G > T were discovered in the otx2 gene. With respect to g.366T > C, ducks were classified into CC, CT, and TT genotypes. For g.182G > T, three genotypes (GG, GT, and TT) were identified. Ducks were genotyped using novel specific primers and probes to rapidly screen their single-nucleotide polymorphisms. The results indicated that ducks with the CC genotype of g.366T > C exhibited the highest fertility among the CC, CT, and TT genotypes (p < 0.05). No significant difference was found in the fertile period and hatchability among three genotypes of g.366T > C. Moreover, no association was found between g.182G > T genotypes and the three reproductive phenotypes examined in this study. Collectively, the otx2 g.366T > C genotype is associated with duck females, and can be used as a marker for farming a flock of ducks with high fertility, as well as for genetic selection of breeders.
Collapse
Affiliation(s)
- Hsiu-Lin Huang
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Hsiao-Lung Liu
- Livestock Research Institute, Council of Agriculture, Hsin-Hua, Tainan, 712, Taiwan
| | - Yu-Shin Cheng
- Livestock Research Institute, Council of Agriculture, Hsin-Hua, Tainan, 712, Taiwan
| |
Collapse
|
6
|
The transcription factor complex LMO2/TAL1 regulates branching and endothelial cell migration in sprouting angiogenesis. Sci Rep 2022; 12:7226. [PMID: 35508511 PMCID: PMC9068620 DOI: 10.1038/s41598-022-11297-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The transcription factor complex, consisting of LMO2, TAL1 or LYL1, and GATA2, plays an important role in capillary sprouting by regulating VEGFR2, DLL4, and angiopoietin 2 in tip cells. Overexpression of the basic helix-loop-helix transcription factor LYL1 in transgenic mice results in shortened tails. This phenotype is associated with vessel hyperbranching and a relative paucity of straight vessels due to DLL4 downregulation in tip cells by forming aberrant complex consisting of LMO2 and LYL1. Knockdown of LMO2 or TAL1 inhibits capillary sprouting in spheroid-based angiogenesis assays, which is associated with decreased angiopoietin 2 secretion. In the same assay using mixed TAL1- and LYL1-expressing endothelial cells, TAL1 was found to be primarily located in tip cells, while LYL1-expressing cells tended to occupy the stalk position in sprouts by upregulating VEGFR1 than TAL1. Thus, the interaction between LMO2 and TAL1 in tip cells plays a key role in angiogenic switch of sprouting angiogenesis.
Collapse
|
7
|
Conversion of a Non-Cancer-Selective Promoter into a Cancer-Selective Promoter. Cancers (Basel) 2022; 14:cancers14061497. [PMID: 35326649 PMCID: PMC8946048 DOI: 10.3390/cancers14061497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The rat progression elevated gene-3 (PEG-3) promoter displays cancer-selective expression, whereas the rat growth arrest and DNA damage inducible gene-34 (GADD34) promoter lacks cancer specificity. PEG-3 and GADD34 minimal promoters display strong sequence homology except for two single point mutations. Since mutations are prevalent in many gene promoters resulting in significant alterations in promoter specificity and activity, we have explored the relevance of these two nucleotide alterations in determining cancer-selective gene expression. We demonstrate that these two point mutations are required to transform a non-cancer-specific promoter (pGADD) into a cancer-selective promoter (pGAPE). Additionally, we found GATA2 transcription factor binding sites in the GAPE-Prom, which regulates pGAPE activity selectively in cancer cells. This newly created pGAPE has all the necessary elements making it an appropriate genetic tool to noninvasively deliver imaging agents to follow tumor growth and progression to metastasis and for generating conditionally replicating adenoviruses that can express and deliver their payload exclusively in cancer. Abstract Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at −260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.
Collapse
|
8
|
VEGF-A, VEGFR1 and VEGFR2 single nucleotide polymorphisms and outcomes from the AGITG MAX trial of capecitabine, bevacizumab and mitomycin C in metastatic colorectal cancer. Sci Rep 2022; 12:1238. [PMID: 35075138 PMCID: PMC8786898 DOI: 10.1038/s41598-021-03952-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
The phase III MAX clinical trial randomised patients with metastatic colorectal cancer (mCRC) to receive first-line capecitabine chemotherapy alone or in combination with the anti-VEGF-A antibody bevacizumab (± mitomycin C). We utilised this cohort to examine whether single nucleotide polymorphisms (SNPs) in VEGF-A, VEGFR1, and VEGFR2 are predictive of efficacy outcomes with bevacizumab or the development of hypertension. Genomic DNA extracted from archival FFPE tissue for 325 patients (69% of the MAX trial population) was used to genotype 16 candidate SNPs in VEGF-A, VEGFR1, and VEGFR2, which were analysed for associations with efficacy outcomes and hypertension. The VEGF-A rs25648 ‘CC’ genotype was prognostic for improved PFS (HR 0.65, 95% CI 0.49 to 0.85; P = 0.002) and OS (HR 0.70, 95% CI 0.52 to 0.94; P = 0.019). The VEGF-A rs699947 ‘AA’ genotype was prognostic for shorter PFS (HR 1.32, 95% CI 1.002 to 1.74; P = 0.048). None of the analysed SNPs were predictive of bevacizumab efficacy outcomes. VEGFR2 rs11133360 ‘TT’ was associated with a lower risk of grade ≥ 3 hypertension (P = 0.028). SNPs in VEGF-A, VEGFR1 and VEGFR2 did not predict bevacizumab benefit. However, VEGF-A rs25648 and rs699947 were identified as novel prognostic biomarkers and VEGFR2 rs11133360 was associated with less grade ≥ 3 hypertension.
Collapse
|
9
|
Zeng G, Wang T, Zhang J, Kang YJ, Feng L. FLI1 mediates the selective expression of hypoxia-inducible factor 1 target genes in endothelial cells under hypoxic conditions. FEBS Open Bio 2021. [PMID: 34102031 PMCID: PMC8329784 DOI: 10.1002/2211-5463.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
The selective expression of hypoxia‐inducible factor (HIF) target genes in different physiological and pathological environments forms the basis for cellular adaptation to hypoxia in development and disease. Several E26 transformation‐specific (ETS) transcription factors have been shown to specifically regulate the expression of a subset of HIF‐2 target genes. However, it is unknown whether there are ETS factors that specifically regulate hypoxia‐induced HIF‐1 target genes. The present study was undertaken to explore whether friend leukemia integration 1 (FLI1), an ETS transcription factor, regulates the expression of HIF‐1 target genes. To investigate this possibility, EA.hy926 cells were exposed to 20% O2 (normoxia) or 1% O2 (hypoxia). Western blotting, immunofluorescence staining, and RT‐qPCR revealed that FLI1 mRNA and protein levels increased slightly and that the FLI1 protein co‐localized with HIF‐1α in the nucleus under hypoxic conditions. Further analysis showed that, in the absence of FLI1, the hypoxia‐mediated induction of HIF‐1 target genes was selectively inhibited. The results from immunoprecipitation and luciferase reporter assays indicated that FLI1 cooperates with HIF‐1α and is required for the transcriptional activation of a subset of HIF‐1 target genes with a core promoter region containing FBS in proximity to a functional hypoxia response element (HRE). Furthermore, ChIP analysis further confirmed the direct interaction between FLI1 and the promoter region of FLI1‐dependent HIF‐1 target genes under hypoxia. Together, this study demonstrates that FLI1 is involved in the transactivation of certain HIF‐1 target genes in endothelial cells under hypoxic conditions.
Collapse
Affiliation(s)
- Guodan Zeng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Li Feng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Gama Sosa MA, De Gasperi R, Perez GM, Hof PR, Elder GA. Hemovasculogenic origin of blood vessels in the developing mouse brain. J Comp Neurol 2021; 529:340-366. [PMID: 32415669 DOI: 10.1002/cne.24951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/20/2023]
Abstract
Vascular structures in the developing brain are thought to form via angiogenesis from preformed blood vessels in the cephalic mesenchyme. Immunohistochemical studies of developing mouse brain from E10.5 to E13.5 revealed the presence of avascular blood islands of primitive erythroid cells expressing hemangioblast markers (Flk1, Tal1/Scl1, platelet endothelial cell adhesion molecule 1, vascular endothelial-cadherin, and CD34) and an endothelial marker recognized by Griffonia simplicifolia isolectin B4 (IB4) in the cephalic mesenchyme. These cells formed a perineural vascular plexus from which angiogenic sprouts originated and penetrated the neuroepithelium. In addition, avascular isolated cells expressing primitive erythroid, hemangioblast and endothelial makers were visible in the neuroepithelium where they generated vasculogenic and hemogenic foci. From E10.5 to E13.5, these vasculogenic foci were a source of new blood vessel formation in the developing brain. In vitro, cultured E13.5 brain endothelial cells contained hemogenic endothelial cells capable of generating erythroid cells. Similar cells were present in primary cultures of dissociated cells from E10.5 embryonic head. Our results provide new evidence that the brain vasculature, like that of the yolk sac and the eye choriocapillaris and hyaloid vascular systems, develops at least in part via hemovasculogenesis, a process in which vasculogenesis and hematopoiesis occur simultaneously.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
11
|
Neal A, Nornes S, Louphrasitthiphol P, Sacilotto N, Preston MD, Fleisinger L, Payne S, De Val S. ETS factors are required but not sufficient for specific patterns of enhancer activity in different endothelial subtypes. Dev Biol 2021; 473:1-14. [PMID: 33453264 PMCID: PMC8026812 DOI: 10.1016/j.ydbio.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Correct vascular differentiation requires distinct patterns of gene expression in different subtypes of endothelial cells. Members of the ETS transcription factor family are essential for the transcriptional activation of arterial and angiogenesis-specific gene regulatory elements, leading to the hypothesis that they play lineage-defining roles in arterial and angiogenic differentiation directly downstream of VEGFA signalling. However, an alternative explanation is that ETS binding at enhancers and promoters is a general requirement for activation of many endothelial genes regardless of expression pattern, with subtype-specificity provided by additional factors. Here we use analysis of Ephb4 and Coup-TFII (Nr2f2) vein-specific enhancers to demonstrate that ETS factors are equally essential for vein, arterial and angiogenic-specific enhancer activity patterns. Further, we show that ETS factor binding at these vein-specific enhancers is enriched by VEGFA signalling, similar to that seen at arterial and angiogenic enhancers. However, while arterial and angiogenic enhancers can be activated by VEGFA in vivo, the Ephb4 and Coup-TFII venous enhancers are not, suggesting that the specificity of VEGFA-induced arterial and angiogenic enhancer activity occurs via non-ETS transcription factors. These results support a model in which ETS factors are not the primary regulators of specific patterns of gene expression in different endothelial subtypes. Vein-specific enhancers can contain essential ETS motifs. VEGFA induced an increase in ETS binding at vein, arterial and angiogenic enhancers. VEGFA stimulation cannot induce vein-specific enhancer activity.
Collapse
Affiliation(s)
- Alice Neal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| | - Svanhild Nornes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Natalia Sacilotto
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Mark D Preston
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QG, United Kingdom
| | - Lucija Fleisinger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Sophie Payne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom.
| |
Collapse
|
12
|
Casie Chetty S, Sumanas S. Ets1 functions partially redundantly with Etv2 to promote embryonic vasculogenesis and angiogenesis in zebrafish. Dev Biol 2020; 465:11-22. [PMID: 32628937 DOI: 10.1016/j.ydbio.2020.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
ETS transcription factors play an important role in the specification and differentiation of endothelial cells during vascular development. Despite previous studies, the role of the founding member of the ETS family, Ets1, in vascular development in vivo is only partially understood. Here, we generated a zebrafish ets1 mutant by TALEN genome editing and tested functional redundancy between Ets1 and a related ETS factor Etv2/Etsrp/ER71. While zebrafish ets1-/- mutants have a normal functional vascular system, etv2-/-;ets1-/embryos had more severe angiogenic defects and lower expression levels of kdr and kdrl, the two zebrafish homologs of the mammalian Vascular Endothelial Growth Factor Receptor 2 VEGFR2/Flk1, than etv2-/-embryos. Expression of constitutively active Mitogen-Activated Protein Kinase1 (MAP2K1) within endothelial cells partially rescued this angiogenic defect. Interestingly, ets1-/- embryos displayed extensive apoptosis within the trunk vasculature despite exhibiting normal vascular patterning. Loss of Ets1 combined with a partial knockdown of Etv2 function resulted in a decrease in endothelial cell numbers in the axial vasculature, which argues for a role of Ets1 in promoting vasculogenesis. We also demonstrate that although both Ets1 and Etv2 can induce ectopic vascular marker expression in zebrafish embryos, Ets1 activity is dependent on MAPK-mediated phosphorylation of its Thr30 and Ser33 residues, while Etv2 activity is not. Together, our results identify a novel function of Ets1 in regulating endothelial cell survival during vasculogenesis in vivo. Based on these findings, we propose a revised model of how Ets1 and Etv2 play unique and partially redundant roles to promote vascular development.
Collapse
Affiliation(s)
- Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Ribatti D. The discovery of the fundamental role of VEGF in the development of the vascular system. Mech Dev 2019; 160:103579. [DOI: 10.1016/j.mod.2019.103579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
|
14
|
Izadpanah P, Khabbzi E, Erfanian S, Jafaripour S, Shojaie M. Case-control study on the association between the GATA2 gene and premature myocardial infarction in the Iranian population. Herz 2019; 46:71-75. [PMID: 31468074 DOI: 10.1007/s00059-019-04841-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
In recent decades, due to the high prevalence of coronary artery disease (CAD) and myocardial infarction (MI), numerous studies have attempted to elucidate genetic contributing factors in these complex disorders. A very interesting gene in this regard is GATA-binding protein 2 (GATA2), an important regulator of various gene expressions in vascular endothelial cells. Accordingly, the association of different GATA2 polymorphisms with CAD and MI has already been evaluated. Rs2713604 is a genetic marker whose association with CAD has not been reproduced in previous studies. Considering the importance of replicating the initial association, the present case-control study aimed to examine the association of this intronic variant with premature MI in a sample of the Iranian population. In this study, 193 participants from Jahrom Hospital (Jahrom, Iran) were consecutively recruited during a 1.5-year period, and, following blood sampling, genomic DNA was extracted. We then proceeded to genotype rs2713604 using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and statistically analyzed the data. After adjustment for hyperlipidemia, hypertension, and type 2 diabetes mellitus, the results of the multivariate regression analysis showed no significant association between rs2713604 and premature MI. Interestingly, the risk allele (A-allele) of rs2713604 displayed a slightly higher frequency among controls compared to cases.
Collapse
Affiliation(s)
- Peyman Izadpanah
- Cardiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khabbzi
- School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saiedeh Erfanian
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran. .,Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Motahhari Street, 74148-46199, Jahrom, Iran.
| | - Simin Jafaripour
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Vakil abad Blv., 99191-91778, Mashhad, Iran.
| | - Mohammad Shojaie
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
15
|
Whigham CA, MacDonald TM, Walker SP, Pritchard N, Hannan NJ, Cannon P, Nguyen TV, Hastie R, Tong S, Kaitu'u-Lino TJ. Circulating GATA2 mRNA is decreased among women destined to develop preeclampsia and may be of endothelial origin. Sci Rep 2019; 9:235. [PMID: 30659233 PMCID: PMC6338784 DOI: 10.1038/s41598-018-36645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia is a pregnancy complication associated with elevated placental secretion of anti-angiogenic factors, maternal endothelial dysfunction and organ injury. GATA2 is a transcription factor expressed in the endothelium which regulates vascular homeostasis by controlling transcription of genes and microRNAs, including endothelial miR126. We assessed GATA2 and miR126 in preeclampsia. Whole blood circulating GATA2 mRNA and miR126 expression were significantly decreased in women with established early-onset preeclampsia compared to gestation-matched controls (p = 0.002, p < 0.0001, respectively). Using case-control groups selected from a large prospective cohort, whole blood circulating GATA2 mRNA at both 28 and 36 weeks' gestation was significantly reduced prior to the clinical diagnosis of preeclampsia (p = 0.012, p = 0.015 respectively). There were no differences in GATA2 mRNA or protein expression in preeclamptic placentas compared to controls, suggesting the placenta is an unlikely source. Inducing endothelial dysfunction in vitro by administering either tumour necrosis factor-α or placenta-conditioned media to endothelial cells, significantly reduced GATA2 mRNA expression (p < 0.0001), suggesting the reduced levels of circulating GATA2 mRNA may be of endothelial origin. Circulating GATA2 mRNA is decreased in women with established preeclampsia and decreased up to 12 weeks preceding onset of disease. Circulating mRNAs of endothelial origin may be a novel source of biomarker discovery for preeclampsia.
Collapse
Affiliation(s)
- Carole-Anne Whigham
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia. .,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Roxanne Hastie
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
16
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Duan Y, Wu X, Zhao Q, Gao J, Huo D, Liu X, Ye Z, Dong X, Fu Z, Shang Y, Xuan C. DOT1L promotes angiogenesis through cooperative regulation of VEGFR2 with ETS-1. Oncotarget 2018; 7:69674-69687. [PMID: 27626484 PMCID: PMC5342507 DOI: 10.18632/oncotarget.11939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/02/2016] [Indexed: 01/16/2023] Open
Abstract
Histone methyltransferase DOT1L is implicated in various biological processes including cell proliferation, differentiation and embryogenesis. Gene ablation of Dot1l results in embryonic lethality and cardiovascular defects including decreased vasculature. However, how DOT1L might contribute to the development of vasculature is not clear. Here, we report that DOT1L is required for angiogenesis. We demonstrated that silencing of DOT1L in human umbilical vein endothelial cells (HUVECs) leads to decreased cell viability, migration, tube formation, and capillary sprout formation in vitro, as well as reduced formation of functional vascular networks in matrigel plugs in vivo. Genome-wide analysis of DOT1L targets via H3K79me2 ChIP-seq annotation in HUVECs identified a number of genes including VEGFR2 that are critically involved in angiogenesis. We showed that DOT1L cooperates with transcription factor ETS-1 to stimulate the expression of VEGFR2, thereby activating ERK1/2 and AKT signaling pathways and promoting angiogenesis. Our study revealed a mechanistic role for DOT1L in the promotion of angiogenesis, adding to the understanding of the biological function of this histone methyltransferase.
Collapse
Affiliation(s)
- Yang Duan
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Wu
- Geneseeq Technology Inc., Toronto, M5G1L7, Canada
| | - Qiang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Gao
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Dawei Huo
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xinhua Liu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zheng Ye
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xu Dong
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zheng Fu
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yongfeng Shang
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Chenghao Xuan
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
18
|
Harding A, Cortez-Toledo E, Magner NL, Beegle JR, Coleal-Bergum DP, Hao D, Wang A, Nolta JA, Zhou P. Highly Efficient Differentiation of Endothelial Cells from Pluripotent Stem Cells Requires the MAPK and the PI3K Pathways. Stem Cells 2017; 35:909-919. [PMID: 28248004 DOI: 10.1002/stem.2577] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells are a promising source of endothelial cells (ECs) for the treatment of vascular diseases. We have developed a robust protocol to differentiate human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) into ECs with high purities (94%-97% CD31+ and 78%-83% VE-cadherin+ ) in 8 days without cell sorting. Passaging of these cells yielded a nearly pure population of ECs (99% of CD31+ and 96.8% VE-cadherin+ ). These ECs also expressed other endothelial markers vWF, Tie2, NOS3, and exhibited functions of ECs such as uptake of Dil-acetylated low-density lipoprotein and formation of tubes in vitro or vessels in vivo on matrigel. We found that FGF2, VEGF, and BMP4 synergistically induced early vascular progenitors (VPs) from hiPSC-derived mesodermal cells. The MAPK and PI3K pathways are crucial not only for the initial commitment to vascular lineages but also for the differentiation of vascular progenitors to ECs, most likely through regulation of the ETS family transcription factors, ERG and FLI1. We revealed novel roles of the p38 and JNK MAPK pathways on EC differentiation. Furthermore, inhibition of the ERK pathway markedly promoted the differentiation of smooth muscle cells. Finally, we demonstrate that pluripotent stem cell-derived ECs are capable of forming patent blood vessels that were connected to the host vasculature in the ischemic limbs of immune deficient mice. Thus, we demonstrate that ECs can be efficiently derived from hiPSCs and hESCs, and have great potential for vascular therapy as well as for mechanistic studies of EC differentiation. Stem Cells 2017;35:909-919.
Collapse
Affiliation(s)
- Aja Harding
- Department of Internal Medicine, Stem Cell Program.,Department of Biological Sciences, Humboldt State University, Arcata, California, USA
| | | | | | | | | | - Dake Hao
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Jan A Nolta
- Department of Internal Medicine, Stem Cell Program
| | - Ping Zhou
- Department of Internal Medicine, Stem Cell Program
| |
Collapse
|
19
|
Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol 2017; 14:38-48. [PMID: 27872477 PMCID: PMC5489122 DOI: 10.1038/nrurol.2016.225] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marc Carceles-Cordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yujin Hoshida
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Matthew D Galsky
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Josep Domingo-Domenech
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
20
|
Allipour Birgani S, Mailänder M, Wasle I, Dietrich H, Gruber J, Distler O, Sgonc R. Efficient therapy of ischaemic lesions with VEGF121-fibrin in an animal model of systemic sclerosis. Ann Rheum Dis 2016; 75:1399-406. [PMID: 26362758 PMCID: PMC4766736 DOI: 10.1136/annrheumdis-2015-207548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/01/2015] [Accepted: 08/01/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND In systemic sclerosis (SSc), chronic and uncontrolled overexpression of vascular endothelial growth factor (VEGF) results in chaotic vessels, and intractable fingertip ulcers. Vice versa, VEGF is a potent mediator of angiogenesis if temporally and spatially controlled. We have addressed this therapeutic dilemma in SSc by a novel approach using a VEGF121 variant that covalently binds to fibrin and gets released on demand by cellular enzymatic activity. Using University of California at Davis (UCD)-206 chickens, we tested the hypothesis that cell-demanded release of fibrin-bound VEGF121 leads to the formation of stable blood vessels, and clinical improvement of ischaemic lesions. METHODS Ninety-one early and late ischaemic comb and neck skin lesions of UCD-206 chickens were treated locally with VEGF121-fibrin, fibrin alone, or left untreated. After 1 week of treatment the clinical outcome was assessed. Angiogenesis was studied by immunofluorescence staining of vascular markers quantitatively analysed using TissueQuest. RESULTS Overall, 79.3% of the lesions treated with VEGF121-fibrin showed clinical improvement, whereas 71.0% of fibrin treated controls, and 93.1% of untreated lesions deteriorated. This was accompanied by significantly increased growth of stable microvessels, upregulation of the proangiogenic VEGFR-2 and its regulator TAL-1, and increase of endogenous endothelial VEGF expression. CONCLUSIONS Our findings in the avian model of SSc suggest that cell-demanded release of VEGF121 from fibrin matrix induces controlled angiogenesis by differential regulation of VEGFR-1 and VEGFR-2 expression, shifting the balance towards the proangiogenic VEGFR-2. The study shows the potential of covalently conjugated VEGF-fibrin matrices for the therapy of ischaemic lesions such as fingertip ulcers.
Collapse
Affiliation(s)
- Shadab Allipour Birgani
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Mailänder
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ines Wasle
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Dietrich
- Central Laboratory Animal Facilities, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Gruber
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Roswitha Sgonc
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Craig MP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis 2016; 19:275-85. [PMID: 27126901 DOI: 10.1007/s10456-016-9511-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
22
|
Testoni M, Chung EYL, Priebe V, Bertoni F. The transcription factor ETS1 in lymphomas: friend or foe? Leuk Lymphoma 2015; 56:1975-80. [PMID: 25363344 DOI: 10.3109/10428194.2014.981670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ETS1 is a member of the ETS family of transcription factors, which contains many cancer genes. ETS1 gene is mapped at 11q24.3, a chromosomal region that is often the site of genomic rearrangements in hematological cancers. ETS1 is expressed in a variety of cells, including B and T lymphocytes. ETS1 is important in various biological processes such as development, differentiation, proliferation, apoptosis, migration and tissue remodeling. It acts as an oncogene controlling invasive and angiogenic behavior of malignant cells in multiple human cancers. In particular, ETS1 deregulation has been reported in diffuse large B-cell lymphoma, in Burkitt lymphoma and in Hodgkin lymphoma. Here, we summarize the function of ETS1 in normal cells, with a particular emphasis on lymphocytes, and its possible role as an oncogene or tumor suppressor gene in the different mature B cell lymphomas.
Collapse
Affiliation(s)
- Monica Testoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research , Bellinzona , Switzerland
| | | | | | | |
Collapse
|
23
|
OVOL2 is a critical regulator of ER71/ETV2 in generating FLK1+, hematopoietic, and endothelial cells from embryonic stem cells. Blood 2014; 124:2948-52. [PMID: 25267199 DOI: 10.1182/blood-2014-03-556332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we report that OVOL2, a C2H2 zinc finger protein, is a novel binding protein of ER71, which is a critical transcription factor for blood and vessel development. OVOL2 directly interacted with ER71, but not with ETS1 or ETS2, in the nucleus. ER71-mediated activation of the Flk1 promoter was further enhanced by OVOL2, although OVOL2 alone failed to activate it. Consistently, coexpression of ER71 and OVOL2 in differentiating embryonic stem cells led to a significant augmentation of FLK1(+), endothelial, and hematopoietic cells. Such cooperative effects were impaired by the short hairpin RNA-mediated inhibition of Ovol2. Collectively, we show that ER71 directly interacts with OVOL2 and that such interaction is critical for FLK1(+) cell generation and their differentiation into downstream cell lineages.
Collapse
|
24
|
Affiliation(s)
- Nicolas Ricard
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Michael Simons
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
25
|
Garcia MD, Larina IV. Vascular development and hemodynamic force in the mouse yolk sac. Front Physiol 2014; 5:308. [PMID: 25191274 PMCID: PMC4138559 DOI: 10.3389/fphys.2014.00308] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/29/2014] [Indexed: 11/13/2022] Open
Abstract
Vascular remodeling of the mouse embryonic yolk sac is a highly dynamic process dependent on multiple genetic signaling pathways as well as biomechanical factors regulating proliferation, differentiation, migration, cell-cell, and cell-matrix interactions. During this early developmental window, the initial primitive vascular network of the yolk sac undergoes a dynamic remodeling process concurrent with the onset of blood flow, in which endothelial cells establish a branched, hierarchical structure of large vessels and smaller capillary beds. In this review, we will describe the molecular and biomechanical regulators which guide vascular remodeling in the mouse embryonic yolk sac, as well as live imaging methods for characterizing endothelial cell and hemodynamic function in cultured embryos.
Collapse
Affiliation(s)
- Monica D Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
26
|
Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9. Biochem Biophys Res Commun 2014; 444:158-63. [DOI: 10.1016/j.bbrc.2014.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
|
27
|
Minami T. Genome- and epigenome-wide analysis of endothelial cell activation and inflammation. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
28
|
Kheradpour P, Kellis M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res 2013; 42:2976-87. [PMID: 24335146 PMCID: PMC3950668 DOI: 10.1093/nar/gkt1249] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in technology have led to a dramatic increase in the number of available transcription factor ChIP-seq and ChIP-chip data sets. Understanding the motif content of these data sets is an important step in understanding the underlying mechanisms of regulation. Here we provide a systematic motif analysis for 427 human ChIP-seq data sets using motifs curated from the literature and also discovered de novo using five established motif discovery tools. We use a systematic pipeline for calculating motif enrichment in each data set, providing a principled way for choosing between motif variants found in the literature and for flagging potentially problematic data sets. Our analysis confirms the known specificity of 41 of the 56 analyzed factor groups and reveals motifs of potential cofactors. We also use cell type-specific binding to find factors active in specific conditions. The resource we provide is accessible both for browsing a small number of factors and for performing large-scale systematic analyses. We provide motif matrices, instances and enrichments in each of the ENCODE data sets. The motifs discovered here have been used in parallel studies to validate the specificity of antibodies, understand cooperativity between data sets and measure the variation of motif binding across individuals and species.
Collapse
Affiliation(s)
- Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA and Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02139, USA
| | | |
Collapse
|
29
|
Chen T, Wang J, Xue B, Kong Q, Liu Z, Yu B. Identification and characterization of a novel porcine endothelial cell-specific Tie1 promoter. Xenotransplantation 2013; 20:438-48. [PMID: 24112087 DOI: 10.1111/xen.12059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The use of a transgenic pig for xenotransplantation and as a cardiovascular disease model has caught much attention in the past decades. The vascular endothelial cell is the primary modification target for the application of genetically modified pigs in this field. However, the powerful porcine endothelial cell-specific promoter is still so rare that the mouse and human promoters are commonly used. In the study, the porcine Tie1 (sTie1) promoter was identified and characterized as a potential endothelial cell-specific promoter to generate a cardiovascular disease model. METHODS Tie1 promoters with different lengths of 5'-regulatory regions were cloned, and major putative DNA-binding motifs were mutated by site-directed mutagenesis. All fragments were ligated into the luciferase reporter system and were transiently transfected into endothelial cells to identify luciferase activity using a dual luciferase reporter assay. RESULTS The luciferase activities of sTie1 promoters with different lengths of the 5'-regulatory region were tested. Results showed that the luciferase activity of the 1234-bp sTie1 fragment was the strongest compared with that of others (P < 0.001). Site-directed mutagenesis in transcription-factor-binding sites, including Ets, GATA, and AP2, verified their key roles in regulating transcription, especially sites Ets (-103), GATA (-211), and AP2 (-3). The activities of Tie1 promoters from pig, human, and mouse were significantly different in pig iliac endothelial cells (PIECs) (P < 0.001), and the sTie1 promoter showed the highest activity. Moreover, sTie1 promoter activity could be detected in porcine embryo fibroblasts and skeletal muscle cells. CONCLUSIONS The sTie1 promoter shows a highly conserved sequence compared with the Tie1 promoters in human and mouse, but it has a greater activity in the porcine endothelial cell line than that of human and mouse promoters. Thus, sTie1 will be a valuable tool for generating a pig cardiovascular disease model.
Collapse
Affiliation(s)
- Tao Chen
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China; Cardiology Division, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
30
|
Moore JC, Sheppard-Tindell S, Shestopalov IA, Yamazoe S, Chen JK, Lawson ND. Post-transcriptional mechanisms contribute to Etv2 repression during vascular development. Dev Biol 2013; 384:128-40. [PMID: 24036310 DOI: 10.1016/j.ydbio.2013.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/05/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023]
Abstract
etv2 is an endothelial-specific ETS transcription factor that is essential for vascular differentiation and morphogenesis in vertebrates. While recent data suggest that Etv2 is dynamically regulated during vascular development, little is known about the mechanisms involved in this process. Here, we find that etv2 transcript and protein expression are highly dynamic during zebrafish vascular development, with both apparent during early somitogenesis and subsequently down-regulated as development proceeds. Inducible knockdown of Etv2 in zebrafish embryos prior to mid-somitogenesis stages, but not later, caused severe vascular defects, suggesting a specific role in early commitment of lateral mesoderm to the endothelial linage. Accordingly, Etv2-overexpressing cells showed an enhanced ability to commit to endothelial lineages in mosaic embryos. We further find that the etv2 3' untranslated region (UTR) is capable of repressing an endothelial autonomous transgene and contains binding sites for members of the let-7 family of microRNAs. Ectopic expression of let-7a could repress the etv2 3'UTR in sensor assays and was also able to block endogenous Etv2 protein expression, leading to concomitant reduction of endothelial genes. Finally, we observed that Etv2 protein levels persisted in maternal-zygotic dicer1 mutant embryos, suggesting that microRNAs contribute to its repression during vascular development. Taken together, our results suggest that etv2 acts during early development to specify endothelial lineages and is then down-regulated, in part through post-transcriptional repression by microRNAs, to allow normal vascular development.
Collapse
Affiliation(s)
- John C Moore
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Coma S, Allard-Ratick M, Akino T, van Meeteren LA, Mammoto A, Klagsbrun M. GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via direct transcriptional regulation of neuropilin-2. Angiogenesis 2013; 16:939-52. [PMID: 23892628 DOI: 10.1007/s10456-013-9370-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/15/2013] [Indexed: 12/24/2022]
Abstract
GATA-binding protein 2 (GATA2) and LIM domain only 2 (Lmo2) form common transcription complexes during hematopoietic differentiation. Here we show that these two transcription factors also play a key role in endothelial cells (EC) and lymphatic EC (LEC) function. Primary EC and tumor-associated blood vessels expressed GATA2 and Lmo2. VEGF-induced sprouting angiogenesis in both differentiating embryonic stem cells (embryoid bodies) and primary EC increased GATA2 and Lmo2 levels. Conversely, silencing of GATA2 and Lmo2 expression in primary EC inhibited VEGF-induced angiogenic activity, including EC migration and sprouting in vitro, two key steps of angiogenesis in vivo. This inhibition of EC function was associated with downregulated expression of neuropilin-2 (NRP2), a co-receptor of VEGFRs for VEGF, at the protein, mRNA and promoter levels. NRP2 overexpression partially rescued the impaired angiogenic sprouting in the GATA2/Lmo2 knockdown EC, confirming that GATA2 and Lmo2 mediated EC function, at least in part, by directly regulating NRP2 gene expression. Furthermore, it was found that primary LEC expressed GATA2 and Lmo2 as well. Silencing of GATA2 and Lmo2 expression in LEC inhibited VEGF-induced LEC sprouting, also in a NRP2-dependent manner. In conclusion, our results demonstrate that GATA2 and Lmo2 cooperatively regulate VEGF-induced angiogenesis and lymphangiogenesis via NRP2.
Collapse
Affiliation(s)
- Silvia Coma
- Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Karp Building, Room 12.210, 1 Blackfan Circle, Boston, MA, 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
33
|
Ciau-Uitz A, Pinheiro P, Kirmizitas A, Zuo J, Patient R. VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus. Development 2013; 140:2632-42. [PMID: 23637333 PMCID: PMC3666388 DOI: 10.1242/dev.090829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 01/23/2023]
Abstract
The first haematopoietic stem cells share a common origin with the dorsal aorta and derive from putative adult haemangioblasts in the dorsal lateral plate (DLP) mesoderm. Here we show that the transcription factor (TF) stem cell leukaemia (Scl/Tal1) is crucial for development of these adult haemangioblasts in Xenopus and establish the regulatory cascade controlling its expression. We show that VEGFA produced in the somites is required to initiate adult haemangioblast programming in the adjacent DLP by establishing endogenous VEGFA signalling. This response depends on expression of the VEGF receptor Flk1, driven by Fli1 and Gata2. Scl activation requires synergy between this VEGFA-controlled pathway and a VEGFA-independent pathway controlled by Fli1, Gata2 and Etv2/Etsrp/ER71, which also drives expression of the Scl partner Lmo2. Thus, the two ETS factors Fli1 and Etv6, which drives the VEGFA expression in both somites and the DLP, sit at the top of the adult haemangioblast gene regulatory network (GRN). Furthermore, Gata2 is initially activated by Fli1 but later maintained by another ETS factor, Etv2. We also establish that Flk1 and Etv2 act independently in the two pathways to Scl activation. Thus, detailed temporal, epistatic measurements of key TFs and VEGFA plus its receptor have enabled us to build a Xenopus adult haemangioblast GRN.
Collapse
Affiliation(s)
- Aldo Ciau-Uitz
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Philip Pinheiro
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Arif Kirmizitas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Jie Zuo
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Roger Patient
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| |
Collapse
|
34
|
Yamamizu K, Matsunaga T, Katayama S, Kataoka H, Takayama N, Eto K, Nishikawa SI, Yamashita JK. PKA/CREB signaling triggers initiation of endothelial and hematopoietic cell differentiation via Etv2 induction. Stem Cells 2012; 30:687-96. [PMID: 22267325 DOI: 10.1002/stem.1041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ets family protein Etv2 (also called ER71 or Etsrp) is a key factor for initiation of vascular and blood development from mesodermal cells. However, regulatory mechanisms and inducing signals for Etv2 expression have been largely unknown. Previously, we revealed that cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling enhanced differentiation of vascular progenitors into endothelial cells (ECs) and hematopoietic cells (HPCs) using an embryonic stem cell (ESC) differentiation system. Here, we show that PKA activation in an earlier differentiation stage can trigger EC/HPC differentiation through Etv2 induction. We found Etv2 was markedly upregulated by PKA activation preceding EC and HPC differentiation. We identified two cAMP response element (CRE) sequences in the Etv2 promoter and 5'-untranslated region and confirmed that CRE-binding protein (CREB) directly binds to the CRE sites and activates Etv2 transcription. Expression of a dominant negative form of CREB completely inhibited PKA-elicited Etv2 expression and induction of EC/HPCs from ESCs. Furthermore, blockade of PKA significantly inhibited Etv2 expression in ex vivo whole-embryo culture using Etv2-Venus knockin mice. These data indicated that PKA/CREB pathway is a critical regulator for the initiation of EC/HPC differentiation via Etv2 transcription. This early-stage molecular linkage between a triggering signal and transcriptional cascades for differentiation would provide novel insights in vascular and blood development and cell fate determination.
Collapse
Affiliation(s)
- Kohei Yamamizu
- Laboratory of Stem Cell Differentiation, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Angiopoietin-2 is a direct transcriptional target of TAL1, LYL1 and LMO2 in endothelial cells. PLoS One 2012; 7:e40484. [PMID: 22792348 PMCID: PMC3391236 DOI: 10.1371/journal.pone.0040484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
The two related basic helix–loop-helix, TAL1 and LYL1, and their cofactor LIM-only-2 protein (LMO2) are present in blood and endothelial cells. While their crucial role in early hematopoiesis is well established, their function in endothelial cells and especially in angiogenesis is less understood. Here, we identified ANGIOPOIETIN-2 (ANG-2), which encodes a major regulator of angiogenesis, as a direct transcriptional target of TAL1, LYL1 and LMO2. Knockdown of any of the three transcription factors in human blood and lymphatic endothelial cells caused ANG-2 mRNA and protein down-regulation. Transient transfections showed that the full activity of the ANG-2 promoter required the integrity of a highly conserved Ebox-GATA composite element. Accordingly, chromatin immunoprecipitation assays demonstrated that TAL1, LYL1, LMO2 and GATA2 occupied this region of ANG-2 promoter in human endothelial cells. Furthermore, we showed that LMO2 played a central role in assembling TAL1-E47, LYL1-LYL1 or/and LYL1-TAL1 dimers with GATA2. The resulting complexes were able to activate endogenous ANG-2 expression in endothelial cells as well as in non-endothelial cells. Finally, we showed that ANG-2 gene activation during angiogenesis concurred with the up-regulation of TAL1 and LMO2. Altogether, we identified ANG-2 as a bona fide target gene of LMO2-complexes with TAL1 and/or LYL1, highlighting a new function of the three hematopoietic factors in the endothelial lineage.
Collapse
|
36
|
An X, Jin Y, Philbrick MJ, Wu J, Messmer-Blust A, Song X, Cully BL, He P, Xu M, Duffy HS, Li J. Endothelial cells require related transcription enhancer factor-1 for cell-cell connections through the induction of gap junction proteins. Arterioscler Thromb Vasc Biol 2012; 32:1951-9. [PMID: 22652601 DOI: 10.1161/atvbaha.112.250159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Capillary network formation represents a specialized endothelial cell function and is a prerequisite to establish a continuous vessel lumen. Formation of endothelial cell connections that form the vascular structure is regulated, at least in part, at the transcriptional level. We report here that related transcription enhancer factor-1 (RTEF-1) plays an important role in vascular structure formation. METHODS AND RESULTS Knockdown of RTEF-1 by small interfering RNA or blockage of RTEF-1 function by the transcription enhancer activators domain decreased endothelial connections in a Matrigel assay, whereas overexpression of RTEF-1 in endothelial cells resulted in a significant increase in cell connections and aggregation. In a model of oxygen-induced retinopathy, endothelial-specific RTEF-1 overexpressing mice had enhanced angiogenic sprouting and vascular structure remodeling, resulting in the formation of a denser and more highly interconnected superficial capillary plexus. Mechanistic studies revealed that RTEF-1 induced the expression of functional gap junction proteins including connexin 43, connexin 40, and connexin 37. Blocking connexin 43 function inhibited RTEF-1-induced endothelial cell connections and aggregation. CONCLUSIONS These findings provide novel insights into the transcriptional control of endothelial function in the coordination of cell-cell connections.
Collapse
Affiliation(s)
- Xiaojin An
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 2011; 119:1283-91. [PMID: 22147895 DOI: 10.1182/blood-2011-08-374363] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent work has established that heterozygous germline GATA2 mutations predispose carriers to familial myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML), "MonoMAC" syndrome, and DCML deficiency. Here, we describe a previously unreported MDS family carrying a missense GATA2 mutation (p.Thr354Met), one patient with MDS/AML carrying a frameshift GATA2 mutation (p.Leu332Thrfs*53), another with MDS harboring a GATA2 splice site mutation, and 3 patients exhibiting MDS or MDS/AML who have large deletions encompassing the GATA2 locus. Intriguingly, 2 MDS/AML or "MonoMAC" syndrome patients with GATA2 deletions and one with a frameshift mutation also have primary lymphedema. Primary lymphedema occurs as a result of aberrations in the development and/or function of lymphatic vessels, spurring us to investigate whether GATA2 plays a role in the lymphatic vasculature. We demonstrate here that GATA2 protein is present at high levels in lymphatic vessel valves and that GATA2 controls the expression of genes important for programming lymphatic valve development. Our data expand the phenotypes associated with germline GATA2 mutations to include predisposition to primary lymphedema and suggest that complete haploinsufficiency or loss of function of GATA2, rather than missense mutations, is the key predisposing factor for lymphedema onset. Moreover, we reveal a crucial role for GATA2 in lymphatic vascular development.
Collapse
|
38
|
Meadows SM, Myers CT, Krieg PA. Regulation of endothelial cell development by ETS transcription factors. Semin Cell Dev Biol 2011; 22:976-84. [PMID: 21945894 DOI: 10.1016/j.semcdb.2011.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The ETS family of transcription factors plays an essential role in controlling endothelial gene expression. Multiple members of the ETS family are expressed in the developing endothelium and evidence suggests that the proteins function, to some extent, redundantly. However, recent studies have demonstrated a crucial non-redundant role for ETV2, as a primary player in specification and differentiation of the endothelial lineage. Here, we review the contribution of ETS factors, and their partner proteins, to the regulation of embryonic vascular development.
Collapse
Affiliation(s)
- Stryder M Meadows
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States
| | | | | |
Collapse
|
39
|
Epigenetically coordinated GATA2 binding is necessary for endothelium-specific endomucin expression. EMBO J 2011; 30:2582-95. [PMID: 21666600 DOI: 10.1038/emboj.2011.173] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/01/2011] [Indexed: 11/08/2022] Open
Abstract
GATA2 is well recognized as a key transcription factor and regulator of cell-type specificity and differentiation. Here, we carried out comparative chromatin immunoprecipitation with comprehensive sequencing (ChIP-seq) to determine genome-wide occupancy of GATA2 in endothelial cells and erythroids, and compared the occupancy to the respective gene expression profile in each cell type. Although GATA2 was commonly expressed in both cell types, different GATA2 bindings and distinct cell-specific gene expressions were observed. By using the ChIP-seq with epigenetic histone modifications and chromatin conformation capture assays; we elucidated the mechanistic regulation of endothelial-specific GATA2-mediated endomucin gene expression, that was regulated by the endothelial-specific chromatin loop with a GATA2-associated distal enhancer and core promoter. Knockdown of endomucin markedly attenuated endothelial cell growth, migration and tube formation. Moreover, abrogation of GATA2 in endothelium demonstrated not only a reduction of endothelial-specific markers, but also induction of mesenchymal transition promoting gene expression. Our findings provide new insights into the correlation of endothelial-expressed GATA2 binding, epigenetic modification, and the determination of endothelial cell specificity.
Collapse
|
40
|
Kamei CN, Kempf H, Yelin R, Daoud G, James RG, Lassar AB, Tabin CJ, Schultheiss TM. Promotion of avian endothelial cell differentiation by GATA transcription factors. Dev Biol 2011; 353:29-37. [PMID: 21354132 DOI: 10.1016/j.ydbio.2011.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 11/30/2022]
Abstract
In the avian embryo, endothelial cells originate from several sources, including the lateral plate and somite mesoderm. In this study, we show that Gata transcription factors are expressed in the lateral plate and in vasculogenic regions of the avian somite and are able to promote a vascular endothelial fate when ectopically expressed in somite precursors. A fusion of GATA4 to the transcriptional activator VP16 promoted endothelium formation, indicating that GATA transcription factors promote vasculogenesis via activation of downstream targets, while a fusion of GATA4 to the transcriptional repressor engrailed repressed expression of Vascular Endothelial Growth Factor Receptor 2, a marker of endothelial precursors. These findings indicate a role for GATA transcription factors in the differentiation of the endothelium.
Collapse
Affiliation(s)
- Caramai N Kamei
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 2011; 117:3709-19. [PMID: 21239704 DOI: 10.1182/blood-2010-11-316752] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here, we demonstrate a novel, direct-acting, and synergistic role for 3 hematopoietic stem cell cytokines: stem cell factor, interleukin-3, and stromal derived factor-1α, in controlling human endothelial cell (EC) tube morphogenesis, sprouting, and pericyte-induced tube maturation under defined serum-free conditions in 3-dimensional matrices. Angiogenic cytokines such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) alone or VEGF/FGF combinations do not support these responses. In contrast, VEGF and FGF prime EC responses to hematopoietic cytokines via up-regulation of c-Kit, IL-3Rα, and C-X-C chemokine receptor type 4 from either human ECs or embryonic quail vessel explants. In support of these findings, EC Runx1 is demonstrated to be critical in coordinating vascular morphogenic responses by controlling hematopoietic cytokine receptor expression. Combined blockade of hematopoietic cytokines or their receptors in vivo leads to blockade of developmental vascularization in quail embryos manifested by vascular hemorrhage and disrupted vascular remodeling events in multiple tissue beds. This work demonstrates a unique role for hematopoietic stem cell cytokines in vascular tube morphogenesis and sprouting and further demonstrates a novel upstream priming role for VEGF and FGF to facilitate the action of promorphogenic hematopoietic cytokines.
Collapse
|
42
|
Ye D, Yang Q, Li Y, Huang X, Hu J, Qian S, Tan Z, Song P. Gα13 is closely related to hematopoiesis in zebrafish. Mol Biol Rep 2010; 38:2685-94. [PMID: 21113681 DOI: 10.1007/s11033-010-0411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 11/08/2010] [Indexed: 02/02/2023]
Abstract
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) function as signal transducers and control many different physiologic processes. G proteins can be grouped into four families: Gs, Gi, Gq and G12. Gα13 belongs to the G12 family. In zebrafish, there are two isoforms of Gα13: Gα13a and Gα13b. We show here that knockdown of Gα13b in zebrafish results in hematopoietic and angiogenic defects. The Gα13b morphants don't show complete loss of expression of gata1, pu.1 or flk until 35 hpf suggests that Gα13b is closely related to the development of hematopoietic cells. Further studies reveal that blood cells and vascular endothelial cells have undergone apoptosis through a p53-dependent pathway in Gα13b-depleted embryos. Injection of p53 morpholino could partially rescue the phenotype of Gα13b morphants. These data possibly demonstrate a new role for Gα13 in cell survival.
Collapse
Affiliation(s)
- Ding Ye
- Laboratory of Molecular Genetics and Developmental Biology, College of Life Sciences, Wuhan University, Department of Gynaecology, South Central Hospital, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Su L, Zhao H, Sun C, Zhao B, Zhao J, Zhang S, Su H, Miao J. Role of Hmbox1 in endothelial differentiation of bone-marrow stromal cells by a small molecule. ACS Chem Biol 2010; 5:1035-43. [PMID: 20822188 DOI: 10.1021/cb100153r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone marrow stromal cells (BMSCs) play critical roles in repairing endothelium damage. However, the mechanisms underlying BMSC differentiation into vascular endothelial cells (VECs) is not well understood. We aimed to find new factors involved in this process by exploiting a novel chemical inducer in a gene microarray assay. We first identified a novel benzoxazine derivative (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine; ABO) that can induce BMSC differentiation to VECs in a capillary-like tube formation assay, promote analysis of endothelial cell-specific marker expression, and facilitate uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated low-density lipoprotein (Dil-Ac-LDL). Microarray analysis of BMSCs treated with ABO for 4 h revealed changes in only a handful of genes. The only one upregulated was homeobox-containing 1 (Hmbox1) gene, whereas six genes, including IP-10 and others, were downregulated. The upregulation of Hmbox1 and downregulation of IP-10 were confirmed by RT-PCR, quantitative PCR (qPCR), and Western blot analysis. It is reported that IP-10 could suppresse EC differentiation into capillary structures. In this study ABO could not induce BMSC differentiation to VECs in the presence of IP-10. Small interfering RNA knockdown of Hmbox1 blocked ABO-induced BMSC differentiation and increased the level of IP-10 but decreased Ets-1. Thus, ABO is a novel inducer for BMSC differentiation to VECs, and Hmbox1 is a key factor in the differentiation. IP-10 and Ets-1 might be relevant targets of Hmbox1 in BMSC differentiation to VECs. These findings provide information on a novel target and a new platform for further investigating the gene control of BMSC differentiation to VECs.
Collapse
Affiliation(s)
- Le Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - HongLing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - ChunHui Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - ShangLi Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - Hua Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| | - JunYing Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan 250012, China
| |
Collapse
|
44
|
Chan YC, Khanna S, Roy S, Sen CK. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 2010; 286:2047-56. [PMID: 21081489 DOI: 10.1074/jbc.m110.158790] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The miR-200 family plays a crucial role in epithelial to mesenchymal transition via controlling cell migration and polarity. We hypothesized that miR-200b, one miR-200 family member, could regulate angiogenic responses via modulating endothelial cell migration. Delivery of the miR-200b mimic in human microvascular endothelial cells (HMECs) suppressed the angiogenic response, whereas miR-200b-depleted HMECs exhibited elevated angiogenesis in vitro, as evidenced by Matrigel® tube formation and cell migration. Using in silico studies, miR target reporter assay, and Western blot analysis revealed that v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1), a crucial angiogenesis-related transcription factor, serves as a novel direct target of miR-200b. Knocking down endogenous Ets-1 simulated an anti-angiogenic response of the miR-200b mimic-transfected cells. Certain Ets-1-associated genes, namely matrix metalloproteinase 1 and vascular endothelial growth factor receptor 2, were negatively regulated by miR-200b. Overexpression of Ets-1 rescued miR-200b-dependent impairment in angiogenic response and suppression of Ets-1-associated gene expression. Both hypoxia as well as HIF-1α stabilization inhibited miR-200b expression and elevated Ets-1 expression. Experiments to identify how miR-200b modulates angiogenesis under a low oxygen environment illustrated that hypoxia-induced miR-200b down-regulation de-repressed Ets-1 expression to promote angiogenesis. This study provides the first evidence that hypoxia-sensitive miR-200b is involved in induction of angiogenesis via directly targeting Ets-1 in HMECs.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
45
|
Salanga MC, Meadows SM, Myers CT, Krieg PA. ETS family protein ETV2 is required for initiation of the endothelial lineage but not the hematopoietic lineage in the Xenopus embryo. Dev Dyn 2010; 239:1178-87. [PMID: 20235229 DOI: 10.1002/dvdy.22277] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Transcription factors of the ETS family are important regulators of endothelial and hematopoietic development. We have characterized the Xenopus orthologue of the ETS transcription factor, ETV2. Expression analysis shows that etv2 is highly expressed in hematopoietic and endothelial precursor cells in the Xenopus embryo. In gain-of-function experiments, ETV2 is sufficient to activate ectopic expression of vascular endothelial markers. In addition, ETV2 activated expression of hematopoietic genes representing the myeloid but not the erythroid lineage. Loss-of-function studies indicate that ETV2 is required for expression of all endothelial markers examined. However, knockdown of ETV2 has no detectable effects on expression of either myeloid or erythroid markers. This contrasts with studies in mouse and zebrafish where ETV2 is required for development of the myeloid lineage. Our studies confirm an essential role for ETV2 in endothelial development, but also reveal important differences in hematopoietic development between organisms.
Collapse
Affiliation(s)
- Matthew C Salanga
- Department of Cell Biology and Anatomy, Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
46
|
Le Bras A, Samson C, Trentini M, Caetano B, Lelievre E, Mattot V, Beermann F, Soncin F. VE-statin/egfl7 expression in endothelial cells is regulated by a distal enhancer and a proximal promoter under the direct control of Erg and GATA-2. PLoS One 2010; 5:e12156. [PMID: 20808444 PMCID: PMC2922337 DOI: 10.1371/journal.pone.0012156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/20/2010] [Indexed: 11/24/2022] Open
Abstract
Angiogenesis is the process by which new blood vessels arise from existing ones by the budding out of endothelial cell capillaries from the luminal side of blood vessels. Blood vessel formation is essential for organ development during embryogenesis and is associated with several physiological and pathological processes, such as wound healing and tumor development. The VE-statin/egfl7 gene is specifically expressed in endothelial cells during embryonic development and in the adult. We studied here the regulatory mechanisms that control this tissue-specific expression. RT-qPCR analyses showed that the specificity of expression of VE-statin/egfl7 in endothelial cells is not shared with its closest neighbor genes notch1 and agpat2 on the mouse chromosome 2. Chromatin-immunoprecipitation analysis of histone modifications at the VE-statin/egfl7 locus showed that the chromatin is specifically opened in endothelial cells, but not in fibroblasts at the transcription start sites. A 13 kb genomic fragment of promoter was cloned and analyzed by gene reporter assays which showed that two conserved regions are important for the specific expression of VE-statin/egfl7 in endothelial cells; a −8409/−7563 enhancer and the −252/+38 region encompassing the exon-1b transcription start site. The latter contains essential GATA and ETS-binding sites, as assessed by linker-scanning analysis and site-directed mutagenesis. An analysis of expression of the ETS and GATA transcription factors showed that Erg, Fli-1 and GATA-2 are the most highly expressed factors in endothelial cells. Erg and GATA-2 directly control the expression of the endogenous VE-statin/egfl7 while Fli-1 probably exerts an indirect control, as assessed by RNA interference and chromatin immunoprecipitation. This first detailed analysis of the mechanisms that govern the expression of the VE-statin/egfl7 gene in endothelial cells pinpoints the specific importance of ETS and GATA factors in the specific regulation of genes in this cell lineage.
Collapse
Affiliation(s)
- Alexandra Le Bras
- CNRS, Institut de Biologie de Lille, UMR 8161, Equipe labellisée La Ligue, Lille, France
- Université Lille-Nord de France, Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| | - Chantal Samson
- CNRS, Institut de Biologie de Lille, UMR 8161, Equipe labellisée La Ligue, Lille, France
- Université Lille-Nord de France, Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| | - Matteo Trentini
- CNRS, Institut de Biologie de Lille, UMR 8161, Equipe labellisée La Ligue, Lille, France
- Université Lille-Nord de France, Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| | - Bertrand Caetano
- CNRS, Institut de Biologie de Lille, UMR 8161, Equipe labellisée La Ligue, Lille, France
- Université Lille-Nord de France, Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| | - Etienne Lelievre
- CNRS, Institut de Biologie de Lille, UMR 8161, Equipe labellisée La Ligue, Lille, France
- Université Lille-Nord de France, Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| | - Virginie Mattot
- CNRS, Institut de Biologie de Lille, UMR 8161, Equipe labellisée La Ligue, Lille, France
- Université Lille-Nord de France, Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| | - Friedrich Beermann
- Swiss Institute for Experimental Cancer Research (ISREC), Centre de Phénotypage Génomique (CPG), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fabrice Soncin
- CNRS, Institut de Biologie de Lille, UMR 8161, Equipe labellisée La Ligue, Lille, France
- Université Lille-Nord de France, Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
- * E-mail:
| |
Collapse
|
47
|
Immune-related zinc finger gene ZFAT is an essential transcriptional regulator for hematopoietic differentiation in blood islands. Proc Natl Acad Sci U S A 2010; 107:14199-204. [PMID: 20660741 DOI: 10.1073/pnas.1002494107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAL1 plays pivotal roles in vascular and hematopoietic developments through the complex with LMO2 and GATA1. Hemangioblasts, which have a differentiation potential for both endothelial and hematopoietic lineages, arise in the primitive streak and migrate into the yolk sac to form blood islands, where primitive hematopoiesis occurs. ZFAT (a zinc-finger gene in autoimmune thyroid disease susceptibility region/an immune-related transcriptional regulator containing 18 C(2)H(2)-type zinc-finger domains and one AT-hook) was originally identified as an immune-related transcriptional regulator containing 18 C(2)H(2)-type zinc-finger domains and one AT-hook, and is highly conserved among species. ZFAT is thought to be a critical transcription factor involved in immune-regulation and apoptosis; however, developmental roles for ZFAT remain unknown. Here we show that Zfat-deficient (Zfat(-/-)) mice are embryonic-lethal, with impaired differentiation of hematopoietic progenitor cells in blood islands, where ZFAT is exactly expressed. Expression levels of Tal1, Lmo2, and Gata1 in Zfat(-/-) yolk sacs are much reduced compared with those of wild-type mice, and ChIP-PCR analysis revealed that ZFAT binds promoter regions for these genes in vivo. Furthermore, profound reduction in TAL1, LMO2, and GATA1 protein expressions are observed in Zfat(-/-) blood islands. Taken together, these results suggest that ZFAT is indispensable for mouse embryonic development and functions as a critical transcription factor for primitive hematopoiesis through direct-regulation of Tal1, Lmo2, and Gata1. Elucidation of ZFAT functions in hematopoiesis might lead to a better understanding of transcriptional networks in differentiation and cellular programs of hematopoietic lineage and provide useful information for applied medicine in stem cell therapy.
Collapse
|
48
|
Inhibition of endothelial cell activation by bHLH protein E2-2 and its impairment of angiogenesis. Blood 2010; 115:4138-47. [PMID: 20231428 DOI: 10.1182/blood-2009-05-223057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
E2-2 belongs to the basic helix-loop-helix (bHLH) family of transcription factors. E2-2 associates with inhibitor of DNA binding (Id) 1, which is involved in angiogenesis. In this paper, we demonstrate that E2-2 interacts with Id1 and provide evidence that this interaction potentiates angiogenesis. Mutational analysis revealed that the HLH domain of E2-2 is required for the interaction with Id1 and vice versa. In addition, Id1 interfered with E2-2-mediated effects on luciferase reporter activities. Interestingly, injection of E2-2-expressing adenoviruses into Matrigel plugs implanted under the skin blocked in vivo angiogenesis. In contrast, the injection of Id1-expressing adenoviruses rescued E2-2-mediated inhibition of in vivo angiogenic reaction. Consistent with the results of the Matrigel plug assay, E2-2 could inhibit endothelial cell (EC) migration, network formation, and proliferation. On the other hand, knockdown of E2-2 in ECs increased EC migration. The blockade of EC migration by E2-2 was relieved by exogenous expression of Id1. We also demonstrated that E2-2 can perturb VEGFR2 expression via inhibition of VEGFR2 promoter activity. This study suggests that E2-2 can maintain EC quiescence and that Id1 can counter this effect.
Collapse
|
49
|
Abstract
Transcription factors of the ETS family are important regulators of endothelial gene expression. Here, we review the evidence that ETS factors regulate angiogenesis and briefly discuss the target genes and pathways involved. Finally, we discuss novel evidence that shows how these transcription factors act in a combinatorial fashion with others, through composite sites that may be crucial in determining endothelial specificity in gene transcription.
Collapse
|
50
|
Nikolova-Krstevski V, Yuan L, Le Bras A, Vijayaraj P, Kondo M, Gebauer I, Bhasin M, Carman CV, Oettgen P. ERG is required for the differentiation of embryonic stem cells along the endothelial lineage. BMC DEVELOPMENTAL BIOLOGY 2009; 9:72. [PMID: 20030844 PMCID: PMC2803788 DOI: 10.1186/1471-213x-9-72] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 12/23/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The molecular mechanisms that govern stem cell differentiation along the endothelial lineage remain largely unknown. Ets related gene (ERG) has recently been shown to participate in the transcriptional regulation of a number of endothelial specific genes including VE-cadherin (CD144), endoglin, and von Willebrand's Factor (vWF). The specific role of the ETS factor ERG during endothelial differentiation has not been evaluated. RESULTS ERG expression and function were evaluated during the differentiation of embryonic stem cells into embryoid bodies (EB). The results of our study demonstrate that ERG is first expressed in a subpopulation of vascular endothelial growth factor receptor 2 (VEGF-R2) expressing cells that also express VE-cadherin. During ES cell differentiation, ERG expression remains restricted to cells of the endothelial lineage that eventually coalesce into primitive vascular structures within embryoid bodies. ERG also exhibits an endothelial cell (EC)-restricted pattern during embryogenesis. To further define the role of ERG during ES cell differentiation, we used a knockdown strategy to inhibit ERG expression. Delivery of three independent shRNA led to 70-85% reductions in ERG expression during ES cell differentiation compared to no change with control shRNA. ERG knockdown was associated with a marked reduction in the number of ECs, the expression of EC-restricted genes, and the formation of vascular structures. CONCLUSION The ETS factor ERG appears to be a critical regulator of EC differentiation.
Collapse
|