1
|
Mohapatra AK, Todaro AM, Castoldi E. Factor V variants in bleeding and thrombosis. Res Pract Thromb Haemost 2024; 8:102330. [PMID: 38404937 PMCID: PMC10883835 DOI: 10.1016/j.rpth.2024.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
A state-of-the-art lecture titled "Factor V variants in bleeding and thrombosis" was presented at the International Society on Thrombosis and Haemostasis (ISTH) congress in 2023. Blood coagulation is a finely regulated cascade of enzymatic reactions culminating in thrombin formation and fibrin deposition at the site of injury. Factor V (FV) plays a central role in this process, as its activated form is an essential procoagulant cofactor in prothrombin activation. However, other molecular forms of FV act as anticoagulant cofactors of activated protein C and tissue factor pathway inhibitor α, respectively, thereby contributing to the regulation of coagulation. This dual procoagulant and anticoagulant character makes FV a central regulator of the hemostatic balance, and quantitative and qualitative alterations of FV may be associated with an increased risk of bleeding or venous thrombosis. Here, we review the procoagulant and anticoagulant functions of FV and the manifold mechanisms by which F5 gene mutations may affect the balance between these opposite functions and thereby predispose individuals to bleeding or venous thrombosis. In particular, we discuss our current understanding of the 3 main pathological conditions related to FV, namely FV deficiency, activated protein C resistance, and the overexpression of FV-short, a minor splicing isoform of FV with tissue factor pathway inhibitor α-dependent anticoagulant properties and an emerging role as a key regulator of the initiation of coagulation. Finally, we summarize relevant new data on this topic presented during the 2023 ISTH Congress.
Collapse
Affiliation(s)
- Adarsh K. Mohapatra
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Alice M. Todaro
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Elisabetta Castoldi
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Li X, Song X, Mahmood DFD, Sim MMS, Bidarian SJ, Wood JP. Activated protein C, protein S, and tissue factor pathway inhibitor cooperate to inhibit thrombin activation. Thromb Res 2023; 230:84-93. [PMID: 37660436 PMCID: PMC10543463 DOI: 10.1016/j.thromres.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Thrombin, the enzyme which converts fibrinogen into a fibrin clot, is produced by the prothrombinase complex, composed of factor Xa (FXa) and factor Va (FVa). Down-regulation of this process is critical, as excess thrombin can lead to life-threatening thrombotic events. FXa and FVa are inhibited by the anticoagulants tissue factor pathway inhibitor alpha (TFPIα) and activated protein C (APC), respectively, and their common cofactor protein S (PS). However, prothrombinase is resistant to either of these inhibitory systems in isolation. MATERIALS AND METHODS We hypothesized that these anticoagulants function best together, and tested this hypothesis using purified proteins and plasma-based systems. RESULTS In plasma, TFPIα had greater anticoagulant activity in the presence of APC and PS, maximum PS activity required both TFPIα and APC, and antibodies against TFPI and APC had an additive procoagulant effect, which was mimicked by an antibody against PS alone. In purified protein systems, TFPIα dose-dependently inhibited thrombin activation by prothrombinase, but only in the presence of APC, and this activity was enhanced by PS. Conversely, FXa protected FVa from cleavage by APC, even in the presence of PS, and TFPIα reversed this protection. However, prothrombinase assembled on platelets was still protected from inhibition, even in the presence of TFPIα, APC, and PS. CONCLUSIONS We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.
Collapse
Affiliation(s)
- Xian Li
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Xiaohong Song
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Dlovan F D Mahmood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Martha M S Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Sara J Bidarian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Jeremy P Wood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America; Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
3
|
Castoldi E. Making sense of FV short. Blood 2023; 141:3134-3135. [PMID: 37383004 DOI: 10.1182/blood.2023020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
|
4
|
Mohammed BM, Pelc LA, Rau MJ, Di Cera E. Cryo-EM structure of coagulation factor V short. Blood 2023; 141:3215-3225. [PMID: 36862974 PMCID: PMC10356581 DOI: 10.1182/blood.2022019486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Coagulation factor V (fV) is the precursor of activated fV (fVa), an essential component of the prothrombinase complex required for the rapid activation of prothrombin in the penultimate step of the coagulation cascade. In addition, fV regulates the tissue factor pathway inhibitor α (TFPIα) and protein C pathways that inhibit the coagulation response. A recent cryogenic electron microscopy (cryo-EM) structure of fV has revealed the architecture of its A1-A2-B-A3-C1-C2 assembly but left the mechanism that keeps fV in its inactive state unresolved because of an intrinsic disorder in the B domain. A splice variant of fV, fV short, carries a large deletion of the B domain that produces constitutive fVa-like activity and unmasks epitopes for the binding of TFPIα. The cryo-EM structure of fV short was solved at 3.2 Å resolution and revealed the arrangement of the entire A1-A2-B-A3-C1-C2 assembly. The shorter B domain stretches across the entire width of the protein, making contacts with the A1, A2, and A3 domains but suspended over the C1 and C2 domains. In the portion distal to the splice site, several hydrophobic clusters and acidic residues provide a potential binding site for the basic C-terminal end of TFPIα. In fV, these epitopes may bind intramolecularly to the basic region of the B domain. The cryo-EM structure reported in this study advances our understanding of the mechanism that keeps fV in its inactive state, provides new targets for mutagenesis and facilitates future structural analysis of fV short in complex with TFPIα, protein S, and fXa.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Dahlbäck B. Natural anticoagulant discovery, the gift that keeps on giving: finding FV-Short. J Thromb Haemost 2023; 21:716-727. [PMID: 36746318 DOI: 10.1016/j.jtha.2023.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
The complex reactions of blood coagulation are balanced by several natural anticoagulants resulting in tuned hemostasis. During several decades, the knowledge base of the natural anticoagulants has greatly increased and we have also learned about antiinflammatory and cytoprotective activities expressed by antithrombin and activated protein C (APC). Some coagulation proteins have also been found to function as anticoagulants; e.g., thrombin when bound to thrombomodulin activates protein C. Another example is factor V (FV), which in addition to being a procofactor to FVa has emerged as an anticoagulant. The discovery of APC resistance, caused by FVLeiden, as a thrombosis risk factor resulted in the identification of FV as an APC cofactor working in synergy with protein S in the regulation of FVIIIa in the Xase complex. More recently, a natural anticoagulant FV splice isoform (FV-Short) was discovered when investigating the East Texas bleeding disorder. In FV-Short, the truncated B domain exposes a high-affinity binding site for tissue factor pathway inhibitor alpha (TFPIα), and together with protein S a high-affinity trimolecular complex is generated. The FXa-inhibitory activity of TFPIα is synergistically stimulated by FV-Short and protein S. The circulating FV-Short/protein S/TFPIα complex concentration is normally low (≈0.2 nM) but provides an anticoagulant threshold. In the East Texas bleeding, the concentration of the complex, and thus the threshold, is increased 10-fold, which results in bleeding manifestations. The anticoagulant properties of FV were discovered during investigations of individual patients and follow the great tradition of bed-to-bench and bench-to-bed research in the coagulation field.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, University Hospital, Lund University, 21428 Malmö, Sweden.
| |
Collapse
|
6
|
Sim MM, Banerjee M, Myint T, Garvy BA, Whiteheart SW, Wood JP. Total Plasma Protein S Is a Prothrombotic Marker in People Living With HIV. J Acquir Immune Defic Syndr 2022; 90:463-471. [PMID: 35616596 PMCID: PMC9246910 DOI: 10.1097/qai.0000000000002994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND HIV-1 infection is associated with multiple procoagulant changes and increased thrombotic risk. Possible mechanisms for this risk include heigthened expression of procoagulant tissue factor (TF) on circulating monocytes, extracellular vesicles, and viral particles and/or acquired deficiency of protein S (PS), a critical cofactor for the anticoagulant protein C (PC). PS deficiency occurs in up to 76% of people living with HIV-1 (PLWH). As increased ex vivo plasma thrombin generation is a strong predictor of mortality, we investigated whether PS and plasma TF are associated with plasma thrombin generation. METHODS We analyzed plasma samples from 9 healthy controls, 17 PLWH on first diagnosis (naive), and 13 PLWH on antiretroviral therapy (ART). Plasma thrombin generation, total and free PS, PC, C4b-binding protein, and TF activity were measured. RESULTS We determined that the plasma thrombin generation assay is insensitive to PS, because of a lack of PC activation, and developed a modified PS-sensitive assay. Total plasma PS was reduced in 58% of the naive and 38% of the ART-treated PLWH samples and correlated with increased thrombin generation in the modified assay. Conversely, plasma TF was not increased in our patient population, suggesting that it does not significantly contribute to ex vivo plasma thrombin generation. CONCLUSION These data suggest that reduced total plasma PS contributes to the thrombotic risk associated with HIV-1 infection and can serve as a prothrombotic biomarker. In addition, our refined thrombin generation assay offers a more sensitive tool to assess the functional consequences of acquired PS deficiency in PLWH.
Collapse
Affiliation(s)
- Martha M.S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Thein Myint
- Division of Infectious Diseases, Department of Internal Medicine, University of Kentucky, Lexington, KY
- Bluegrass Care Clinic, Kentucky Clinic, University of Kentucky, Lexington, KY
| | - Beth A. Garvy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Gill Heart and Vascular Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| |
Collapse
|
7
|
Mast AE, Ruf W. Regulation of coagulation by tissue factor pathway inhibitor: Implications for hemophilia therapy. J Thromb Haemost 2022; 20:1290-1300. [PMID: 35279938 PMCID: PMC9314982 DOI: 10.1111/jth.15697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein that primarily dampens the initiation phase of coagulation before thrombin is generated. As such, TFPI's actions are localized to cells expressing TF and to sites of injury, where it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα and TFPIβ localize to different sites within and surrounding the vasculature. Both forms directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF-FVIIa via their Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes localized to distinct cellular microenvironments and engaging additional cell surface receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, also serves an inhibitor of FXa independent of the TF initiation complex and prevents the formation of an active prothrombinase. This regulation of thrombin generation in the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
Collapse
Affiliation(s)
- Alan E. Mast
- Versiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
- Department of Immunology and MicrobiologyScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
8
|
Peterson JA, Gupta S, Martinez ND, Hardesty B, Maroney SA, Mast AE. Factor V east Texas variant causes bleeding in a three-generation family. J Thromb Haemost 2022; 20:565-573. [PMID: 34847292 PMCID: PMC8885967 DOI: 10.1111/jth.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The factor V east Texas bleeding disorder (FVETBD) is caused by increased plasma tissue factor pathway inhibitor-α (TFPIα) concentration. The underlying cause is a variant in F5 causing alternative splicing within exon 13 and producing FV-short, which tightly binds the C-terminus of TFPIα, prolonging its circulatory half-life. OBJECTIVES To diagnose a family presenting with variable bleeding and laboratory phenotypes. PATIENTS/METHODS Samples were obtained from 17 family members for F5 exon 13 sequencing. Plasma/platelet TFPI and platelet FV were measured by ELISA and/or western blot. Plasma thrombin generation potential was evaluated using calibrated automated thrombography. RESULTS The FVET variant was identified in all family members with bleeding symptoms and associated with elevated plasma TFPIα (4.5- to 13.4-fold) and total TFPI (2- to 3-fold). However, TFPIα and FV-short were not elevated in platelets. TF-initiated thrombin generation in patient plasma was diminished but was restored by a monoclonal anti-TFPI antibody or factor VIIa. TFPIα localized within vascular extracellular matrix in an oral lesion biopsy from an affected family member. CONCLUSIONS Factor V east Texas bleeding disorder was diagnosed in an extended family. The variant was autosomal dominant and highly penetrant. Elevated plasma TFPIα, rather than platelet TFPIα, was likely the primary cause of bleeding. Plasma FV-short did not deplete TFPIα from extracellular matrix. In vitro thrombin generation was restored with an anti-TFPI antibody or factor VIIa suggesting effective therapies may be available. Increased awareness of, and testing for, bleeding disorders associated with F5 exon 13 variants and elevated plasma TFPI are needed.
Collapse
Affiliation(s)
| | - Sweta Gupta
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN USA 46260
| | | | - Brandon Hardesty
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN USA 46260
| | | | - Alan E. Mast
- Versiti, Blood Research Institute, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
9
|
Tchaikovski SN, Thomassen MCLGD, Stickeler E, Bremme K, Rosing J. Resistance to activated protein C and impaired TFPI activity in women with previous hormone-induced venous thromboembolism. Thromb Res 2021; 207:143-149. [PMID: 34634502 DOI: 10.1016/j.thromres.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Hormonal contraception is a well-known risk factor for venous thromboembolism (VTE). APC resistance and impaired functions of protein S and TFPI are thought to play an important role in the pathogenesis of hormone-related VTE. It is unknown, whether women, who develop VTE during hormonal contraception possess a vulnerability in these pathways, making them susceptible to thrombosis. MATERIALS AND METHODS Plasma samples were obtained from 57 premenopausal women in average 15.3 years after hormone-associated VTE and from 31 healthy controls. Thrombin generation at high tissue factor (TF) in the absence and in the presence of activated protein C (APC) and at low TF without and with inhibiting anti-protein S- and anti-TFPI-antibodies was measured via calibrated automated thrombography. RESULTS Women with previous hormone-related thrombosis had higher thrombin generation at low TF, higher APC resistance, protein S- and TFPI ratios, differences: 219.9 nM IIa.min (95%CI:90.4 to 349.3); 1.88 (95%CI:0.71 to 3.05); 0.13 (95%CI:0.01 to 0.26) and 0.19 (95%CI:0.08 to 0.30), respectively. Thrombin generation at high TF without APC did not differ between the groups. Smoking decreased thrombin generation at low TF by -222.6 nM IIa.min (95%CI: -381.1 to -64.1), the APC sensitivity ratio by -2.20 (95%CI: -3.63 to -0.77) and the TFPI ratio by -0.16 (95%CI: -0.29 to -0.03), but did not influence thrombin generation at high TF. DISCUSSION We demonstrated impairment of the protein S/TFPI system and increased APC resistance in women with previous hormone-induced VTE. Smoking decreased thrombin generation at assay conditions, dependent on the function of the TFPI system.
Collapse
Affiliation(s)
- S N Tchaikovski
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Germany; University Clinic for Gynaecology and Obstetrics, Otto von Guericke University Magdeburg, Germany.
| | - M C L G D Thomassen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - E Stickeler
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Germany
| | - K Bremme
- Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Rosing
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| |
Collapse
|
10
|
Ahnström J, Gilbert GE. Factor V mutation illuminates the dominant anticoagulant role and importance of an unidentified platelet modifier. J Thromb Haemost 2021; 19:1168-1170. [PMID: 33880872 DOI: 10.1111/jth.15273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Gary E Gilbert
- Department of Research, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Maintaining extraembryonic expression allows generation of mice with severe tissue factor pathway inhibitor deficiency. Blood Adv 2020; 3:489-498. [PMID: 30755437 DOI: 10.1182/bloodadvances.2018018853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Tissue factor pathway inhibitor (TFPI) is a serine protease with multiple anticoagulant activities. The Kunitz1 (K1) domain of TFPI binds the active site of factor VIIa and is required for inhibition of tissue factor (TF)/factor VIIa catalytic activity. Mice lacking TFPI K1 domain die in utero. TFPI is highly expressed on trophoblast cells of the placenta. We used genetic strategies to selectively ablate exon 4 encoding TFPI K1 domain in the embryo, while maintaining expression in trophoblast cells. This approach resulted in expected Mendelian frequency of TFPI K1 domain-deficient mice. Real-time polymerase chain reaction confirmed 95% to 99% genetic deletion and a similar reduction in transcript expression. Western blotting confirmed the presence of a truncated protein instead of full-length TFPI. Mice with severe TFPI K1 deficiency exhibited elevated thrombin-antithrombin (TAT) levels, frequent fibrin deposition in renal medulla, and increased susceptibility to TF-induced pulmonary embolism. They were fertile, and most lived normal life spans without any overt thrombotic events. Of 43 mice observed, 2 displayed extensive brain ischemia and infarction. We conclude that in contrast to complete absence of TFPI K1 domain, severe deficiency is compatible with in utero development, adult survival, and reproductive functions in mice. Inhibition of TFPI activity is being evaluated as a means of boosting thrombin generation in hemophilia patients. Our results show that in mice severe reduction of TFPI K1 activity is associated with a prothrombotic state without overt developmental outcomes. We note fibrin deposits in the kidney and rare cases of brain ischemia.
Collapse
|
12
|
Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv 2019; 2:2848-2861. [PMID: 30381401 DOI: 10.1182/bloodadvances.2018025411] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Dyslipidemia is a risk factor for clinically significant thrombotic events. In this condition, scavenger receptor CD36 potentiates platelet reactivity through recognition of circulating oxidized lipids. CD36 promotes thrombosis by activating redox-sensitive signaling molecules, such as the MAPK extracellular signal-regulated kinase 5 (ERK5). However, the events downstream of platelet ERK5 are not clear. In this study, we report that oxidized low-density lipoprotein (oxLDL) promotes exposure of procoagulant phosphatidylserine (PSer) on platelet surfaces. Studies using pharmacologic inhibitors indicate that oxLDL-CD36 interaction-induced PSer exposure requires apoptotic caspases in addition to the downstream CD36-signaling molecules Src kinases, hydrogen peroxide, and ERK5. Caspases promote PSer exposure and, subsequently, recruitment of the prothrombinase complex, resulting in the generation of fibrin from the activation of thrombin. Caspase activity was observed when platelets were stimulated with oxLDL. This was prevented by inhibiting CD36 and ERK5. Furthermore, oxLDL potentiates convulxin/glycoprotein VI-mediated fibrin formation by platelets, which was prevented when CD36, ERK5, and caspases were inhibited. Using 2 in vivo arterial thrombosis models in apoE-null hyperlipidemic mice demonstrated enhanced arterial fibrin accumulation upon vessel injury. Importantly, absence of ERK5 in platelets or mice lacking CD36 displayed decreased fibrin accumulation in high-fat diet-fed conditions comparable to that seen in chow diet-fed animals. These findings suggest that platelet signaling through CD36 and ERK5 induces a procoagulant phenotype in the hyperlipidemic environment by enhancing caspase-mediated PSer exposure.
Collapse
|
13
|
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 2018; 16:1941-1952. [PMID: 30030891 DOI: 10.1111/jth.14246] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF's activities in cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G protein-coupled receptors. Additional co-receptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switched between its role in coagulation and cell signaling through thiol-disulfide exchange reactions in the context of physiologically relevant lipid microdomains. Inflammatory mediators, including reactive oxygen species, activators of the inflammasome, and the complement cascade play pivotal roles in TF procoagulant activation on monocytes, macrophages and endothelial cells. We furthermore discuss how TF, intracellular ligands, co-receptors and associated proteases are integrated in PAR-dependent cell signaling pathways controlling innate immunity, cancer and metabolic inflammation. Knowledge of the precise interactions of TF in coagulation and cell signaling is important for understanding effects of new anticoagulants beyond thrombosis and identification of new applications of these drugs for potential additional therapeutic benefits.
Collapse
Affiliation(s)
- H Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET) and National University of Tucumán, Tucumán, Argentina
| | - A S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - W Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- German Center for Cardiovascular Research (DZHK), Partnersite Rhein-Main, Mainz, Germany
| |
Collapse
|
14
|
Use of DOAC Stop for elimination of anticoagulants in the thrombin generation assay. Thromb Res 2018; 170:97-101. [DOI: 10.1016/j.thromres.2018.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
|
15
|
TFPIα interacts with FVa and FXa to inhibit prothrombinase during the initiation of coagulation. Blood Adv 2017; 1:2692-2702. [PMID: 29291252 DOI: 10.1182/bloodadvances.2017011098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue factor pathway inhibitor α (TFPIα) inhibits prothrombinase, the thrombin-generating complex of factor Xa (FXa) and factor Va (FVa), during the initiation of coagulation. This inhibition requires binding of a conserved basic region within TFPIα to a conserved acidic region in FXa-activated and platelet-released FVa. In this study, the contribution of interactions between TFPIα and the FXa active site and FVa heavy chain to prothrombinase inhibition were examined to further define the inhibitory biochemistry. Removal of FXa active site binding by mutation or by deletion of the second Kunitz domain (K2) of TFPIα produced 17- or 34-fold weaker prothrombinase inhibition, respectively, establishing that K2 binding to the FXa active site is required for efficient inhibition. Substitution of the TFPIα basic region uncharged residues (Leu252, Ile253, Thr255) with Ala (TFPI-AAKA) produced 5.8-fold decreased inhibition. This finding was confirmed using a basic region peptide (Leu252-Lys261) and Ala substitution peptides, which established that the uncharged residues are required for prothrombinase inhibitory activity but not for binding the FVa acidic region. This suggests that the uncharged residues mediate a secondary interaction with FVa subsequent to acidic region binding. This secondary interaction seems to be with the FVa heavy chain, because the FV Leiden mutation weakened prothrombinase inhibition by TFPIα but did not alter TFPI-AAKA inhibitory activity. Thus, efficient inhibition of prothrombinase by TFPIα requires at least 3 intermolecular interactions: (1) the TFPIα basic region binds the FVa acidic region, (2) K2 binds the FXa active site, and (3) Leu252-Thr255 binds the FVa heavy chain.
Collapse
|
16
|
Tanratana P, Ellery P, Westmark P, Mast AE, Sheehan JP. Elevated Plasma Factor IXa Activity in Premenopausal Women on Hormonal Contraception. Arterioscler Thromb Vasc Biol 2017; 38:266-274. [PMID: 29097362 DOI: 10.1161/atvbaha.117.309919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Combined oral contraceptives induce a reversible hypercoagulable state with an enhanced risk of venous thromboembolism, but the underlying mechanism(s) remain unclear. Subjects on combined oral contraceptives also demonstrate a characteristic resistance to APC (activated protein C) in the thrombin generation assay. Here, we report the potential role of plasma factor IXa (FIXa) as a mechanism for hormone-induced systemic hypercoagulability. APPROACH AND RESULTS A novel assay was used to determine FIXa activity in plasma samples from volunteer blood donors. Plasma from 36 premenopausal females on hormonal contraception and 35 not on hormonal contraception, 35 postmenopausal females, and 10 males were analyzed for FIXa activity, total PS (protein S), total tissue factor pathway inhibitor (TFPI), and TFPI-α antigen. Premenopausal females on hormonal contraception demonstrated significantly increased FIXa activity and decreased TFPI-α compared with the other groups. Remarkably, FIXa values were not normally distributed in the hormonal contraception group, but skewed toward the high end. Plasma FIXa activity inversely correlated with both TFPI-α and total PS antigen. Ex vivo determination of TF-dependent FIX activation in FV-deficient plasma demonstrated that inhibitory anti-TFPI antibodies enhanced FIXa generation by 2- to 3-fold, whereas addition of 75 nmol/L PS reduced FIXa generation by ≈2-fold. Further, increasing FIXa concentration enhanced APC resistance during TF-triggered plasma thrombin generation. CONCLUSIONS Elevation of plasma FIXa activity in association with reductions in TFPI-α and PS is a potential mechanism for systemic hypercoagulability and resistance to APC in premenopausal females on hormonal contraception.
Collapse
Affiliation(s)
- Pansakorn Tanratana
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Paul Ellery
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Pamela Westmark
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Alan E Mast
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - John P Sheehan
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.).
| |
Collapse
|