1
|
Barrera-Lopez JF, Cumplido-Laso G, Olivera-Gomez M, Garrido-Jimenez S, Diaz-Chamorro S, Mateos-Quiros CM, Benitez DA, Centeno F, Mulero-Navarro S, Roman AC, Carvajal-Gonzalez JM. Early Atf4 activity drives airway club and goblet cell differentiation. Life Sci Alliance 2024; 7:e202302284. [PMID: 38176727 PMCID: PMC10766780 DOI: 10.26508/lsa.202302284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.
Collapse
Affiliation(s)
- Juan F Barrera-Lopez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marcos Olivera-Gomez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Clara M Mateos-Quiros
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Dixan A Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Angel C Roman
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose M Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Chopp LB, Zhu X, Gao Y, Nie J, Singh J, Kumar P, Young KZ, Patel S, Li C, Balmaceno-Criss M, Vacchio MS, Wang MM, Livak F, Merchant JL, Wang L, Kelly MC, Zhu J, Bosselut R. Zfp281 and Zfp148 control CD4 + T cell thymic development and T H2 functions. Sci Immunol 2023; 8:eadi9066. [PMID: 37948511 DOI: 10.1126/sciimmunol.adi9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jatinder Singh
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parimal Kumar
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shil Patel
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Caiyi Li
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Miao C, Du L, Zhang Y, Jia F, Shan L. Novel de novo ZNF148 truncating variant causing autism spectrum disorder, attention deficit hyperactivity disorder, and intellectual disability. Clin Genet 2023; 103:364-368. [PMID: 36444493 DOI: 10.1111/cge.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
ZNF148 gene is a Krüppel-type transcription factor that has transcriptional regulatory function. Heterozygous variant in ZNF148 gene causes an intellectual disability syndrome characterized by global developmental delay, absence, or hypoplasia of corpus callosum, wide intracerebral ventricles, and dysmorphic facial features, while its associations with ASD and ADHD have not been reported. We report a new patient with intellectual disability, autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). The patient had a novel heterozygous truncating variant c.1818dupC (p.Lys607Glnfs*11) in the ZNF148 gene. This variation produces a ZNF148 truncated protein with a deletion of the C-terminal activation domain and may destabilize the protein by affecting the transcriptional activation function. Brain MRI shows normal brain development. Here, we identify a novel ZNF148 heterozygous truncating variant in a patient with distinct phenotypes of ASD and ADHD, which expands the genotype-phenotype spectrum of ZNF148, and indicates ZNF148 is also a potential target gene for ASD.
Collapse
Affiliation(s)
- Chunyue Miao
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Lin Du
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Yu Zhang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Ling Shan
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
4
|
Kim M, Singh M, Lee BK, Hibbs M, Richardson K, Ellies L, Wintle L, Stuart LM, Wang JY, Voon DC, Blancafort P, Wang J, Kim J, Leedman PJ, Woo AJ. A MYC-ZNF148-ID1/3 regulatory axis modulating cancer stem cell traits in aggressive breast cancer. Oncogenesis 2022; 11:60. [PMID: 36207293 PMCID: PMC9546828 DOI: 10.1038/s41389-022-00435-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The MYC proto-oncogene (MYC) is one of the most frequently overexpressed genes in breast cancer that drives cancer stem cell-like traits, resulting in aggressive disease progression and poor prognosis. In this study, we identified zinc finger transcription factor 148 (ZNF148, also called Zfp148 and ZBP-89) as a direct target of MYC. ZNF148 suppressed cell proliferation and migration and was transcriptionally repressed by MYC in breast cancer. Depletion of ZNF148 by short hairpin RNA (shRNA) and CRISPR/Cas9 increased triple-negative breast cancer (TNBC) cell proliferation and migration. Global transcriptome and chromatin occupancy analyses of ZNF148 revealed a central role in inhibiting cancer cell de-differentiation and migration. Mechanistically, we identified the Inhibitor of DNA binding 1 and 3 (ID1, ID3), drivers of cancer stemness and plasticity, as previously uncharacterized targets of transcriptional repression by ZNF148. Silencing of ZNF148 increased the stemness and tumorigenicity in TNBC cells. These findings uncover a previously unknown tumor suppressor role for ZNF148, and a transcriptional regulatory circuitry encompassing MYC, ZNF148, and ID1/3 in driving cancer stem cell traits in aggressive breast cancer.
Collapse
Affiliation(s)
- Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Manjot Singh
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Moira Hibbs
- RPH Research Centre, Royal Perth Hospital, Perth, WA, 6000, Australia
| | - Kirsty Richardson
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
| | - Lesley Ellies
- Division of Pharmacology and Toxicology, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6000, Australia
| | - Larissa Wintle
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
| | - Lisa M Stuart
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
| | - Jenny Y Wang
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dominic C Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, 6000, Australia
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Peter J Leedman
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia.
| | - Andrew J Woo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6000, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6000, Australia.
| |
Collapse
|
5
|
Beveridge DJ, Richardson KL, Epis MR, Brown RAM, Stuart LM, Woo AJ, Leedman PJ. The tumor suppressor miR-642a-5p targets Wilms Tumor 1 gene and cell-cycle progression in prostate cancer. Sci Rep 2021; 11:18003. [PMID: 34504167 PMCID: PMC8429423 DOI: 10.1038/s41598-021-97190-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
RNA-based therapeutics are emerging as innovative options for cancer treatment, with microRNAs being attractive targets for therapy development. We previously implicated microRNA-642a-5p (miR-642a-5p) as a tumor suppressor in prostate cancer (PCa), and here we characterize its mode of action, using 22Rv1 PCa cells. In an in vivo xenograft tumor model, miR-642a-5p induced a significant decrease in tumor growth, compared to negative control. Using RNA-Sequencing, we identified gene targets of miR-642a-5p which were enriched for gene sets controlling cell cycle; downregulated genes included Wilms Tumor 1 gene (WT1), NUAK1, RASSF3 and SKP2; and upregulated genes included IGFBP3 and GPS2. Analysis of PCa patient datasets showed a higher expression of WT1, NUAK1, RASSF3 and SKP2; and a lower expression of GPS2 and IGFBP3 in PCa tissue compared to non-malignant prostate tissue. We confirmed the prostatic oncogene WT1, as a direct target of miR-642a-5p, and treatment of 22Rv1 and LNCaP PCa cells with WT1 siRNA or a small molecule inhibitor of WT1 reduced cell proliferation. Taken together, these data provide insight into the molecular mechanisms by which miR-642a-5p acts as a tumor suppressor in PCa, an effect partially mediated by regulating genes involved in cell cycle control; and restoration of miR-642-5p in PCa could represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Kirsty L Richardson
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Lisa M Stuart
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Andrew J Woo
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia.
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
6
|
Garrido-Jimenez S, Barrera-Lopez JF, Diaz-Chamorro S, Mateos-Quiros CM, Rodriguez-Blanco I, Marquez-Perez FL, Lorenzo MJ, Centeno F, Roman AC, Carvajal-Gonzalez JM. p53 regulation by MDM2 contributes to self-renewal and differentiation of basal stem cells in mouse and human airway epithelium. FASEB J 2021; 35:e21816. [PMID: 34396583 DOI: 10.1096/fj.202100638r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/19/2023]
Abstract
Proper physiological function of mammalian airways requires the differentiation of basal stem cells into secretory or multiciliated cells, among others. In addition, the self-renewal ability of these basal stem cells is crucial for developing a quick response to toxic agents in order to re-establish the epithelial barrier function of the airways. Although these epithelial missions are vital, little is known about those mechanism controlling airway epithelial regeneration in health and disease. p53 has been recently proposed as the guardian of homeostasis, promoting differentiation programs, and antagonizing a de-differentiation program. Here, we exploit mouse and human tracheal epithelial cell culture models to study the role of MDM2-p53 signaling in self-renewal and differentiation in the airway epithelium. We show that p53 protein regulation by MDM2 is crucial for basal stem cell differentiation and to keep proper cell proliferation. Therefore, we suggest that MDM2/p53 interaction modulation is a potential target to control regeneration of the mammalian airway epithelia without massively affecting the epithelium integrity and differentiation potential.
Collapse
Affiliation(s)
- Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Juan Francisco Barrera-Lopez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Selene Diaz-Chamorro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Clara Maria Mateos-Quiros
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | - Maria Jesus Lorenzo
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Centeno
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Angel Carlos Roman
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
7
|
Deen D, Butter F, Daniels DE, Ferrer-Vicens I, Ferguson DCJ, Holland ML, Samara V, Sloane-Stanley JA, Ayyub H, Mann M, Frayne J, Garrick D, Vernimmen D. Identification of the transcription factor MAZ as a regulator of erythropoiesis. Blood Adv 2021; 5:3002-3015. [PMID: 34351390 PMCID: PMC8361462 DOI: 10.1182/bloodadvances.2021004609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Erythropoiesis requires a combination of ubiquitous and tissue-specific transcription factors (TFs). Here, through DNA affinity purification followed by mass spectrometry, we have identified the widely expressed protein MAZ (Myc-associated zinc finger) as a TF that binds to the promoter of the erythroid-specific human α-globin gene. Genome-wide mapping in primary human erythroid cells revealed that MAZ also occupies active promoters as well as GATA1-bound enhancer elements of key erythroid genes. Consistent with an important role during erythropoiesis, knockdown of MAZ reduces α-globin expression in K562 cells and impairs differentiation in primary human erythroid cells. Genetic variants in the MAZ locus are associated with changes in clinically important human erythroid traits. Taken together, these findings reveal the zinc-finger TF MAZ to be a previously unrecognized regulator of the erythroid differentiation program.
Collapse
Affiliation(s)
- Darya Deen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | | | - Michelle L Holland
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Vasiliki Samara
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Jacqueline A Sloane-Stanley
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Helena Ayyub
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - David Garrick
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|