1
|
Yao L, Wang JT, Jayasinghe RG, O'Neal J, Tsai CF, Rettig MP, Song Y, Liu R, Zhao Y, Ibrahim OM, Fiala MA, Fortier JM, Chen S, Gehrs L, Rodrigues FM, Wendl MC, Kohnen D, Shinkle A, Cao S, Foltz SM, Zhou DC, Storrs E, Wyczalkowski MA, Mani S, Goldsmith SR, Zhu Y, Hamilton M, Liu T, Chen F, Vij R, Ding L, DiPersio JF. Single-Cell Discovery and Multiomic Characterization of Therapeutic Targets in Multiple Myeloma. Cancer Res 2023; 83:1214-1233. [PMID: 36779841 PMCID: PMC10102848 DOI: 10.1158/0008-5472.can-22-1769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/10/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Multiple myeloma (MM) is a highly refractory hematologic cancer. Targeted immunotherapy has shown promise in MM but remains hindered by the challenge of identifying specific yet broadly representative tumor markers. We analyzed 53 bone marrow (BM) aspirates from 41 MM patients using an unbiased, high-throughput pipeline for therapeutic target discovery via single-cell transcriptomic profiling, yielding 38 MM marker genes encoding cell-surface proteins and 15 encoding intracellular proteins. Of these, 20 candidate genes were highlighted that are not yet under clinical study, 11 of which were previously uncharacterized as therapeutic targets. The findings were cross-validated using bulk RNA sequencing, flow cytometry, and proteomic mass spectrometry of MM cell lines and patient BM, demonstrating high overall concordance across data types. Independent discovery using bulk RNA sequencing reiterated top candidates, further affirming the ability of single-cell transcriptomics to accurately capture marker expression despite limitations in sample size or sequencing depth. Target dynamics and heterogeneity were further examined using both transcriptomic and immuno-imaging methods. In summary, this study presents a robust and broadly applicable strategy for identifying tumor markers to better inform the development of targeted cancer therapy. SIGNIFICANCE Single-cell transcriptomic profiling and multiomic cross-validation to uncover therapeutic targets identifies 38 myeloma marker genes, including 11 transcribing surface proteins with previously uncharacterized potential for targeted antitumor therapy.
Collapse
Affiliation(s)
- Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Julia T. Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Reyka G. Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Julie O'Neal
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Michael P. Rettig
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yizhe Song
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Omar M. Ibrahim
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Mark A. Fiala
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Julie M. Fortier
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Leah Gehrs
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Michael C. Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel Kohnen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Andrew Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Steven M. Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew A. Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Smrithi Mani
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Scott R. Goldsmith
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ying Zhu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Mark Hamilton
- Multiple Myeloma Research Foundation, Norwalk, Connecticut
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ravi Vij
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - John F. DiPersio
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
2
|
Malise TTA, Nweke EE, Takundwa MM, Fru PF, Thimiri Govinda Raj DB. Treatment Strategies for Multiple Myeloma Treatment and the Role of High-Throughput Screening for Precision Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:167-185. [PMID: 37243923 DOI: 10.1007/5584_2023_775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the past few years, development of approved drug candidates has improved the disease management of multiple myeloma (MM). However, due to drug resistance, some of the patients do not respond positively, while some of the patients acquire drug resistance, thereby these patients eventually relapse. Hence, there are no other therapeutic options for multiple myeloma patients. Therefore, this necessitates a precision-based approach to multiple myeloma therapy. The use of patient's samples to test drug sensitivity to increase efficacy and reduce treatment-related toxicities is the goal of functional precision medicine. Platforms such as high-throughput-based drug repurposing technology can be used to select effective single drug and drug combinations based on the efficacy and toxicity studies within a time frame of couple of weeks. In this article, we describe the clinical and cytogenetic features of MM. We highlight the various treatment strategies and elaborate on the role of high-throughput screening platforms in a precision-based approach towards clinical treatment.
Collapse
Affiliation(s)
| | - Ekene Emmanuel Nweke
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Mutsa M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Pascaline Fonteh Fru
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak B Thimiri Govinda Raj
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa.
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
- Faculty of Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Mann H, Comenzo RL. Evaluating the Therapeutic Potential of Idecabtagene Vicleucel in the Treatment of Multiple Myeloma: Evidence to Date. Onco Targets Ther 2022; 15:799-813. [PMID: 35912273 PMCID: PMC9327779 DOI: 10.2147/ott.s305429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past two decades, significant progress has been made in the diagnosis, risk assessment and treatment of patients with multiple myeloma, translating into remarkable improvements in survival outcomes. Yet, cure remains elusive, and almost all patients eventually experience relapse, particularly those with high-risk and refractory disease. Immune-based approaches have emerged as highly effective therapeutic options that have heralded a new era in the treatment of multiple myeloma. Idecabtagene vicleucel (ide-cel) is one such therapy that employs the use of genetically modified autologous T-cells to redirect immune activation in a tumor-directed fashion. It has yielded impressive responses even in patients with poor-risk disease and is the first chimeric antigen receptor (CAR) T-cell therapy to be approved for treatment in relapsed or refractory multiple myeloma. In this review, we examine the design and pharmacokinetics of ide-cel, audit evidence that led to its incorporation into the current treatment paradigm and provide insight into its clinical utilization with a focus on real-life intricacies.
Collapse
Affiliation(s)
- Hashim Mann
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| | - Raymond L Comenzo
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Ferguson ID, Patiño-Escobar B, Tuomivaara ST, Lin YHT, Nix MA, Leung KK, Kasap C, Ramos E, Nieves Vasquez W, Talbot A, Hale M, Naik A, Kishishita A, Choudhry P, Lopez-Girona A, Miao W, Wong SW, Wolf JL, Martin TG, Shah N, Vandenberg S, Prakash S, Besse L, Driessen C, Posey AD, Mullins RD, Eyquem J, Wells JA, Wiita AP. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat Commun 2022; 13:4121. [PMID: 35840578 PMCID: PMC9287322 DOI: 10.1038/s41467-022-31810-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/30/2022] [Indexed: 12/21/2022] Open
Abstract
The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here, we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline, in drug resistance, and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide, including CD53, CD10, EVI2B, and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally, we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological, therapeutic, and diagnostic understanding of myeloma.
Collapse
Affiliation(s)
- Ian D Ferguson
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Matthew A Nix
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Corynn Kasap
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Wilson Nieves Vasquez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Alexis Talbot
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
- INSERM U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Martina Hale
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Akul Naik
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Audrey Kishishita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Program in Chemistry and Chemical Biology, University of California, San Francisco, CA, USA
| | - Priya Choudhry
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | | | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandy W Wong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Jeffrey L Wolf
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Thomas G Martin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nina Shah
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Scott Vandenberg
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Sonam Prakash
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Lenka Besse
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christoph Driessen
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - R Dyche Mullins
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Justin Eyquem
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Gladstone Institute for Genomic Immunology, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Lopes R, Ferreira BV, Caetano J, Barahona F, Carneiro EA, João C. Boosting Immunity against Multiple Myeloma. Cancers (Basel) 2021; 13:1221. [PMID: 33799565 PMCID: PMC8001641 DOI: 10.3390/cancers13061221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Despite the improvement of patient's outcome obtained by the current use of immunomodulatory drugs, proteasome inhibitors or anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. More recently, the testing in clinical trials of novel drugs such as anti-BCMA CAR-T cells, antibody-drug conjugates or bispecific antibodies broadened the possibility of improving patients' survival. However, thus far, these treatment strategies have not been able to steadily eliminate all malignant cells, and the aim has been to induce a long-term complete response with minimal residual disease (MRD)-negative status. In this sense, approaches that target not only myeloma cells but also the surrounding microenvironment are promising strategies to achieve a sustained MRD negativity with prolonged survival. This review provides an overview of current and future strategies used for immunomodulation of MM focusing on the impact on bone marrow (BM) immunome.
Collapse
Affiliation(s)
- Raquel Lopes
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Bruna Velosa Ferreira
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
| | - Joana Caetano
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Filipa Barahona
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
| | - Cristina João
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
6
|
Nandakumar B, Kumar SK, Dispenzieri A, Buadi FK, Dingli D, Lacy MQ, Hayman SR, Kapoor P, Leung N, Fonder A, Hobbs M, Hwa YL, Muchtar E, Warsame R, Kourelis TV, Russell S, Lust JA, Lin Y, Siddiqui M, Go RS, Jevremovic D, Kyle RA, Gertz MA, Rajkumar SV, Gonsalves WI. Clinical Characteristics and Outcomes of Patients With Primary Plasma Cell Leukemia in the Era of Novel Agent Therapy. Mayo Clin Proc 2021; 96:677-687. [PMID: 33673918 PMCID: PMC7939118 DOI: 10.1016/j.mayocp.2020.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the clinical outcomes of patients with primary plasma cell leukemia (pPCL) defined by 5% or greater clonal circulating plasma cells on peripheral blood smear and treated with novel agent induction therapies. PATIENTS AND METHODS A cohort of 68 patients with pPCL diagnosed at the Mayo Clinic in Rochester, Minnesota, from January 1, 2000, to December 31, 2019, and treated with novel agent induction therapies was evaluated. RESULTS The median follow-up was 46 (95% CI, 41 to 90) months. The median bone marrow plasma cell content was 85% (range, 10% to 100%) and median clonal circulaitng plasma cell percentage on the peripheral blood smear was 26% (range, 5% to 93%). There was a preponderance of t(11;14) primary cytogenetic abnormality in this cohort. The median time to next therapy (TTNT) and overall survival (OS) for all patients with pPCL patients in this cohort was 13 (95% CI, 9 to 17) and 23 (95% CI, 19 to 38) months, respectively. However, when stratified by cytogenetic risk, the median TTNT and OS were 16 and 51 months for standard risk vs 9 and 19 months for high risk (P=.01 for OS). CONCLUSION Primary plasma cell leukemia remains an aggressive disease with poor prognosis despite novel agent-based therapies. Some patients have better than expected survival and this phenomenon may be influenced by the absence of high-risk cytogenetics. Newer treatment regimens are needed to improve the prognosis of this devastating disease.
Collapse
Affiliation(s)
| | | | | | | | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN; Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Amie Fonder
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Miriam Hobbs
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Yi Lisa Hwa
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | | | - John A Lust
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
7
|
Fang Y, Hou J. Immunotherapeutic strategies targeting B cell maturation antigen in multiple myeloma. Mil Med Res 2021; 8:9. [PMID: 33504363 PMCID: PMC7839214 DOI: 10.1186/s40779-021-00302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, and is characterized by the clonal expansion of malignant plasma cells. Despite the recent improvement in patient outcome due to the use of novel therapeutic agents and stem cell transplantation, all patients eventually relapse due to clone evolution. B cell maturation antigen (BCMA) is highly expressed in and specific for MM cells, and has been implicated in the pathogenesis as well as treatment development for MM. In this review, we will summarize representative anti-BCMA immune therapeutic strategies, including BCMA-targeted vaccines, anti-BCMA antibodies and BCMA-targeted CAR cells. Combination of different immunotherapeutic strategies of targeting BCMA, multi-target immune therapeutic strategies, and adding immune modulatory agents to normalize anti-MM immune system in minimal residual disease (MRD) negative patients, will also be discussed.
Collapse
Affiliation(s)
- Yi Fang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
8
|
Rodríguez-Otero P, Prósper F, Alfonso A, Paiva B, Miguel JFS. CAR T-Cells in Multiple Myeloma Are Ready for Prime Time. J Clin Med 2020; 9:E3577. [PMID: 33172026 PMCID: PMC7694626 DOI: 10.3390/jcm9113577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023] Open
Abstract
The survival of patients with multiple myeloma (MM) has been dramatically improved in the last decade thanks to the incorporation of second-generation proteasome inhibitors (PI), immunomodulatory drugs (IMID), and, more recently, anti-CD38 monoclonal antibodies (MoAb). Nevertheless, still, a major proportion of MM patients will relapse, underscoring the need for new therapies in this disease. Moreover, survival in patients failing the current standard of care regimens (including PI, IMIDs, and anti-CD38 MoAb), which is now defined as triple-class refractory, remains dismal, and new drugs with different mechanism of action are needed. B-cell maturation antigen (BCMA)-targeted therapies and in particular chimeric antigen receptor T cell (CAR T-cell) treatment have emerged as promising platforms to overcome refractoriness to conventional drugs. In this manuscript, we review the current available data regarding CAR T-cell therapy for MM, with a special focus on target selection, clinical results, limitations, and future strategies.
Collapse
Affiliation(s)
- Paula Rodríguez-Otero
- Clínica Universidad de Navarra, Centro de investigación médica aplicada (Cima), CIBERONC, IDISNA, 31008 Pamplona, Spain; (F.P.); (A.A.); (B.P.); (J.F.S.M.)
| | | | | | | | | |
Collapse
|
9
|
Skorka K, Ostapinska K, Malesa A, Giannopoulos K. The Application of CAR-T Cells in Haematological Malignancies. Arch Immunol Ther Exp (Warsz) 2020; 68:34. [PMID: 33156409 PMCID: PMC7647970 DOI: 10.1007/s00005-020-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells (CART) remain one of the most advanced and promising forms of adoptive T-cell immunotherapy. CART represent autologous, genetically engineered T lymphocytes expressing CAR, i.e. fusion proteins that combine components and features of T cells as well as antibodies providing their more effective and direct anti-tumour effect. The technology of CART construction is highly advanced in vitro and every element of their structure influence their mechanism of action in vivo. Patients with haematological malignancies are faced with the possibility of disease relapse after the implementation of conventional chemo-immunotherapy. Since the most preferable result of therapy is a partial or complete remission, cancer treatment regimens are constantly being improved and customized to individual patients. This individualization could be ensured by CART therapy. This paper characterized CART strategy in details in terms of their structure, generations, mechanism of action and published the results of clinical trials in haematological malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, chronic lymphocytic leukaemia and multiple myeloma.
Collapse
Affiliation(s)
- Katarzyna Skorka
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Katarzyna Ostapinska
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aneta Malesa
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
10
|
Abramson HN. B-Cell Maturation Antigen (BCMA) as a Target for New Drug Development in Relapsed and/or Refractory Multiple Myeloma. Int J Mol Sci 2020; 21:E5192. [PMID: 32707894 PMCID: PMC7432930 DOI: 10.3390/ijms21155192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
During the past two decades there has been a major shift in the choice of agents to treat multiple myeloma, whether newly diagnosed or in the relapsed/refractory stage. The introduction of new drug classes, such as proteasome inhibitors, immunomodulators, and anti-CD38 and anti-SLAMF7 monoclonal antibodies, coupled with autologous stem cell transplantation, has approximately doubled the disease's five-year survival rate. However, this positive news is tempered by the realization that these measures are not curative and patients eventually relapse and/or become resistant to the drug's effects. Thus, there is a need to discover newer myeloma-driving molecular markers and develop innovative drugs designed to precisely regulate the actions of such putative targets. B cell maturation antigen (BCMA), which is found almost exclusively on the surfaces of malignant plasma cells to the exclusion of other cell types, including their normal counterparts, has emerged as a specific target of interest in this regard. Immunotherapeutic agents have been at the forefront of research designed to block BCMA activity. These agents encompass monoclonal antibodies, such as the drug conjugate belantamab mafodotin; bispecific T-cell engager strategies exemplified by AMG 420; and chimeric antigen receptor (CAR) T-cell therapeutics that include idecabtagene vicleucel (bb2121) and JNJ-68284528.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Challenges for Immunotherapy in Multiple Myeloma: Bone Marrow Microenvironment-Mediated Immune Suppression and Immune Resistance. Cancers (Basel) 2020; 12:cancers12040988. [PMID: 32316450 PMCID: PMC7226482 DOI: 10.3390/cancers12040988] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The power of immunotherapy in the battle of Multiple Myeloma (MM) started with allogeneic stem cell transplantation, and was rediscovered with immunomodulatory drugs and extended with the outstanding results achieved with targeted antibodies. Today, next to powerful antibodies Elotuzumab and Daratumumab, several T-cell-based immunotherapeutic approaches, such as bispecific antibodies and chimeric antigen receptor-transduced T-cells (CAR T-cells) are making their successful entry in the immunotherapy arena with highly promising results in clinical trials. Nonetheless, similar to what is observed in chemotherapy, MM appears capable to escape from immunotherapy, especially through tight interactions with the cells of the bone marrow microenvironment (BM-ME). This review will outline our current understanding on how BM-ME protects MM-cells from immunotherapy through immunosuppression and through induction of intrinsic resistance against cytotoxic effector mechanisms of T- and NK-cells.
Collapse
|
12
|
Abstract
Multiple myeloma (MM), a bone marrow-resident hematological malignancy of plasma cells, has remained largely incurable despite dramatic improvements in patient outcomes in the era of myeloma-targeted and immunomodulatory agents. It has recently become clear that T cells from MM patients are able to recognize and eliminate myeloma, although this is subverted in the majority of patients who eventually succumb to progressive disease. T cell exhaustion and a suppressive bone marrow microenvironment have been implicated in disease progression, and once these are established, immunotherapy appears largely ineffective. Autologous stem cell transplantation (ASCT) is a standard of care in eligible patients and results in immune effects beyond cytoreduction, including lymphodepletion, T cell priming via immunogenic cell death, and inflammation; all occur within the context of a disrupted bone marrow microenvironment. Recent studies suggest that ASCT reestablishes immune equilibrium and thus represents a logical platform in which to intervene to prevent immune escape. New immunotherapies based on checkpoint inhibition targeting the immune receptor TIGIT and the deletion of suppressive myeloid populations appear attractive, particularly after ASCT. Finally, the immunologically favorable environment created after ASCT may also represent an opportunity for approaches utilizing bispecific antibodies or chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Simone A. Minnie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Soekojo CY, Ooi M, de Mel S, Chng WJ. Immunotherapy in Multiple Myeloma. Cells 2020; 9:E601. [PMID: 32138182 PMCID: PMC7140529 DOI: 10.3390/cells9030601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is a complex disease and immune dysfunction has been known to play an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts in drug development have been focused on immunotherapies to modify the MM disease process. Here, we summarize the emerging immunotherapies in the MM treatment landscape.
Collapse
Affiliation(s)
| | | | | | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore; (C.Y.S.); (M.O.); (S.d.M.)
| |
Collapse
|