1
|
Pourrezaei S, Letafati A, Molaverdi G, Norouzi M, Mozhgani SH. RAB3GAP2 dysregulation in adult T-cell leukemia/lymphoma (ATLL) compared to acute lymphoblastic leukemia (ALL): a molecular perspective. BMC Res Notes 2025; 18:28. [PMID: 39838474 PMCID: PMC11752935 DOI: 10.1186/s13104-025-07084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a type of blood cancer related to human T-cell lymphotropic virus type 1 (HTLV-1). The principal aim of this study was to investigate cellular processes related to innate immune response, intracellular protein transport, and translational initiation regulation in individuals afflicted with ATLL and Acute lymphoblastic leukemia (ALL). Whole blood samples and peripheral blood mononuclear cells were collected from 10 viral ATLL patients and 10 ALL subjects. Real-time quantitative PCR was then performed to quantify mRNA expression levels of SMC6, FANCM, EIF4H, WDR7, RAB3GAP2, and IFN α/β. The study revealed some distinctions between ATLL and ALL patients. Particularly, RAB3GAP2 level (P = 0.028) was found to be elevated in ATLL patients compared to ALL. Conversely, expression levels of IFN-β (P = 0.31), SMC6 (P = 0.68), WDR7 (P = 0.43), EIF4H (P = 0.38), and FANCM (P = 0.57) were diminished in ATLL patients in contrast to ALL. These proteins play a pivotal role in both translation and immune activation, suggesting a potential correlation between the observed disparities and the virus-mediated progression of cancer. However, it is worth noting that the expression differences in FANCM, EIF4H, SMC6, and WDR7 between ATLL and ALL were minimal. This proposes that the underlying molecular mechanisms governing ATLL and ALL may largely overlap concerning these cellular processes. However, considerable increased expression of RAB3GAP2 was observed in ATLL compared to ALL.
Collapse
Affiliation(s)
- Samira Pourrezaei
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
- Non-communicable Disease Research Center, Alborz University of Medical Sciences, Alborz, Iran.
| |
Collapse
|
2
|
Watanabe T, Yamamoto Y, Kurahashi Y, Kawasoe K, Kidoguchi K, Ureshino H, Kamachi K, Yoshida-Sakai N, Fukuda-Kurahashi Y, Nakamura H, Okada S, Sueoka E, Kimura S. Reprogramming of pyrimidine nucleotide metabolism supports vigorous cell proliferation of normal and malignant T cells. Blood Adv 2024; 8:1345-1358. [PMID: 38190613 PMCID: PMC10945144 DOI: 10.1182/bloodadvances.2023011131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is triggered by infection with human T-cell lymphotropic virus-1 (HTLV-1). Here, we describe the reprogramming of pyrimidine biosynthesis in both normal T cells and ATL cells through regulation of uridine-cytidine kinase 2 (UCK2), which supports vigorous proliferation. UCK2 catalyzes the monophosphorylation of cytidine/uridine and their analogues during pyrimidine biosynthesis and drug metabolism. We found that UCK2 was overexpressed aberrantly in HTLV-1-infected T cells but not in normal T cells. T-cell activation via T-cell receptor (TCR) signaling induced expression of UCK2 in normal T cells. Somatic alterations and epigenetic modifications in ATL cells activate TCR signaling. Therefore, we believe that expression of UCK2 in HTLV-1-infected cells is induced by dysregulated TCR signaling. Recently, we established azacitidine-resistant (AZA-R) cells showing absent expression of UCK2. AZA-R cells proliferated normally in vitro, whereas UCK2 knockdown inhibited ATL cell growth. Although uridine and cytidine accumulated in AZA-R cells, possibly because of dysfunction of pyrimidine salvage biosynthesis induced by loss of UCK2 expression, the amount of UTP and CTP was almost the same as in parental cells. Furthermore, AZA-R cells were more susceptible to an inhibitor of dihydroorotic acid dehydrogenase, which performs the rate-limiting enzyme of de novo pyrimidine nucleotide biosynthesis, and more resistant to dipyridamole, an inhibitor of pyrimidine salvage biosynthesis, suggesting that AZA-R cells adapt to UCK2 loss by increasing de novo pyrimidine nucleotide biosynthesis. Taken together, the data suggest that fine-tuning pyrimidine biosynthesis supports vigorous cell proliferation of both normal T cells and ATL cells.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- OHARA Pharmaceutical Co, Ltd, Shiga, Japan
| | - Kazunori Kawasoe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- OHARA Pharmaceutical Co, Ltd, Shiga, Japan
| | - Hideaki Nakamura
- Department of Transfusion Medicine, Saga University Hospital, Saga, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
3
|
Sudo H, Tonoyama Y, Ikebe E, Hasegawa H, Iha H, Ishida YI. Proteomic analysis of adult T-cell leukemia/lymphoma: A biomarker identification strategy based on preparation and in-solution digestion methods of total proteins. Leuk Res 2024; 138:107454. [PMID: 38452534 DOI: 10.1016/j.leukres.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATL), caused by human T-cell leukemia virus type-1 (HTLV-1) infection, is a malignant hematologic cancer that remains difficult to cure. We herein established a biomarker identification strategy based on the total cell proteomics of cultured ATL cells to search for novel ATL biomarkers. Four protocols with a combination of selected conditions based on lysis buffers and addition agents for total cell proteomics were used for a differential analysis between the ATL cell group (consisting of 11 cell lines), HTLV-1-infected cell group (consisting of 6 cell lines), and HTLV-1-negative cell group (consisting of 6 cell lines). In the analysis, we identified 24 and 27 proteins that were significantly increased (ratio ≥2.0, p < 0.05) and decreased (ratio ≤ 0.5, p < 0.05), respectively, in the ATL group. Previously reported CCL3 and CD30/TNFRSF8 were confirmed to be among significantly increased proteins. Furthermore, correlation analysis between identified proteins and Tax suggested that RASSF2 and GORASP2 were candidates of novel Tax-regulated factors. The biomarker identification strategy established herein is expected to contribute to the identification of biomarkers for ATL and other diseases.
Collapse
Affiliation(s)
- Haruka Sudo
- Laboratory of Biochemistry, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan
| | - Yasuhiro Tonoyama
- Support Center for Student Practical Lab, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan
| | - Emi Ikebe
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Faculty of Medicine, Oita University, Oita, Japan
| | - Yo-Ichi Ishida
- Laboratory of Biochemistry, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan; Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| |
Collapse
|
4
|
Alim LF, Keane C, Souza-Fonseca-Guimaraes F. Molecular mechanisms of tumour necrosis factor signalling via TNF receptor 1 and TNF receptor 2 in the tumour microenvironment. Curr Opin Immunol 2024; 86:102409. [PMID: 38154421 DOI: 10.1016/j.coi.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Tumour necrosis factor (TNF) is a primary mediator of inflammatory processes by facilitating cell death, immune cell activation and triggering of inflammation. In the cancer context, research has revealed TNF as a multifaceted cytokine that can be both pro- or anti-tumorigenic depending on what context is observed. We explore the plethora of ways that TNF and its receptors manipulate the functional and phenotypic characteristics in the tumour microenvironment (TME) on both tumour cells and immune cells, promoting either tumour elimination or progression. Here, we discuss the latest cutting-edge TNF-focused biologics currently in clinical translation that modifies the TME to derive greater immune responses and therapeutic outcomes, and further give perspectives on the future of targeting TNF in the context of cancer by emerging technological approaches.
Collapse
Affiliation(s)
- Louisa F Alim
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | | |
Collapse
|
5
|
Kawano N, Shimonodan H, Nagahiro Y, Yoshida S, Kuriyama T, Takigawa K, Tochigi T, Nakaike T, Makino S, Yamashita K, Marutsuka K, Ochiai H, Mori Y, Shimoda K, Ohshima K, Mashiba K, Kikuchi I. The clinical impact of the ratio of C-reactive protein to albumin (CAR) in patients with acute- and lymphoma-type adult T-cell leukemia-lymphoma (ATL). J Clin Exp Hematop 2023; 63:73-82. [PMID: 37380472 PMCID: PMC10410616 DOI: 10.3960/jslrt.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 06/30/2023] Open
Abstract
Recently, the ratio of C-reactive protein to albumin (CAR) is used as an inflammatory marker that has been demonstrated to be a simple and reliable prognostic factor in solid tumors and hematological malignancy. However, no studies of the CAR have been performed in patients with adult T-cell leukemia-lymphoma (ATL). We retrospectively analyzed the clinical features and outcomes in 68 newly diagnosed acute- and lymphoma-type ATL [(acute-(n=42) or lymphoma-type (n=26)] patients in Miyazaki Prefecture from 2013 to 2017. Furthermore, we investigated correlations between pretreatment CAR levels and clinical features. The median age was 67 years (range, 44 - 87). Patients were initially treated by either palliative therapy (n=14) or chemotherapy [n=54; CHOP therapy (n=37)/ VCAP-AMP-VECP therapy (n=17)], and showed median survival durations of 0.5 months and 7.4 months, respectively. The factors affecting OS by multivariate analysis were age, BUN, and CAR. Importantly, we revealed that the high CAR group (optimal cut-off point; 0.553) was a significant indicator of worse OS by multivariate analysis (p< 0.001, HR; 5.46). The median survival of patients with a CAR< 0.553 was 8.37 months, while patients with a CAR>0.553 had a median survival of 3.94 months. The different clinical features between high CAR and low CAR groups were hypoproteinemia and the implementation of chemotherapy. Furthermore, in the chemotherapy group, but not the palliative therapy group, CAR was a significant prognostic marker. Our study indicated that CAR may be a new simple and significant independent prognostic marker in acute- and lymphoma-type ATL patients.
Collapse
|
6
|
Kartikasari AER, Cassar E, Razqan MAM, Szydzik C, Huertas CS, Mitchell A, Plebanski M. Elevation of circulating TNF receptor 2 in cancer: A systematic meta-analysis for its potential as a diagnostic cancer biomarker. Front Immunol 2022; 13:918254. [PMID: 36466914 PMCID: PMC9708892 DOI: 10.3389/fimmu.2022.918254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/27/2022] [Indexed: 08/18/2023] Open
Abstract
High Tumor Necrosis Factor Receptor 2 (TNFR2) expression is characteristic of diverse malignant cells during tumorigenesis. The protein is also expressed by many immunosuppressive cells during cancer development, allowing cancer immune escape. A growing body of evidence further suggests a correlation between the circulating form of this protein and cancer development. Here we conducted a systematic meta-analysis of cancer studies published up until 1st October 2022, in which the circulating soluble TNFR2 (sTNFR2) concentrations in patients with cancers were recorded and their association with cancer risk was assessed. Of the 14,615 identified articles, 44 studies provided data on the correlation between cancer risk and the level of circulating sTNFR2. The pooled means comparison showed a consistently significant increase in the levels of sTNFR2 in diverse cancers when compared to healthy controls. These included colorectal cancer, ovarian cancer, breast cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, lung cancer, hepatocarcinoma, and glioblastoma. In a random-effect meta-analysis, the cancer-specific odd ratios (OR) showed significant correlations between increased circulating sTNFR2 levels and the risk of colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma at 1.59 (95% CI:1.20-2.11), 1.98 (95% CI:1.49-2.64) and 4.32 (95% CI:2.25-8.31) respectively. The overall result showed an association between circulating levels of sTNFR2 and the risk of developing cancer at 1.76 (95% CI:1.53-2.02). This meta-analysis supports sTNFR2 as a potential diagnostic biomarker for cancer, albeit with different predictive strengths for different cancer types. This is consistent with a potential key role for TNFR2 involvement in cancer development.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Emily Cassar
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Mohammed A. M. Razqan
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Crispin Szydzik
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Kori M, Arga KY. Human oncogenic viruses: an overview of protein biomarkers in viral cancers and their potential use in clinics. Expert Rev Anticancer Ther 2022; 22:1211-1224. [PMID: 36270027 DOI: 10.1080/14737140.2022.2139681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Although the idea that carcinogenesis might be caused by viruses was first voiced about 100 years ago, today's data disappointingly show that we have not made much progress in preventing and/or treating viral cancers in a century. According to recent studies, infections are responsible for approximately 13% of cancer development in the world. Today, it is accepted and proven by many authorities that Epstein-Barr virus (EBV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human Herpesvirus 8 (HHV8), Human T-cell Lymphotropic virus 1 (HTLV1) and highly oncogenic Human Papillomaviruses (HPVs) cause or/and contribute to cancer development in humans. AREAS COVERED Considering the insufficient prevention and/or treatment strategies for viral cancers, in this review we present the current knowledge on protein biomarkers of oncogenic viruses. In addition, we aimed to decipher their potential for clinical use by evaluating whether the proposed biomarkers are expressed in body fluids, are druggable, and act as tumor suppressors or oncoproteins. EXPERT OPINION Consequently, we believe that this review will shed light on researchers and provide a guide to find remarkable solutions for the prevention and/or treatment of viral cancers.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Sakihama S, Karube K. Genetic Alterations in Adult T-Cell Leukemia/Lymphoma: Novel Discoveries with Clinical and Biological Significance. Cancers (Basel) 2022; 14:2394. [PMID: 35625999 PMCID: PMC9139356 DOI: 10.3390/cancers14102394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a refractory T-cell neoplasm that develops in human T-cell leukemia virus type-I (HTLV-1) carriers. Large-scale comprehensive genomic analyses have uncovered the landscape of genomic alterations of ATLL and have identified several altered genes related to prognosis. The genetic alterations in ATLL are extremely enriched in the T-cell receptor/nuclear factor-κB pathway, suggesting a pivotal role of deregulation in this pathway in the transformation of HTLV-1-infected cells. Recent studies have revealed the process of transformation of HTLV-1-infected cells by analyzing longitudinal samples from HTLV-1 carriers and patients with overt ATLL, an endeavor that might enable earlier ATLL diagnosis. The latest whole-genome sequencing study discovered 11 novel alterations, including CIC long isoform, which had been overlooked in previous studies employing exome sequencing. Our study group performed the targeted sequencing of ATLL in Okinawa, the southernmost island in Japan and an endemic area of HTLV-1, where the comprehensive genetic alterations had never been analyzed. We found associations of genetic alterations with HTLV-1 strains phylogenetically classified based on the tax gene, an etiological virus factor in ATLL. This review summarizes the genetic alterations in ATLL, with a focus on their clinical significance, geographical heterogeneity, and association with HTLV-1 strains.
Collapse
Affiliation(s)
- Shugo Sakihama
- Department of Pathology and Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
Kato M, Imaizumi N, Tanaka R, Mizuguchi M, Hayashi M, Miyagi T, Uchihara J, Ohshiro K, Todoroki J, Karube K, Masuzaki H, Tanaka Y, Fukushima T. Elevation of the Plasma Levels of TNF Receptor 2 in Association with Those of CD25, OX40, and IL-10 and HTLV-1 Proviral Load in Acute Adult T-Cell Leukemia. Viruses 2022; 14:v14040751. [PMID: 35458481 PMCID: PMC9032861 DOI: 10.3390/v14040751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) cells express TNF receptor type-2 (TNFR2) on their surface and shed its soluble form (sTNFR2). We previously reported that sTNFR2 levels were highly elevated in the plasma of patients with acute ATL. To investigate whether its quantitation would be helpful for the diagnosis or prediction of the onset of acute ATL, we examined the plasma levels of sTNFR2 in a large number of specimens obtained from a cohort of ATL patients and asymptomatic human T-cell leukemia virus type 1 (HTLV-1) carriers (ACs) and compared them to those of other candidate ATL biomarkers (sCD25, sOX40, and IL-10) by enzyme-linked immunosorbent assays (ELISA) and HTLV-1 proviral loads. We observed that sTNFR2 levels were significantly elevated in acute ATL patients compared to ACs and patients with other types of ATL (chronic, smoldering, and lymphoma). Importantly, sTNFR2 levels were significantly correlated with those of sCD25, sOX40, and IL-10, as well as proviral loads. Thus, the present study confirmed that an increase in plasma sTNFR2 levels is a biomarker for the diagnosis of acute ATL. Examination of plasma sTNFR2 alone or in combination with other ATL biomarkers may be helpful for the diagnosis of acute ATL.
Collapse
Affiliation(s)
- Megumi Kato
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
| | - Naoki Imaizumi
- Laboratory of Molecular Genetics, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan;
| | - Reiko Tanaka
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
| | - Mariko Mizuguchi
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan;
| | - Masaki Hayashi
- Department of Hematology, Nakagami Hospital, Okinawa 904-2142, Japan;
| | - Takashi Miyagi
- Department of Hematology, Heart Life Hospital, Nakagusuku 901-2492, Japan;
| | | | - Kazuiku Ohshiro
- Department of Hematology, Okinawa Prefectural Nambu Medical Center and Children’s Medical Center, Naha 901-1193, Japan;
| | - Junpei Todoroki
- Department of Hematology, Chubu Tokushukai Hospital, Nakagami 901-2305, Japan;
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes, and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan;
| | - Yuetsu Tanaka
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
- Correspondence: (Y.T.); (T.F.); Tel.: +81-98-895-1745 (Y.T.); +81-98-895-1276 (T.F.)
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara 903-0215, Japan; (M.K.); (R.T.)
- Correspondence: (Y.T.); (T.F.); Tel.: +81-98-895-1745 (Y.T.); +81-98-895-1276 (T.F.)
| |
Collapse
|
10
|
Sato H, Inoue Y, Kawashima Y, Nakajima D, Ishikawa M, Konno R, Nakamura R, Kato D, Mitsunaga K, Yamamoto T, Yamaide A, Tomiita M, Hoshioka A, Ohara O, Shimojo N. In-Depth Serum Proteomics by DIA-MS with In Silico Spectral Libraries Reveals Dynamics during the Active Phase of Systemic Juvenile Idiopathic Arthritis. ACS OMEGA 2022; 7:7012-7023. [PMID: 35252692 PMCID: PMC8892657 DOI: 10.1021/acsomega.1c06681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 05/09/2023]
Abstract
In serum proteomics using mass spectrometry, the number of detectable proteins is reduced due to high-abundance proteins, such as albumin. However, recently developed data-independent acquisition mass spectrometry (DIA-MS) proteomics technology has made it possible to remarkably improve the number of proteins in a serum analysis by removing high-abundance proteins. Using this technology, we analyzed sera from patients with systemic juvenile idiopathic arthritis (sJIA), a rare pediatric disease. As a result, we identified 2727 proteins with a wide dynamic range derived from various tissue leakages. We also selected 591 proteins that differed significantly in their active phases. These proteins were involved in many inflammatory processes, and we also identified immunoproteasomes, which were not previously found in serum, suggesting that they may be involved in the pathogenesis of sJIA. A detailed high-depth DIA-MS proteomic analysis of serum may be useful for understanding the pathogenesis of sJIA and may provide clues for the development of new biomarkers.
Collapse
Affiliation(s)
- Hironori Sato
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
- Department
of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan
| | - Yuzaburo Inoue
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
- Division
of Cancer Genetics, Chiba Cancer Center
Research Institute, Chiba, Chiba 260-8717, Japan
| | - Yusuke Kawashima
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Nakajima
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masaki Ishikawa
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ryo Konno
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ren Nakamura
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daigo Kato
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Kanako Mitsunaga
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Takeshi Yamamoto
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
- Benaroya
Research Institute at Virginia Mason, Seattle, Washington 98101-2795, United States
| | - Akiko Yamaide
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Minako Tomiita
- Department
of Clinical Research, National Hospital
Organization Shimoshizu National Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Akira Hoshioka
- Department
of Allergy and Rheumatology, Chiba Children’s
Hospital, Chiba, Chiba 266-0007, Japan
| | - Osamu Ohara
- Department
of Applied Genomics, Kazusa DNA Research
Institute, Kisarazu, Chiba 292-0818, Japan
| | - Naoki Shimojo
- Center for
Preventive Medical Sciences, Chiba University, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Gong S, Wu C, Duan Y, Tang J, Wu P. A Comprehensive Pan-Cancer Analysis for Pituitary Tumor-Transforming Gene 1. Front Genet 2022; 13:843579. [PMID: 35281830 PMCID: PMC8916819 DOI: 10.3389/fgene.2022.843579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) encodes a multifunctional protein that is involved in many cellular processes. However, the potential role of PTTG1 in tumor formation and its prognostic function in human pan-cancer is still unknown. The analysis of gene alteration, PTTG1 expression, prognostic function, and PTTG1-related immune analysis in 33 types of tumors was performed based on various databases such as The Cancer Genome Atlas database, the Genotype-Tissue Expression database, and the Human Protein Atlas database. Additionally, PTTG1-related gene enrichment analysis was performed to investigate the potential relationship and possible molecular mechanisms between PTTG1 and tumors. Overexpression of PTTG1 may lead to tumor formation and poor prognosis in various tumors. Consequently, PTTG1 acts as a potential oncogene in most tumors. Additionally, PTTG1 is related to immune infiltration, immune checkpoints, tumor mutational burden, and microsatellite instability. Thus, PTTG1 could be potential biomarker for both prognosis and outcomes of tumor treatment and it could also be a promising target in tumor therapy.
Collapse
Affiliation(s)
- Siming Gong
- Department of Orthopaedics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | - Juyu Tang
- Department of Orthopaedics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopaedics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Panfeng Wu,
| |
Collapse
|
12
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
ORP4L is a prerequisite for the induction of T-cell leukemogenesis associated with human T-cell leukemia virus 1. Blood 2021; 139:1052-1065. [PMID: 34797912 PMCID: PMC8854678 DOI: 10.1182/blood.2021013579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
ORP4L deletion blocks Tax-induced T-cell leukemia, whereas engineering ORP4L expression in T cells results in T-cell leukemia in mice. Loss of miR-31 induced by Tax releases ORP4L expression, which initiates T-cell deterioration, but ORP4L inhibition eliminates ATL in PDX mice.
Human T-cell leukemia virus 1 (HTLV-1) causes adult T-cell leukemia (ATL), but the mechanism underlying its initiation remains elusive. In this study, ORP4L was expressed in ATL cells but not in normal T-cells. ORP4L ablation completely blocked T-cell leukemogenesis induced by the HTLV-1 oncoprotein Tax in mice, whereas engineering ORP4L expression in T-cells resulted in T-cell leukemia in mice, suggesting the oncogenic properties and prerequisite of ORP4L promote the initiation of T-cell leukemogenesis. For molecular insight, we found that loss of miR-31 caused by HTLV-1 induced ORP4L expression in T-cells. ORP4L interacts with PI3Kδ to promote PI(3,4,5)P3 generation, contributing to AKT hyperactivation; NF-κB–dependent, p53 inactivation-induced pro-oncogene expression; and T-cell leukemogenesis. Consistently, ORP4L ablation eliminates human ATL cells in patient-derived xenograft ATL models. These results reveal a plausible mechanism of T-cell deterioration by HTLV-1 that can be therapeutically targeted.
Collapse
|
14
|
Bellon M, Bialuk I, Galli V, Bai XT, Farre L, Bittencourt A, Marçais A, Petrus MN, Ratner L, Waldmann TA, Asnafi V, Gessain A, Matsuoka M, Franchini G, Hermine O, Watanabe T, Nicot C. Germinal epimutation of Fragile Histidine Triad (FHIT) gene is associated with progression to acute and chronic adult T-cell leukemia diseases. Mol Cancer 2021; 20:86. [PMID: 34092254 PMCID: PMC8183032 DOI: 10.1186/s12943-021-01370-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human T cell Leukemia virus type 1 (HTLV-I) is etiologically linked to adult T cell leukemia/lymphoma (ATL) and an inflammatory neurodegenerative disease called HTLV-I-associated myelopathy or tropical spastic paraparesis (HAM/TSP). The exact genetic or epigenetic events and/or environmental factors that influence the development of ATL, or HAM/TSP diseases are largely unknown. The tumor suppressor gene, Fragile Histidine Triad Diadenosine Triphosphatase (FHIT), is frequently lost in cancer through epigenetic modifications and/or deletion. FHIT is a tumor suppressor acting as genome caretaker by regulating cellular DNA repair. Indeed, FHIT loss leads to replicative stress and accumulation of double DNA strand breaks. Therefore, loss of FHIT expression plays a key role in cellular transformation. METHODS Here, we studied over 400 samples from HTLV-I-infected individuals with ATL, TSP/HAM, or asymptomatic carriers (AC) for FHIT loss and expression. We examined the epigenetic status of FHIT through methylation specific PCR and bisulfite sequencing; and correlated these results to FHIT expression in patient samples. RESULTS We found that epigenetic alteration of FHIT is specifically found in chronic and acute ATL but is absent in asymptomatic HTLV-I carriers and TSP/HAM patients' samples. Furthermore, the extent of FHIT methylation in ATL patients was quantitatively comparable in virus-infected and virus non-infected cells. We also found that longitudinal HTLV-I carriers that progressed to smoldering ATL and descendants of ATL patients harbor FHIT methylation. CONCLUSIONS These results suggest that germinal epigenetic mutation of FHIT represents a preexisting mark predisposing to the development of ATL diseases. These findings have important clinical implications as patients with acute ATL are rarely cured. Our study suggests an alternative strategy to the current "wait and see approach" in that early screening of HTLV-I-infected individuals for germinal epimutation of FHIT and early treatment may offer significant clinical benefits.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Izabela Bialuk
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xue-Tao Bai
- Comprehensive Cancer Center, Department of Health Sciences, Ohio State University, Columbus, OH, USA
| | - Lourdes Farre
- Program in Molecular Mechanisms and Experimental Therapy in Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Achilea Bittencourt
- Department of Pathology, Prof. Edgard Santos Teaching Hospital, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Ambroise Marçais
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Laboratoire Onco-Hématologie, Paris, France
| | - Michael N Petrus
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lee Ratner
- Division of Oncology, Department of Medicine, Washington University, St Louis, MO, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151 Laboratoire Onco-Hematology, Paris, France
| | - Antoine Gessain
- Unité d'épidémiologie et de Physiopathologie des virus Oncogene, Institut Pasteur, 75015, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 3569, 75015, Paris, France
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology, Rheumatology, and Infectious Disease, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Hermine
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Laboratoire Onco-Hématologie, Paris, France
| | - Toshiki Watanabe
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|