1
|
Adams RC, MacDonald KPA, Hill GR. The contribution of the monocyte-macrophage lineage to immunotherapy outcomes. Blood 2025; 145:1010-1021. [PMID: 39576958 DOI: 10.1182/blood.2024025680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
ABSTRACT Macrophages execute core functions in maintaining tissue homeostasis, in which their extensive plasticity permits a spectrum of functions from tissue remodeling to immune defense. However, perturbations to tissue-resident macrophages during disease, and the subsequent emergence of monocyte-derived macrophages, can hinder tissue recovery and promote further damage through inflammatory and fibrotic programs. Gaining a fundamental understanding of the critical pathways defining pathogenic macrophage populations enables the development of targeted therapeutic approaches to improve disease outcomes. In the setting of chronic graft-versus-host disease (cGVHD), which remains the major complication of allogeneic hematopoietic stem cell transplantation, colony-stimulating factor 1 (CSF1)-dependent donor-derived macrophages have been identified as key pathogenic mediators of fibrotic skin and lung disease. Antibody blockade of the CSF1 receptor (CSF1R) to induce macrophage depletion showed remarkable capacity to prevent fibrosis in preclinical models and has subsequently demonstrated impressive efficacy for improving cGVHD in ongoing clinical trials. Similarly, macrophage depletion approaches are currently under investigation for their potential to augment responses to immune checkpoint inhibition. Moreover, both monocyte and tissue-resident macrophage populations have recently been implicated as mediators of the numerous toxicities associated with chimeric antigen receptor T-cell therapy, further highlighting potential avenues of macrophage-based interventions to improve clinical outcomes. Herein, we examine the current literature on basic macrophage biology and contextualize this in the setting of cellular and immunotherapy. Additionally, we highlight mechanisms by which macrophages can be targeted, largely by interfering with the CSF1/CSF1R signaling axis, for therapeutic benefit in the context of both cellular and immunotherapy.
Collapse
Affiliation(s)
- Rachael C Adams
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kelli P A MacDonald
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
2
|
Levis M, Perl A, Schiller G, Fathi AT, Roboz G, Wang ES, Altman J, Rajkhowa T, Ando M, Suzuki T, Subach RA, Maier G, Madden T, Johansen M, Cheung K, Kurman M, Smith C. A phase 1 study of the irreversible FLT3 inhibitor FF-10101 in relapsed or refractory acute myeloid leukemia. Blood Adv 2024; 8:2527-2535. [PMID: 38502195 PMCID: PMC11131057 DOI: 10.1182/bloodadvances.2023010619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 03/21/2024] Open
Abstract
ABSTRACT FLT3 tyrosine kinase inhibitors (TKIs) have clinical efficacy for patients with FLT3-mutated AML (acute myeloid leukemia), but their impact is limited by resistance in the setting of monotherapy and by tolerability problems when used in combination therapies. FF-10101 is a novel compound that covalently binds to a cysteine residue near the active site of FLT3, irreversibly inhibiting receptor signaling. It is effective against most FLT3 activating mutations, and, unlike other inhibitors, is minimally vulnerable to resistance induced by FLT3 ligand. We conducted a phase 1 dose escalation study of oral FF-10101 in patients with relapsed and/or refractory AML, the majority of whom harbored FLT3-activating mutations and/or had prior exposure to FLT3 inhibitors. Fifty-four participants enrolled in cohorts receiving doses ranging from 10 to 225 mg per day and 50 to 100 mg twice daily (BID). The dose limiting toxicities were diarrhea and QT prolongation. Among 40 response-evaluable participants, the composite complete response rate was 10%, and the overall response rate (including partial responses) was 12.5%, including patients who had progressed on gilteritinib. Overall, 56% of participants had prior exposure to FLT3 inhibitors. The recommended phase 2 dose was 75 mg BID. FF-10101 potentially represents a next-generation advance in the management of FLT3-mutated AML. This trial was registered at www.ClinicalTrials.gov as #NCT03194685.
Collapse
Affiliation(s)
- Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Alexander Perl
- Department of Medicine, Division of Hematology/Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Gary Schiller
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir T. Fathi
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Gail Roboz
- Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | - Eunice S. Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jessica Altman
- Department of Medicine, Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Trivikram Rajkhowa
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | | | | | | | - Gary Maier
- FUJIFILM Pharmaceuticals USA, Inc, Cambridge, MA
| | | | | | - Kin Cheung
- FUJIFILM Pharmaceuticals USA, Inc, Cambridge, MA
| | | | - Catherine Smith
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Zhao Y, Zhang X, Ding X, Wang Y, Li Z, Zhao R, Cheng HE, Sun Y. Efficacy and safety of FLT3 inhibitors in monotherapy of hematological and solid malignancies: a systemic analysis of clinical trials. Front Pharmacol 2024; 15:1294668. [PMID: 38828446 PMCID: PMC11140126 DOI: 10.3389/fphar.2024.1294668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction: FLT3 mutations are closely associated with the occurrence of hematological and solid malignancies, especially with acute myeloid leukemia. Currently, several FLT3 inhibitors are in clinical trials, and some have been applied in clinic. However, the safety, efficacy and pharmacodynamics of these FLT3 inhibitors have not been systemically analyzed before. Methods: We searched and reviewed clinical trial reports on the monotherapy of 13 FLT3 inhibitors, including sorafenib, lestaurtinib, midostaurin, gilteritinib, quizartinib, sunitinib, crenolanib, tandutinib, cabozantinib, pexidartinib, pacritinib, famitinib, and TAK-659 in patients with hematological and solid malignancies before May 31, 2023. Results: Our results showed the most common adverse events (AEs) were gastrointestinal adverse reactions, including diarrhea, hand-foot syndrome and nausea, while the most common hematological AEs were febrile neutropenia, anemia, and thrombocytopenia. Based on the published data, the mean overall survival (OS) and the mean progression-free survival (PFS) were 9.639 and 5.905 months, respectively. The incidence of overall response rate (ORR), complete remission (CR), partial response (PR), and stable disease (SD) for all these FLT3 inhibitors was 29.0%, 8.7%, 16.0%, and 42.3%, respectively. The ORRs of FLT3 inhibitors in hematologic malignancies and solid tumors were 40.8% and 18.8%, respectively, indicating FLT3 inhibitors were more effective for hematologic malignancies than for solid tumors. In addition, time to maximum plasma concentration (Tmax) in these FLT3 inhibitors ranged from 0.7-12.0 hours, but the elimination half-life (T1/2) range was highly variable, from 6.8 to 151.8 h. Discussion: FLT3 inhibitors monotherapy has shown significant anti-tumor effect in clinic, and the effectiveness may be further improved through combination medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai-En Cheng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yanli Sun
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Murphy LA, Winters AC. Emerging and Future Targeted Therapies for Pediatric Acute Myeloid Leukemia: Targeting the Leukemia Stem Cells. Biomedicines 2023; 11:3248. [PMID: 38137469 PMCID: PMC10741170 DOI: 10.3390/biomedicines11123248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Acute myeloid leukemia (AML) is a rare subtype of acute leukemia in the pediatric and adolescent population but causes disproportionate morbidity and mortality in this age group. Standard chemotherapeutic regimens for AML have changed very little in the past 3-4 decades, but the addition of targeted agents in recent years has led to improved survival in select subsets of patients as well as a better biological understanding of the disease. Currently, one key paradigm of bench-to-bedside practice in the context of adult AML is the focus on leukemia stem cell (LSC)-targeted therapies. Here, we review current and emerging immunotherapies and other targeted agents that are in clinical use for pediatric AML through the lens of what is known (and not known) about their LSC-targeting capability. Based on a growing understanding of pediatric LSC biology, we also briefly discuss potential future agents on the horizon.
Collapse
Affiliation(s)
- Lindsey A. Murphy
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Amanda C. Winters
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Wang Q, Wang Y, Pu W, Ma X, Ni R. Dynamic changes in microglia in the mouse hippocampus during administration and withdrawal of the CSF1R inhibitor PLX3397. J Anat 2023; 243:394-403. [PMID: 37038887 PMCID: PMC10439370 DOI: 10.1111/joa.13874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Pexidartinib (PLX3397), a colony-stimulating factor-1 receptor (CSF1R) inhibitor, is currently in phase 1-3 clinical trials as a treatment for a variety of tumours. CSF1R signalling regulates the development, survival and maintenance of microglia, the resident brain innate immune cells. In this study, we examined the effects of PLX3397 in the drinking water of mice on microglia in the hippocampus using ionized calcium-binding adapter molecule 1 (Iba1, a microglial marker) immunocytochemistry. A high concentration of PLX3397 (1 mg/mL) significantly decreased the density of Iba1-immunoreactive cells after 7 days of exposure, but a low concentration of PLX3397 (0.5 mg/mL) did not. In addition, both low and high concentrations of PLX3397 significantly increased the intersection number, total length and maximum length of microglial processes in male mice. PLX3397 administered for 21 days eliminated microglia with 78% efficiency in males and 84% efficiency in females. Significant increases in microglial processes were found after both seven and 21 days of PLX3397 exposure in males, whereas decreases in microglial processes were observed after both 14 and 21 days of exposure in females. After PLX3397 withdrawal following its administration for 14 days in males, the soma size quickly returned to normal levels within a week. However, the microglial density, intersection number and total length of microglial processes after 3 days of recovery stabilized to untreated levels. In summary, these findings provide detailed insight into the dynamic changes in microglial number and morphology in the hippocampus in a dose- and time-dependent manner after PLX3397 treatment and withdrawal.
Collapse
Affiliation(s)
- Qirun Wang
- Psychiatric Laboratory and Mental Health CenterWest China Hospital, Sichuan UniversityChengduChina
- Sichuan Clinical Medical Research Center for Mental DisordersChengduChina
| | - Yi‐Yan Wang
- Psychiatric Laboratory and Mental Health CenterWest China Hospital, Sichuan UniversityChengduChina
- Sichuan Clinical Medical Research Center for Mental DisordersChengduChina
| | - Wen‐Jun Pu
- Psychiatric Laboratory and Mental Health CenterWest China Hospital, Sichuan UniversityChengduChina
- Sichuan Clinical Medical Research Center for Mental DisordersChengduChina
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health CenterWest China Hospital, Sichuan UniversityChengduChina
- Sichuan Clinical Medical Research Center for Mental DisordersChengduChina
| | - Rong‐Jun Ni
- Psychiatric Laboratory and Mental Health CenterWest China Hospital, Sichuan UniversityChengduChina
- Sichuan Clinical Medical Research Center for Mental DisordersChengduChina
| |
Collapse
|
6
|
Ezelarab HAA, Ali TFS, Abbas SH, Hassan HA, Beshr EAM. Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. BMC Chem 2023; 17:73. [PMID: 37438819 DOI: 10.1186/s13065-023-00981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutation mechanisms are among the most common genetic abnormalities detected in about 30% of acute myeloid leukemia (AML) patients. These mutations are accompanied by poor clinical response, although all these progressions in identifying and interpreting biological AML bio-targets. Several small structured FLT3 inhibitors have been ameliorated to struggle against AML. Despite all these developments regarding these inhibitors, the Overall survival rate is about five years or more in less than one-third of diagnosed AML patients. Midostaurin was the first FDA-approved FLT3 inhibitor in 2017 in the United States and Europe for AML remedy. Next, Gilteritinib was an FDA-approved FLT3 inhibitor in 2018 and in the next year, Quizartinib was approved an as FLT3 inhibitor in Japan. Interestingly, indole-based motifs had risen as advantaged scaffolds with unusual multiple kinase inhibitory activity. This review summarises indole-based FLT3 inhibitors and related scaffolds, including FDA-approved drugs, clinical candidates, and other bioactive compounds. Furthermore, their chemotypes, mechanism of action, and interaction mode over both wild and mutated FLT3 target proteins had been judgmentally discussed. Therefore, this review could offer inspiring future perspectives into the finding of new FLT3-related AML therapies.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
7
|
Chen Y, Zou Z, Găman MA, Xu L, Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discov 2023; 9:208. [PMID: 37391442 PMCID: PMC10313758 DOI: 10.1038/s41420-023-01528-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The internal tandem duplication of the juxtamembrane domain of the FMS-like tyrosine kinase 3 (FLT3-ITD) is the most common genetic change in acute myeloid leukemia (AML), and about 30% of all AMLs harbor a FLT3-ITD mutation. Even though FLT3 inhibitors have displayed encouraging effects in FLT3-ITD-mutated AML, the extent of the clinical response to these compounds is cut short due to the rapid development of drug resistance. Evidence has shown that FLT3-ITD triggered activation of oxidative stress signaling may exert a pivotal role in drug resistance. The downstream pathways of FLT3-ITD, including STAT5, PI3K/AKT, and RAS/MAPK, are considered to be major oxidative stress signaling pathways. These downstream pathways can inhibit apoptosis and promote proliferation and survival by regulating apoptosis-related genes and promoting the generation of reactive oxygen species (ROS) through NADPH oxidase (NOX) or other mechanisms. Appropriate levels of ROS may promote proliferation, but high levels of ROS can lead to oxidative damage to the DNA and increase genomic instability. In addition, post-translational modifications of FLT3-ITD and changes in its subcellular localization can affect downstream signaling which may also be one of the mechanisms leading to drug resistance. In this review, we summarized the research progress on NOX mediated oxidative stress signaling and its relationship with drug resistance in FLT3-ITD AML, and discuss the possible new targets in FLT3-ITD signal blocking to reverse drug resistance in FLT3-ITD-mutated AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Zhenyou Zou
- Institute of Psychosis Prevention, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 542005, China.
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
8
|
Pratz KW, Kaplan J, Levy M, Bixby D, Burke PW, Erba H, Wise-Draper TM, Roboz GJ, Papadantonakis N, Rajkhowa T, Hernandez D, Dobler I, Gregory RC, Li C, Wang S, Stumpo K, Kannan K, Miao H, Levis M. A phase Ib trial of mivavotinib (TAK-659), a dual SYK/FLT3 inhibitor, in patients with relapsed/refractory acute myeloid leukemia. Haematologica 2023; 108:705-716. [PMID: 36226495 PMCID: PMC9973464 DOI: 10.3324/haematol.2022.281216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Mivavotinib (TAK-659) is an investigational type 1 tyrosine kinase inhibitor with dual activity against spleen tyrosine kinase (SYK) and FMS-like tyrosine kinase 3 (FLT3). We conducted a phase Ib study to investigate the safety, tolerability, and efficacy of mivavotinib in patients with refractory and/or relapsed (R/R) acute myeloid leukemia (AML). Both daily (QD) and twice daily (BID) dosing regimens were evaluated. A total of 43 patients were enrolled, and there were 5 complete responses (4 with incomplete count recovery). In the QD dosing regimen, the maximum tolerated dose (MTD) was not reached up to 160 mg QD per protocol; 140 mg QD was identified as the recommended phase II dose. In the BID dosing regimen, the MTD was 60 mg BID. Thirty patients (70%) experienced a bleeding event on study; the majority were grades 1 or 2, were resolved without mivavotinib modification, and were not considered related to study treatment. Eleven patients (26%) experienced grade ≥3 bleeding events, which were observed most frequently with the 80 mg BID dose. We conducted platelet aggregation studies to investigate the potential role of mivavotinib-mediated SYK inhibition on platelet function. The bleeding events observed may have been the result of several confounding factors, including AML disease status, associated thrombocytopenia, and high doses of mivavotinib. Overall, these findings indicate that the activity of mivavotinib in R/R AML is modest. Furthermore, any future clinical investigation of this agent should be undertaken with caution, particularly in thrombocytopenic patients, due to the potential bleeding risk of SYK inhibition. ClinicalTrials.gov: NCT02323113.
Collapse
Affiliation(s)
- Keith W Pratz
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
| | - Jason Kaplan
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Moshe Levy
- Baylor University Medical Center, Dallas, TX
| | - Dale Bixby
- University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | | | - Harry Erba
- Duke University School of Medicine, Durham, NC
| | | | | | | | - Trivikram Rajkhowa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Daniela Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Iwona Dobler
- Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA
| | | | - Cheryl Li
- Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA
| | - Shining Wang
- Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA
| | - Kate Stumpo
- Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA
| | | | - Harry Miao
- Takeda Development Center Americas, Inc. (TDCA), Cambridge, MA
| | - Mark Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
9
|
Swaminathan M, Aly MM, Khan AM, Share BA, Dhillon V, Lalo E, Ramos H, Akers KG, Kim S, Balasubramanian S. Efficacy analysis of different FLT3 inhibitors in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. EJHAEM 2023; 4:165-173. [PMID: 36819163 PMCID: PMC9928788 DOI: 10.1002/jha2.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Several FLT3 inhibitors(i) are available to treat relapsed/refractory (R/R) FLT3-internal tandem duplicated acute myeloid leukemia (AML). This study analyzes the efficacies of various FLT3i (types 1 and 2) tested in clinical trials in treating R/R AML and high-risk myelodysplastic syndromes (HR-MDS). PubMed and EMBASE databases were searched for single/double-arm phase I/II/III R/R AML or HR-MDS clinical trials published between 1/1/2000 and 6/1/2021. The outcomes studied were composite response rate (CRc) and overall response rate (ORR). Toxicities were compared based on the organ system. The 28 studies analyzed had 1927 patients. The pooled ORR and (CRc) for all FLT3i were 53% (95% CI, 43%-63%) and 34% (95% CI, 26%-44%). Pooled ORR and CRc were 37% (95% CI, 25%-51%) and 35% (95% CI, 21%-52%) for type 1 and 58% (95% CI, 43%-71%) and 38% (95% CI, 27%-50%) for type 2, respectively. Gastrointestinal (GI) and hematological toxicity occurred in 22% (95% CI, 19%-25.4%) and 74.6% (95% CI, 70%-79%) with type 1 and 13.9% (95% CI, 12%-16%) and 57.7% (95% CI, 54.6%-60.8%) with type 2 FLT3i. QTc prolongation occurred in 2.06% (95% CI, 1.03%-3.65%) with type 1 and 7% (95% CI, 5.3%-9%) with type 2 FLT3i. Type 2 FLT3i had less GI toxicity but more QTc prolongation. Prospective studies are needed to compare the efficacy of type 1 and 2 FLT3i.
Collapse
Affiliation(s)
- Mahesh Swaminathan
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Mai M. Aly
- Clinical Hematology UnitInternal Medicine DepartmentAssiut University HospitalAssiutEgypt
| | - Abdul Moiz Khan
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Bayan Al Share
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Vikram Dhillon
- Department of Internal MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Enxhi Lalo
- Wayne State University School of MedicineDetroitMichiganUSA
| | - Harry Ramos
- Wayne State University School of MedicineDetroitMichiganUSA
| | | | - Seongho Kim
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
- Biostatistics and Bioinformatics CoreKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Suresh Balasubramanian
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
- Translational Hematology and Oncology ResearchTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
10
|
Zahir H, Greenberg J, Hsu C, Watanabe K, Makino C, He L, LaCreta F. Pharmacokinetics of the Multi-kinase Inhibitor Pexidartinib: Mass Balance and Dose Proportionality. Clin Pharmacol Drug Dev 2023; 12:159-167. [PMID: 36369799 PMCID: PMC10099993 DOI: 10.1002/cpdd.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
Abstract
Pexidartinib is an oral small-molecule tyrosine kinase inhibitor that selectively targets colony-stimulating factor 1 receptor. Two phase 1 single-center trials were conducted in healthy subjects to determine the absorption, distribution, metabolism, and excretion of pexidartinib using radiolabeled drug and to assess the dose proportionality of pexidartinib following single oral doses. In the mass balance study, eight male subjects received a single oral dose of [14 C]-pexidartinib 400 mg with radioactivity assessed in plasma, urine, and feces samples taken at various timepoints postdose. In the dose-proportionality study, 18 subjects received single doses of pexidartinib 200, 400, and 600 mg using randomization sequences. Peak pexidartinib and total radioactivity were observed at 1.75-2.0 hours after the oral dose and then declined in a multiphasic manner. The overall mean recovery of administered radioactivity was 92.2% over 240 hours with 64.8% in the feces and 27.4% in the urine. Major components detected in plasma were pexidartinib and glucuronide (M5, ZAAD-1006a), with M5 and pexidartinib detected in urine and feces, respectively. A glucuronide of dealkylated form (M1) in the urine and multiple oxidized forms (M2, M3, and M4) in feces were detected. The dose-proportionality study found dose-proportional drug exposure between the 200- and 400-mg doses and slightly less than proportional exposure between the 400- and 600-mg doses. These results from these studies provide insight into pexidartinib disposition after oral administration and support the development of dosing guidance in subjects with renal or hepatic impairment or subjects taking cytochrome P450 3A and uridine disphosphate-glucuronosyl transferase inhibitors and inducers.
Collapse
Affiliation(s)
- Hamim Zahir
- Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| | | | - Ching Hsu
- Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| | | | | | - Ling He
- Daiichi Sankyo, Inc, Basking Ridge, New Jersey, USA
| | | |
Collapse
|
11
|
Wen J, Wang S, Guo R, Liu D. CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur J Med Chem 2023; 245:114884. [PMID: 36335744 DOI: 10.1016/j.ejmech.2022.114884] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022]
|
12
|
Song MK, Park BB, Uhm JE. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012708. [PMID: 36293564 PMCID: PMC9604443 DOI: 10.3390/ijms232012708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
FLT3 mutations are the most common genomic alteration detected in acute myeloid leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together with the side effects associated with clinical prognosis, make FLT3 promising treatment targets and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were actively developed, and thus the outcomes of this aggressive subtype of AML were significantly improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and as therapeutic agents in the recurred disease by the United States Food and Drug Administration. Recently, numerous promising clinical trials attempted to seek appropriate management in frontline settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The cumulative data of FLT3 inhibitors would be important clinical evidence for further management with FLT3 inhibitors in AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, Changwon 51497, Korea
| | - Byeong-Bae Park
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-8114; Fax: +82-2-2290-7112
| | - Ji-Eun Uhm
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
| |
Collapse
|
13
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
14
|
Kooijman JJ, van Riel WE, Dylus J, Prinsen MBW, Grobben Y, de Bitter TJJ, van Doornmalen AM, Melis JJTM, Uitdehaag JCM, Narumi Y, Kawase Y, de Roos JADM, Willemsen-Seegers N, Zaman GJR. Comparative kinase and cancer cell panel profiling of kinase inhibitors approved for clinical use from 2018 to 2020. Front Oncol 2022; 12:953013. [PMID: 36185300 PMCID: PMC9516332 DOI: 10.3389/fonc.2022.953013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
During the last two decades, kinase inhibitors have become the major drug class for targeted cancer therapy. Although the number of approved kinase inhibitors increases rapidly, comprehensive in vitro profiling and comparison of inhibitor activities is often lacking in the public domain. Here we report the extensive profiling and comparison of 21 kinase inhibitors approved by the FDA for oncology indications since June 2018 and 13 previously approved comparators on panels of 255 biochemical kinase assays and 134 cancer cell line viability assays. Comparison of the cellular inhibition profiles of the EGFR inhibitors gefitinib, dacomitinib, and osimertinib identified the uncommon EGFR p.G719S mutation as a common response marker for EGFR inhibitors. Additionally, the FGFR inhibitors erdafitinib, infigratinib, and pemigatinib potently inhibited the viability of cell lines which harbored oncogenic alterations in FGFR1-3, irrespective of the specific clinical indications of the FGFR inhibitors. These results underscore the utility of in vitro kinase inhibitor profiling in cells for identifying new potential stratification markers for patient selection. Furthermore, comparison of the in vitro inhibition profiles of the RET inhibitors pralsetinib and selpercatinib revealed they had very similar biochemical and cellular selectivity. As an exception, an NTRK3 fusion-positive cell line was potently inhibited by pralsetinib but not by selpercatinib, which could be explained by the targeting of TRK kinases in biochemical assays by pralsetinib but not selpercatinib. This illustrates that unexpected differences in cellular activities between inhibitors that act through the same primary target can be explained by subtle differences in biochemical targeting. Lastly, FLT3-mutant cell lines were responsive to both FLT3 inhibitors gilteritinib and midostaurin, and the PI3K inhibitor duvelisib. Biochemical profiling revealed that the FLT3 and PI3K inhibitors targeted distinct kinases, indicating that unique dependencies can be identified by combined biochemical and cellular profiling of kinase inhibitors. This study provides the first large scale kinase assay or cell panel profiling study for newly approved kinase inhibitors, and shows that comprehensive in vitro profiling of kinase inhibitors can provide rationales for therapy selection and indication expansion of approved kinase inhibitors.
Collapse
|
15
|
Overcoming Resistance: FLT3 Inhibitors Past, Present, Future and the Challenge of Cure. Cancers (Basel) 2022; 14:cancers14174315. [PMID: 36077850 PMCID: PMC9454516 DOI: 10.3390/cancers14174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
FLT3 ITD and TKD mutations occur in 20% and 10% of Acute Myeloid Leukemia (AML), respectively, and they represent the target of the first approved anti-leukemic therapies in the 2000s. Type I and type II FLT3 inhibitors (FLT3i) are active against FLT3 TKD/ITD and FLT3 ITD mutations alone respectively, but they still fail remissions in 30-40% of patients due to primary and secondary mechanisms of resistance, with variable relapse rate of 30-50%, influenced by NPM status and FLT3 allelic ratio. Mechanisms of resistance to FLT3i have recently been analyzed through NGS and single cell assays that have identified and elucidated the polyclonal nature of relapse in clinical and preclinical studies, summarized here. Knowledge of tumor escape pathways has helped in the identification of new targeted drugs to overcome resistance. Immunotherapy and combination or sequential use of BCL2 inhibitors and experimental drugs including aurora kinases, menin and JAK2 inhibitors will be the goal of present and future clinical trials, especially in patients with FLT3-mutated (FLT3mut) AML who are not eligible for allogeneic transplantation.
Collapse
|
16
|
Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol 2022; 15:110. [PMID: 35978372 PMCID: PMC9387027 DOI: 10.1186/s13045-022-01328-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/06/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that the detection and clearance of cancer cells via phagocytosis induced by innate immune checkpoints play significant roles in tumor-mediated immune escape. The most well-described innate immune checkpoints are the "don't eat me" signals, including the CD47/signal regulatory protein α axis (SIRPα), PD-1/PD-L1 axis, CD24/SIGLEC-10 axis, and MHC-I/LILRB1 axis. Molecules have been developed to block these pathways and enhance the phagocytic activity against tumors. Several clinical studies have investigated the safety and efficacy of CD47 blockades, either alone or in combination with existing therapy in hematological malignancies, including myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and lymphoma. However, only a minority of patients have significant responses to these treatments alone. Combining CD47 blockades with other treatment modalities are in clinical studies, with early results suggesting a synergistic therapeutic effect. Targeting macrophages with bispecific antibodies are being explored in blood cancer therapy. Furthermore, reprogramming of pro-tumor macrophages to anti-tumor macrophages, and CAR macrophages (CAR-M) demonstrate anti-tumor activities. In this review, we elucidated distinct types of macrophage-targeted strategies in hematological malignancies, from preclinical experiments to clinical trials, and outlined potential therapeutic approaches being developed.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Knight TE, Edwards H, Meshinchi S, Taub JW, Ge Y. "FLipping" the Story: FLT3-Mutated Acute Myeloid Leukemia and the Evolving Role of FLT3 Inhibitors. Cancers (Basel) 2022; 14:3398. [PMID: 35884458 PMCID: PMC9315611 DOI: 10.3390/cancers14143398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
Collapse
Affiliation(s)
- Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Soheil Meshinchi
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey W. Taub
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Role of Biomarkers in FLT3 AML. Cancers (Basel) 2022; 14:cancers14051164. [PMID: 35267471 PMCID: PMC8909069 DOI: 10.3390/cancers14051164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in the improvement of the quality of standard of care therapies; however, the overall survival of the patients remains static. This is due to numerous mutations in FLT3, which causes resistance against these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as well as the alternative measures to overcome resistance to the current therapies. Abstract Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.
Collapse
|
19
|
Solana-Altabella A, Ballesta-López O, Megías-Vericat JE, Martínez-Cuadrón D, Montesinos P. Emerging FLT3 inhibitors for the treatment of acute myeloid leukemia. Expert Opin Emerg Drugs 2022; 27:1-18. [DOI: 10.1080/14728214.2021.2009800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Octavio Ballesta-López
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Juan Eduardo Megías-Vericat
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
| | - David Martínez-Cuadrón
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Pau Montesinos
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia-Spain
| |
Collapse
|
20
|
Vaynrub A, Healey JH, Tap W, Vaynrub M. Pexidartinib in the Management of Advanced Tenosynovial Giant Cell Tumor: Focus on Patient Selection and Special Considerations. Onco Targets Ther 2022; 15:53-66. [PMID: 35046667 PMCID: PMC8763255 DOI: 10.2147/ott.s345878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Tenosynovial giant cell tumor (TGCT) is a neoplasm of the joint synovium that can have severe impacts on joint mobility, function, and quality of life. Traditionally, treatment modalities included partial or complete surgical synovectomy, radiotherapy (typically as an adjunct to surgery), and watchful monitoring (no medical or surgical intervention). However, these approaches have been met with varying degrees of success and high recurrence rates, as well as onerous complications and clinical sequelae. Pexidartinib, a colony-stimulating factor 1 receptor (CSF1R) inhibitor, presents a promising molecular approach that targets a neoplastic driver of TGCT. While the introduction of pexidartinib allows clinicians to avoid the significant morbidity associated with traditional treatment options, there are also defined risks associated with pexidartinib treatment. Therefore, patient selection is critical in optimizing treatment modalities in TGCT. The purpose of this literature review is to identify the TGCT patient population that would derive maximal benefit with minimal risk from pexidartinib, and to determine the specific indications and contraindications for selecting pexidartinib over other therapeutic approaches. Specifically, this paper compares the efficacy and safety profile of pexidartinib across clinical and preclinical studies to that of surgery, radiotherapy, and watchful monitoring. Rates of improvement in joint mobility, pain, and recurrence-free survival across studies of pexidartinib have been encouraging. The most common adverse events are mild (hypopigmentation of the hair) or reversible (transient aminotransferase elevation). Severe or permanent adverse events (notably cholestatic hepatotoxicity) are rare. While the optimal treatment strategy remains highly dependent on a patient's clinical circumstances and treatment goals, pexidartinib has surfaced as a promising therapeutic in cases where the morbidity of surgery or radiotherapy outweighs the benefits.
Collapse
Affiliation(s)
- Anna Vaynrub
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Vaynrub
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
21
|
Discovery of a Benzimidazole-based Dual FLT3/TrKA Inhibitor Targeting Acute Myeloid Leukemia. Bioorg Med Chem 2021; 56:116596. [DOI: 10.1016/j.bmc.2021.116596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
|
22
|
Ordentlich P. Clinical evaluation of colony-stimulating factor 1 receptor inhibitors. Semin Immunol 2021; 54:101514. [PMID: 34776301 DOI: 10.1016/j.smim.2021.101514] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Signaling through colony-stimulating factor 1 receptor (CSF1R) regulates the development, differentiation, and activation of mononuclear phagocytic cells. Inhibition of this pathway provides an opportunity for therapeutic intervention in diseases in which these cells play a pathogenic role, including cancers, inflammation, fibrosis, and others. Multiple monoclonal antibodies and small molecule inhibitors targeting CSF1R or its known ligands CSF1 and IL-34 have been clinically tested and are generally well tolerated with side effects associated with on-target macrophage inhibition or depletion. To date, clinical activity of CSF1R inhibitors has been primarily observed in diffuse-type tenosynovial giant cell tumors, a disease characterized by genetic alterations in CSF1 leading to dysregulated CSF1R signaling. Expanded development into novel indications such as chronic graft vs host disease may provide new opportunities to further explore areas where a role for CSF1R dependent monocytes and macrophages has been established. This review presents key findings from the clinical development of 12 CSF1/CSF1R targeted therapies as monotherapy or in combination with immune checkpoint inhibitors and chemotherapy.
Collapse
|
23
|
CSF1R Inhibition Combined with GM-CSF Reprograms Macrophages and Disrupts Protumoral Interplays with AML Cells. Cancers (Basel) 2021; 13:cancers13215289. [PMID: 34771453 PMCID: PMC8582394 DOI: 10.3390/cancers13215289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Relapse is a major issue in acute myeloid leukemia (AML) and while the contribution of gene mutations in developing drug resistance is well established, little is known on the role of macrophages (MΦs) in an AML cell microenvironment. We examined whether myeloblasts could educate MΦs to adopt a protumoral orientation supporting myeloblast survival and resistance to therapy. Flow cytometry analyses demonstrated that M2-like CD163+ MΦs are abundantly present, at diagnosis, in the bone marrow of AML patients. We showed that myeloblasts, or their conditioned medium, polarize monocytes to M2-like CD163+ MΦs, induce the secretion of many protumoral factors, and promote myeloblast survival and proliferation as long as close intercellular contacts are maintained. Importantly, pharmacologic inhibition of the CSF1 receptor (CSF1R), in the presence of GM-CSF, reprogrammed MΦ polarization to an M1-like orientation, induced the secretion of soluble factors with antitumoral activities, reduced protumoral agonists, and promoted the apoptosis of myeloblasts interacting with MΦs. Furthermore, myeloblasts, which became resistant to venetoclax or midostaurin during their interplay with protumoral CD163+ MΦs, regained sensitivity to these targeted therapies following CSF1R inhibition in the presence of GM-CSF. These data reveal a crucial role of CD163+ MΦ interactions with myeloblasts that promote myeloblast survival and identify CSF1R inhibition as a novel target for AML therapy.
Collapse
|
24
|
Machado CB, de Pinho Pessoa FMC, da Silva EL, da Costa Pantoja L, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Montenegro RC, Burbano RMR, Khayat AS, Moreira-Nunes CA. Kinase Inhibition in Relapsed/Refractory Leukemia and Lymphoma Settings: Recent Prospects into Clinical Investigations. Pharmaceutics 2021; 13:1604. [PMID: 34683897 PMCID: PMC8540545 DOI: 10.3390/pharmaceutics13101604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is still a major barrier to life expectancy increase worldwide, and hematologic neoplasms represent a relevant percentage of cancer incidence rates. Tumor dependence of continuous proliferative signals mediated through protein kinases overexpression instigated increased strategies of kinase inhibition in the oncologic practice over the last couple decades, and in this review, we focused our discussion on relevant clinical trials of the past five years that investigated kinase inhibitor (KI) usage in patients afflicted with relapsed/refractory (R/R) hematologic malignancies as well as in the pharmacological characteristics of available KIs and the dissertation about traditional chemotherapy treatment approaches and its hindrances. A trend towards investigations on KI usage for the treatment of chronic lymphoid leukemia and acute myeloid leukemia in R/R settings was observed, and it likely reflects the existence of already established treatment protocols for chronic myeloid leukemia and acute lymphoid leukemia patient cohorts. Overall, regimens of KI treatment are clinically manageable, and results are especially effective when allied with tumor genetic profiles, giving rise to encouraging future prospects of an era where chemotherapy-free treatment regimens are a reality for many oncologic patients.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, Brazil;
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Rommel Mário Rodriguez Burbano
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - André Salim Khayat
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| |
Collapse
|
25
|
Ma J, Ge Z. Recent advances of targeted therapy in relapsed/refractory acute myeloid leukemia. Bosn J Basic Med Sci 2021; 21:409-421. [PMID: 33577442 PMCID: PMC8292864 DOI: 10.17305/bjbms.2020.5485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the understanding of disease pathobiology, treatment for relapsed or refractory acute myeloid leukemia (R/R AML) remains challenging. The prognosis of R/R AML remains extremely poor despite chemotherapy and bone marrow transplants. Discoveries on recurrent and novel genetic mutations, such as FLT3-ITD and IDH1/IDH2, critical signaling pathways, and unique molecular markers expressed on the surface of leukemic cells have been under investigation for the management of R/R AML. Other than monoclonal antibodies, diabodies, and triabodies are new targeted therapies developed in recent years and will be the new direction of immunotherapy. Targeted agents combined intensive regimens can be viable options for salvage therapy and as bridges to allogeneic transplant. Future directions will focus on novel, efficient and targeted combinations, low-toxicity maintenance, and individualized precision strategies. Here, we review the major recent advances of targeted therapies in the treatment of R/R AML.
Collapse
Affiliation(s)
- Jiale Ma
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China; Department of Hematology, Xuzhou Central Hospital, Xuzhou, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
26
|
Smith CC, Viny AD, Massi E, Kandoth C, Socci ND, Rapaport F, Najm M, Medina-Martinez JS, Papaemmanuil E, Tarver TC, Hsu HH, Le MH, West B, Bollag G, Taylor BS, Levine RL, Shah NP. Recurrent Mutations in Cyclin D3 Confer Clinical Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:4003-4011. [PMID: 34103301 DOI: 10.1158/1078-0432.ccr-20-3458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE Biomarkers of response and resistance to FLT3 tyrosine kinase inhibitors (TKI) are still emerging, and optimal clinical combinations remain unclear. The purpose of this study is to identify co-occurring mutations that influence clinical response to the novel FLT3 inhibitor pexidartinib (PLX3397). EXPERIMENTAL DESIGN We performed targeted sequencing of pretreatment blasts from 29 patients with FLT3 internal tandem duplication (ITD) mutations treated on the phase I/II trial of pexidartinib in relapsed/refractory FLT3-ITD+ acute myeloid leukemia (AML). We sequenced 37 samples from 29 patients with available material, including 8 responders and 21 non-responders treated at or above the recommended phase II dose of 3,000 mg. RESULTS Consistent with other studies, we identified mutations in NRAS, TP53, IDH2, and a variety of epigenetic and transcriptional regulators only in non-responders. Among the most frequently mutated genes in non-responders was Cyclin D3 (CCND3). A total of 3 individual mutations in CCND3 (Q276*, S264R, and T283A) were identified in 2 of 21 non-responders (one patient had both Q276* and S264R). No CCND3 mutations were found in pexidartinib responders. Expression of the Q276* and T283A mutations in FLT3-ITD MV4;11 cells conferred resistance to apoptosis, decreased cell-cycle arrest, and increased proliferation in the presence of pexidartinib and other FLT3 inhibitors. Inhibition of CDK4/6 activity in CCND3 mutant MV4;11 cells restored pexidartinib-induced cell-cycle arrest but not apoptosis. CONCLUSIONS Mutations in CCND3, a gene not commonly mutated in AML, are a novel cause of clinical primary resistance to FLT3 inhibitors in AML and may have sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Catherine C Smith
- Division of Hematology/Oncology, University of California, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Aaron D Viny
- Human Oncology & Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Evan Massi
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Cyriac Kandoth
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas D Socci
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Franck Rapaport
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthieu Najm
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan S Medina-Martinez
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elli Papaemmanuil
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Theodore C Tarver
- Division of Hematology/Oncology, University of California, San Francisco, California
| | | | - Mai H Le
- Plexxikon Inc, Berkeley, California
| | | | | | - Barry S Taylor
- Human Oncology & Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Human Oncology & Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| |
Collapse
|
27
|
Rasmussen RK, Etzerodt A. Therapeutic targeting of tumor-associated macrophages. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:185-211. [PMID: 34099108 DOI: 10.1016/bs.apha.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor-associated macrophages are among the most abundant non-cancerous cells in the tumor microenvironment and in many cancers macrophage infiltration into the tumor is associated with poor prognosis. Macrophages contribute to tumor development by promoting angiogenesis and immune suppression, and display remarkable phenotypic heterogeneity in the tumor microenvironment. Therapeutic strategies targeting macrophages that currently are in clinical development are mainly focused on a general depletion of tumor-associated macrophages, either by targeting the CSF-1/CSF-1R axis or by inhibiting macrophage recruitment by blocking CCR2/CCL2 signaling. Despite good pre-clinical response rates the treatment strategies focusing on general macrophage targeting have only shown limited clinical success and new approaches that target specific subsets of tumo-associated macrophages are emerging. This chapter will briefly present the functions and heterogeneity of tumor-associated macrophages and provide an overview of the current state of clinical development for pan-targeting strategies as well as discuss new strategies for targeting specific macrophage subsets for future anti-tumor immunotherapies.
Collapse
Affiliation(s)
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
28
|
Yang J, Lindström HJG, Friedman R. Combating drug resistance in acute myeloid leukaemia by drug rotations: the effects of quizartinib and pexidartinib. Cancer Cell Int 2021; 21:198. [PMID: 33832508 PMCID: PMC8033742 DOI: 10.1186/s12935-021-01856-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is an aggressive blood cancer. In approximately 30% of the cases, driver mutations in the FLT3 gene are identified. FLT3 inhibitors are used in treatment of such patients together with cytotoxic drugs or (in refractory AML) as single agents. Unfortunately, resistance to FLT3 inhibitors limits their efficacy. Resistance is often due to secondary mutations in the gene encoding the molecular target. The gatekeeper mutation F691L confers resistance to specific FLT3 inhibitors such as quizartinib, but pexidartinib is much less resistance to this mutation. Pexidartinib alone is however sensitive to many other resistance mutations. In chronic myeloid leukaemia (CML), it has been suggested that rotation between drugs with a different landscape of resistance mutations might postpone the emergence of resistance. METHODS We studied the effect of quizartinib and pexidartinib in AML cell lines that express FLT3 (MOLM-14 and MV4-11). Using a rotation protocol, we further examined whether the emergence of resistance could be postponed. Computational modelling was used to analyse the onset of resistance and suggest which mutations are most likely to occur in a quantitative fashion. RESULTS The cells were sensitive to both inhibitors but quickly developed resistance that could be inherited, suggesting a genetic origin. Rotation protocols were not useful to postpone the emergence of resistance, which implies that such protocols, or changing from pexidartinib to quizartinib (or vice-versa) should not be used in patients. The computational modelling led to similar conclusions and suggested that F691L is the most common mutation to occur with quizartinib, and also when both drugs are used in rotation. CONCLUSIONS AML patients are not likely to benefit from a quizartinib/pexidartinib rotation protocol. A combination of tyrosine kinase inhibitors (with different molecular targets) might be more useful in the future. Development of specific FLT3 inhibitors that are less sensitive to resistance mutations might also lead to a better outcome.
Collapse
Affiliation(s)
- Jingmei Yang
- Department of Chemistry and Biomedical Science, Linnaeus University, Kalmar Campus, Kalmar, 391 82, Sweden
| | - H Jonathan G Lindström
- Department of Chemistry and Biomedical Science, Linnaeus University, Kalmar Campus, Kalmar, 391 82, Sweden
- Faeth Therapeutics Inc., 237 Kearny Street, #9245, San Francisco, CA, 94108, US
| | - Ran Friedman
- Department of Chemistry and Biomedical Science, Linnaeus University, Kalmar Campus, Kalmar, 391 82, Sweden.
| |
Collapse
|
29
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
30
|
Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol 2021; 10:612880. [PMID: 33425766 PMCID: PMC7787101 DOI: 10.3389/fonc.2020.612880] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
The FLT3 receptor is overexpressed on the majority of acute myeloid leukemia (AML) blasts. Mutations in FLT3 are the most common genetic alteration in AML, identified in approximately one third of newly diagnosed patients. FLT3 internal tandem duplication mutations (FLT3-ITD) are associated with increased relapse and inferior overall survival. Multiple small molecule inhibitors of FLT3 signaling have been identified, two of which (midostaurin and gilteritinib) are currently approved in the United States, and many more of which are in clinical trials. Despite significant advances, resistance to FLT3 inhibitors through secondary FLT3 mutations, upregulation of parallel pathways, and extracellular signaling remains an ongoing challenge. Novel therapeutic strategies to overcome resistance, including combining FLT3 inhibitors with other antileukemic agents, development of new FLT3 inhibitors, and FLT3-directed immunotherapy are in active clinical development. Multiple questions regarding FLT3-mutated AML remain. In this review, we highlight several of the current most intriguing controversies in the field including the role of FLT3 inhibitors in maintenance therapy, the role of hematopoietic cell transplantation in FLT3-mutated AML, use of FLT3 inhibitors in FLT3 wild-type disease, significance of non-canonical FLT3 mutations, and finally, emerging concerns regarding clonal evolution.
Collapse
Affiliation(s)
- Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Catherine C Smith
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
31
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
32
|
Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: Accomplices in metastasis. Cancer Lett 2020; 492:11-20. [PMID: 32745581 DOI: 10.1016/j.canlet.2020.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Metastasis is a critical cause of treatment failure and death in patients with advanced malignancies. Tumor cells can leave the primary site and enter the bloodstream; these circulating tumor cells then colonize target organs by overcoming blood shear stress, evading immune surveillance, and silencing the offensive capabilities of immune cells, eventually forming metastatic foci. From leaving the primary focus to the completion of distant metastasis, malignant tumor cells are supported and/or antagonized by certain immune cells. In particular, it has been found that myeloid granulocytes play an important role in this process. This review therefore aims to comprehensively describe the significance of neutrophils in solid tumor metastasis in terms of their supporting role in initiating the invasion and migration of tumor cells and assisting the colonization of circulating tumor cells in distant target organs, with the hope of providing insight into and ideas for anti-tumor metastasis treatment of tumor patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weilun Huang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Plastic and Cosmetic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|