1
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong SG, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex-vivo-generated 89Zr-oxine-labeled plasma cells by PET in a non-human primate model. Mol Ther 2025; 33:580-594. [PMID: 39741408 PMCID: PMC11852699 DOI: 10.1016/j.ymthe.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody-secreting cells. Zirconium-89-oxine-labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 h of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting possibly a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
Affiliation(s)
- David J Young
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Kevin G Quiroz Caceda
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - So Gun Hong
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Peter L Choyke
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Noriko Sato
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong S, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex vivo generated 89 Zr-oxine labeled plasma cells by PET in a non-human primate model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595782. [PMID: 38903108 PMCID: PMC11188104 DOI: 10.1101/2024.05.24.595782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells. Zirconium-89-oxine labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 hours of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
|
3
|
David M, Monteferrario D, Saviane G, Jeanneau C, Marchetti I, Dupont CF, Dumont C, Fontenot JD, Rosa MDL, Fenard D. Production of therapeutic levels of human FIX-R338L by engineered B cells using GMP-compatible medium. Mol Ther Methods Clin Dev 2023; 31:101111. [PMID: 37790246 PMCID: PMC10543988 DOI: 10.1016/j.omtm.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
B cells can differentiate into plasmablast and plasma cells, capable of producing antibodies for decades. Gene editing using zinc-finger nucleases (ZFN) enables the engineering of B cells capable of secreting sustained and high levels of therapeutic proteins. In this study, we established an advanced in vitro good manufacturing practice-compatible culturing system characterized by robust and consistent expansion rate, high viability, and efficient B cell differentiation. Using this process, an optimized B cell editing protocol was developed by combining ZFN/adeno-associated virus 6 technology to achieve site-specific insertion of the human factor IX R338L Padua into the silent TRAC locus. In vitro analysis revealed high levels of secreted human immunoglobulins and human factor IX-Padua. Following intravenous infusion in a mouse model, human plasma cells were detected in spleen and bone marrow, indicating successful and potentially long-term engraftment in vivo. Moreover, high levels of human immunoglobin and therapeutic levels of human factor IX-Padua were detected in mouse plasma, correlating with 15% of normal human factor IX activity. These data suggest that the proposed process promotes the production of functional and differentiated engineered B cells. In conclusion, this study represents an important step toward the development of a manufacturing platform for potential B cell-derived therapeutic products.
Collapse
Affiliation(s)
- Marion David
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Davide Monteferrario
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Gaëlle Saviane
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Caroline Jeanneau
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Irène Marchetti
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Coralie F. Dupont
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Céline Dumont
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Jason D. Fontenot
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Maurus de la Rosa
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - David Fenard
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| |
Collapse
|
4
|
Rice-Boucher PJ, Mendonça SA, Alvarez AB, Sturtz AJ, Lorincz R, Dmitriev IP, Kashentseva EA, Lu ZH, Romano R, Selby M, Pingale K, Curiel DT. Adenoviral vectors infect B lymphocytes in vivo. Mol Ther 2023; 31:2600-2611. [PMID: 37452494 PMCID: PMC10492023 DOI: 10.1016/j.ymthe.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.
Collapse
Affiliation(s)
- Paul J Rice-Boucher
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Samir Andrade Mendonça
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Aluet Borrego Alvarez
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Reka Lorincz
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhi Hong Lu
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rosa Romano
- Walking Fish Therapeutics, Inc., South San Francisco, CA, USA
| | - Mark Selby
- Walking Fish Therapeutics, Inc., South San Francisco, CA, USA
| | - Kunal Pingale
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David T Curiel
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Xue Y, Che J, Ji X, Li Y, Xie J, Chen X. Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 2022; 51:1766-1794. [PMID: 35170589 DOI: 10.1039/d1cs00786f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adoptive immunotherapies based on the transfer of functional immune cells hold great promise in treating a wide range of malignant diseases, especially cancers, autoimmune diseases, and infectious diseases. However, manufacturing issues and biological barriers lead to the insufficient population of target-selective effector cells at diseased sites after adoptive transfer, hindering effective clinical translation. The convergence of immunology, cellular biology, and materials science lays a foundation for developing biomaterial-based engineering platforms to overcome these challenges. Biomaterials can be rationally designed to improve ex vivo immune cell expansion, expedite functional engineering, facilitate protective delivery of immune cells in situ, and navigate the infused cells in vivo. Herein, this review presents a comprehensive summary of the latest progress in biomaterial-based strategies to enhance the efficacy of adoptive cell therapy, focusing on function-specific biomaterial design, and also discusses the challenges and prospects of this field.
Collapse
Affiliation(s)
- Yonger Xue
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xuemei Ji
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yunuo Li
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan.,State Key Laboratory of Bioelectronics, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|