1
|
Ang DA, Harmston N, Li Y. ATF4:p52 Complex Activates Oncogenic Enhancers in Multiple Myeloma via p300/CBP Recruitment to Regulate BACH1. Cancer Lett 2025:217727. [PMID: 40250789 DOI: 10.1016/j.canlet.2025.217727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Multiple myeloma (MM) is a B-cell malignancy accounting for 20% of all blood-associated cancers. MM patients with a poorer prognosis and high-risk stratification were previously observed to be causally linked to the constitutive activation of non-canonical NF-κB (ncNF-κB) pathway. Consistent with this, the ncNF-κB p52 transcription factor was earlier found to regulate the enhancer landscape of MM to potentiate oncogenic transcription. However, the mechanism by which aberrant p52 expression is involved in coordinating enhancer activity has not been well explored. In this study, we analysed H3K27ac ChIP-seq and ATAC-seq data from MM cell lines and patient samples to screen for putative transcription factors that cooperate with p52 to regulate enhancers activated in MM. We report that ATF4 interacts with p52 and together, this complex mediates the activity of a subset of MM-associated enhancers through the recruitment of histone acetyltransferases (HATs), p300 and CBP (CREB-binding protein). We also identified a ATF4:p52 regulated target gene BACH1 under the regulation of a proximal super-enhancer, which was found to drive oncogenesis in MM by promoting cell cycle progression and proliferation. Together, our findings provide further mechanistic insights into how aberrant enhancer activation observed in MM tumours could lead to disease progression.
Collapse
Affiliation(s)
- Daniel Aron Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, SINGAPORE
| | - Nathan Harmston
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, SINGAPORE,.
| |
Collapse
|
2
|
Zhang F, Li Z, Fang F, Hu Y, He Z, Tao Y, Li Y, Zhang Z, Zhou B, Yang Y, Wu Y, Wu Y, Wei Z, Guo A, Xu L, Zhang Y, Li X, Li Y, Yang C, Zhou M, Pan J, Hu S, Yang X. IRF1 is a core transcriptional regulatory circuitry member promoting AML progression by regulating lipid metabolism. Exp Hematol Oncol 2025; 14:25. [PMID: 40025540 PMCID: PMC11871635 DOI: 10.1186/s40164-025-00612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a prevalent malignancy of the hematologic system. Despite advancements in therapeutic approaches, significant heterogeneity and therapeutic resistance pose substantial challenges to treatment. Tumors driven by core transcription factors through super-enhancers can establish core transcriptional regulatory circuits (CRCs) that modulate oncogene expression programs. Identifying CRC is crucial for understanding disease-related transcriptional regulation. This study sought to predict and establish a CRC model for AML, identify genes critical for AML survival and explore their regulatory mechanisms in AML progression. METHODS The dbCoRC tool was used for predictive analysis of H3K27ac ChIP-seq data from 11 AML samples to construct and validate the CRC model in AML patients. To elucidate the functional role of the CRC member IRF1, we utilized short hairpin RNA (shRNA) to knock down IRF1 in AML cells. RNA-seq, CUT&Tag and lipidomics technologies were subsequently used to investigate the regulatory roles and downstream mechanisms of IRF1 in AML. RESULTS This study established a core transcriptional regulatory circuit consisting of IRF1, ELF1, ETV6, RUNX2, and MEF2D, which formed an interconnected autoregulatory loop. Further investigations revealed up-regulated expression of IRF1 in AML patients, which was associated with poor prognosis. Inhibition of IRF1 expression resulted in decreased AML cell proliferation and induced apoptosis, indicating its essential role in the survival of AML cells. Additionally, this study revealed that IRF1 directly regulates the transcription of key genes such as FASN, SCD, and SREBF1 for lipid synthesis, thereby affecting lipid metabolism in AML cells. CONCLUSION In summary, this study identified IRF1 as a novel core transcription factor involved in AML pathogenesis. IRF1 collaborates with ELF1, ETV6, RUNX2, and MEF2D to form a core transcriptional regulatory circuit that promotes AML progression. Furthermore, we demonstrated that IRF1 directly regulates the expression of key genes involved in lipid metabolism, influencing the synthesis of diverse lipid molecules crucial for AML survival.
Collapse
Affiliation(s)
- Fenli Zhang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550000, Guizhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550000, Guizhou, China
| | - Yanfang Tao
- Department of Traditional Chinese Medicine, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yizhen Li
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
- Pediatric Hematology & Oncology Key Laboratory of Higher Education Institutions in Jiangsu Province, Suzhou, 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, China
| | - Ying Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550000, Guizhou, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Yijun Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Zhongling Wei
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Ailian Guo
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Ling Xu
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yongping Zhang
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chunxia Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550000, Guizhou, China
| | - Man Zhou
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550000, Guizhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.
| | - Xiaoyan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
3
|
Wu K, Li Y, Nie B, Guo C, Ma X, Li L, Cheng S, Li Y, Luo S, Zeng Y, Yu J, Shi M. MEF2A is a transcription factor for circPVT1 and contributes to the malignancy of acute myeloid leukemia. Int J Oncol 2024; 65:111. [PMID: 39329212 PMCID: PMC11436260 DOI: 10.3892/ijo.2024.5699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a high relapse rate and a poor survival rate. The circular RNA circPVT1 and myocyte enhancer factor 2A (MEF2A) have unique functions in the progression of AML; however, the underlying mechanisms and clinical significance remain to be clarified. Bioinformatics and database analyses were used to assess the transcription factors and target genes of circPVT1. Dual‑luciferase reporter gene and argonaute 2‑RNA immunoprecipitation assays were used to verify the targeted relationships. The expression levels of related genes and proteins were detected by reverse transcription‑quantitative PCR and western blotting. Cell viability and apoptosis were detected by Cell Counting Kit‑8 assay and flow cytometry, respectively. The results revealed that circPVT1 was highly expressed in AML samples and cell lines, and that MEF2A regulated the expression of circPVT1. MEF2A overexpression promoted cell viability and epithelial‑mesenchymal transition (EMT), and inhibited cell apoptosis. In addition, circPVT1 was revealed to target the regulation of microRNA (miR)‑455‑3p, and miR‑455‑3p targeted the regulation of MCL1 expression, thus indicating that circPVT1 promoted MCL1 expression through its interaction with miR‑455‑3p. Furthermore, cells were transfected with the small interfering RNA‑(si)‑circPVT1, miR‑455‑3p inhibitor or si‑MCL1, and si‑circPVT1 and si‑MCL1 inhibited the viability and EMT of NB4 and HL‑60 cells. However, the miR‑455‑3p inhibitor had the opposite effect on cells. In conclusion, MEF2A may act as a transcription factor of circPVT1 to promote the malignant process of AML, and knockdown of circPVT1 could inhibit the viability and EMT of AML cells through the miR‑455‑3p/MCL1 axis.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Survival/genetics
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Leukemic
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- MEF2 Transcription Factors/genetics
- MEF2 Transcription Factors/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- RNA, Circular/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
Collapse
Affiliation(s)
- Kun Wu
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuntao Li
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Bo Nie
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chong Guo
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaobo Ma
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Linyan Li
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shenju Cheng
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanhong Li
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shan Luo
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun Zeng
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jian Yu
- Interdisciplinary Institute for Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
4
|
Zhang L, Zhou X, Aryal S, Veasey V, Zhang P, Li FJ, Luan Y, Bhatia R, Zhou Y, Lu R. CRISPR screen of venetoclax response-associated genes identifies transcription factor ZNF740 as a key functional regulator. Cell Death Dis 2024; 15:627. [PMID: 39191721 DOI: 10.1038/s41419-024-06995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BCL-2 inhibitors such as venetoclax offer therapeutic promise in acute myeloid leukemia (AML) and other cancers, but drug resistance poses a significant challenge. It is crucial to understand the mechanisms that regulate venetoclax response. While correlative studies have identified numerous genes linked to venetoclax sensitivity, their direct impact on the drug response remains unclear. In this study, we targeted around 1400 genes upregulated in venetoclax-sensitive primary AML samples and carried out a CRISPR knockout screen to evaluate their direct effects on venetoclax response. Our screen identified the transcription factor ZNF740 as a critical regulator, with its expression consistently predicting venetoclax sensitivity across subtypes of the FAB classification. ZNF740 depletion leads to increased resistance to ventoclax, while its overexpression enhances sensitivity to the drug. Mechanistically, our integrative transcriptomic and genomic analysis identifies NOXA as a direct target of ZNF740, which negatively regulates MCL-1 protein stability. Loss of ZNF740 downregulates NOXA and increases the steady state protein levels of MCL-1 in AML cells. Restoring NOXA expression in ZNF740-depleted cells re-sensitizes AML cells to venetoclax treatment. Furthermore, we demonstrated that dual targeting of MCL-1 and BCL-2 effectively treats ZNF740-deficient AML in vivo. Together, our work systematically elucidates the causal relationship between venetoclax response signature genes and establishes ZNF740 as a novel transcription factor regulating venetoclax sensitivity.
Collapse
MESH Headings
- Sulfonamides/pharmacology
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Cell Line, Tumor
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Mice
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yu Luan
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
5
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
6
|
He J, Munir F, Catueno S, Connors JS, Gibson A, Robusto L, McCall D, Nunez C, Roth M, Tewari P, Garces S, Cuglievan B, Garcia MB. Biological Markers of High-Risk Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:858. [PMID: 38473221 PMCID: PMC10930495 DOI: 10.3390/cancers16050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) has witnessed substantial improvements in prognosis; however, a subset of patients classified as high-risk continues to face higher rates of relapse and increased mortality. While the National Cancer Institute (NCI) criteria have traditionally guided risk stratification based on initial clinical information, recent advances highlight the pivotal role of biological markers in shaping the prognosis of childhood ALL. This review delves into the emerging understanding of high-risk childhood ALL, focusing on molecular, cytogenetic, and immunophenotypic markers. These markers not only contribute to unraveling the underlying mechanisms of the disease, but also shed light on specific clinical patterns that dictate prognosis. The paradigm shift in treatment strategies, exemplified by the success of tyrosine kinase inhibitors in Philadelphia chromosome-positive leukemia, underscores the importance of recognizing and targeting precise risk factors. Through a comprehensive exploration of high-risk childhood ALL characteristics, this review aims to enhance our comprehension of the disease, offering insights into its molecular landscape and clinical intricacies in the hope of contributing to future targeted and tailored therapies.
Collapse
Affiliation(s)
- Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Faryal Munir
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Lindsay Robusto
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Priti Tewari
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| |
Collapse
|
7
|
Zhang C, Liang S, Zhang H, Wang R, Qiao H. Epigenetic regulation of mRNA mediates the phenotypic plasticity of cancer cells during metastasis and therapeutic resistance (Review). Oncol Rep 2024; 51:28. [PMID: 38131215 PMCID: PMC10777459 DOI: 10.3892/or.2023.8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Plasticity, the ability of cancer cells to transition between differentiation states without genomic alterations, has been recognized as a major source of intratumoral heterogeneity. It has a crucial role in cancer metastasis and treatment resistance. Thus, targeting plasticity holds tremendous promise. However, the molecular mechanisms of plasticity in cancer cells remain poorly understood. Several studies found that mRNA, which acts as a bridge linking the genetic information of DNA and protein, has an important role in translating genotypes into phenotypes. The present review provided an overview of the regulation of cancer cell plasticity occurring via changes in the transcription and editing of mRNAs. The role of the transcriptional regulation of mRNA in cancer cell plasticity was discussed, including DNA‑binding transcriptional factors, DNA methylation, histone modifications and enhancers. Furthermore, the role of mRNA editing in cancer cell plasticity was debated, including mRNA splicing and mRNA modification. In addition, the role of non‑coding (nc)RNAs in cancer plasticity was expounded, including microRNAs, long intergenic ncRNAs and circular RNAs. Finally, different strategies for targeting cancer cell plasticity to overcome metastasis and therapeutic resistance in cancer were discussed.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Siyuan Liang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| | - Hanning Zhang
- Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China
| | - Ruoxi Wang
- Sophomore, Farragut School #3 of Yangtai Road, Tianjin 300042, P.R. China
| | - Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| |
Collapse
|
8
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
9
|
Cheng S, Yang J, Wang Y, Xian L, Hu Z, Zou L. The function and regulation of CCAAT/enhancer binding protein ε. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231153322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In recent years, studies on the structure, function, and regulation of the C/EBPε gene have become an essential topic in the field of many diseases. CCAAT/enhancer-binding protein ε (C/EBPε) is the fifth member of the transcription factor CCAAT/C/EBP family of transcription factors. It plays crucial roles in cell proliferation, differentiation, immunity, energy metabolism, and hematopoiesis. C/EBPε plays essential roles in regulating the hematopoietic system, including myeloid cell development and maturation, participation in the body’s immune responses, and prevention of infections. C/EBPε function is regulated by phosphorylation, acetylation, methylation, and other types of genes. This review related to C/EBPε structure, function and regulation provides a theoretical basis for subsequent research in this area. C/EBPε is an emerging therapeutic target and thus provides new strategies for disease prevention and control.
Collapse
Affiliation(s)
- Shaowen Cheng
- Department of Emergency and Traumatology, First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| | - Jian Yang
- Department of Emergency and Traumatology, First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yudie Wang
- Emergency and Trauma College, Hainan Medical University, Haikou, China
| | - Lina Xian
- Intensive Care Unit, Hainan Medical University, Haikou, China
| | - Zhihua Hu
- Intensive Care Unit, Hainan Medical University, Haikou, China
| | - Lingyun Zou
- Center for Clinical Data Research, Chongqing University Central Hospital, Chongqing, China
| |
Collapse
|
10
|
Wright S, Zhao X, Rosikiewicz W, Mryncza S, Hyle J, Qi W, Liu Z, Yi S, Cheng Y, Xu B, Li C. Systematic characterization of the HOXA9 downstream targets in MLL-r leukemia by noncoding CRISPR screens. Nat Commun 2023; 14:7464. [PMID: 38016946 PMCID: PMC10684515 DOI: 10.1038/s41467-023-43264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Accumulating evidence indicates that HOXA9 dysregulation is necessary and sufficient for leukemic transformation and maintenance. However, it remains largely unknown how HOXA9, as a homeobox transcriptional factor, binds to noncoding regulatory sequences and controls the downstream genes. Here, we conduct dropout CRISPR screens against 229 HOXA9-bound peaks identified by ChIP-seq. Integrative data analysis identifies reproducible noncoding hits, including those located in the distal enhancer of FLT3 and intron of CDK6. The Cas9-editing and dCas9-KRAB silencing of the HOXA9-bound sites significantly reduce corresponding gene transcription and impair cell proliferation in vitro, and in vivo by transplantation into NSG female mice. In addition, RNA-seq, Q-PCR analysis, chromatin accessibility change, and chromatin conformation evaluation uncover the noncoding regulation mechanism of HOXA9 and its functional downstream genes. In summary, our work improves our understanding of how HOXA9-associated transcription programs reconstruct the regulatory network specifying MLL-r dependency.
Collapse
Affiliation(s)
- Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xujie Zhao
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shelby Mryncza
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Wenjie Qi
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zhenling Liu
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Siqi Yi
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
11
|
Turkalj S, Jakobsen NA, Groom A, Metzner M, Riva SG, Gür ER, Usukhbayar B, Salazar MA, Hentges LD, Mickute G, Clark K, Sopp P, Davies JOJ, Hughes JR, Vyas P. GTAC enables parallel genotyping of multiple genomic loci with chromatin accessibility profiling in single cells. Cell Stem Cell 2023; 30:722-740.e11. [PMID: 37146586 DOI: 10.1016/j.stem.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angus Groom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simone G Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Ravza Gür
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gerda Mickute
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
12
|
Di Giorgio E, Benetti R, Kerschbamer E, Xodo L, Brancolini C. Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:97-148. [PMID: 37657861 DOI: 10.1016/bs.ircmb.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Super-enhancers evolve as elements at the top of the hierarchical control of gene expression. They are important end-gatherers of signaling pathways that control stemness, differentiation or adaptive responses. Many epigenetic regulations focus on these regions, and not surprisingly, during the process of tumorigenesis, various alterations can account for their dysfunction. Super-enhancers are emerging as key drivers of the aberrant gene expression landscape that sustain the aggressiveness of cancer cells. In this review, we will describe and discuss about the structure of super-enhancers, their epigenetic regulation, and the major changes affecting their functionality in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Roberta Benetti
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emanuela Kerschbamer
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Luigi Xodo
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy.
| |
Collapse
|
13
|
Tang Y, Aryal S, Geng X, Zhou X, Fast VG, Zhang J, Lu R, Zhou Y. TBX20 Improves Contractility and Mitochondrial Function During Direct Human Cardiac Reprogramming. Circulation 2022; 146:1518-1536. [PMID: 36102189 PMCID: PMC9662826 DOI: 10.1161/circulationaha.122.059713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as a promising strategy to remuscularize injured myocardium. However, it is insufficient to generate functional induced cardiomyocytes from human fibroblasts using conventional reprogramming cocktails, and the underlying molecular mechanisms are not well studied. METHODS To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human induced cardiomyocytes and functional cardiomyocytes. RESULTS We identified TBX20 (T-box transcription factor 20) as the top cardiac gene that is unable to be activated by the MGT133 reprogramming cocktail (MEF2C, GATA4, TBX5, and miR-133). TBX20 is required for normal heart development and cardiac function in adult cardiomyocytes, yet its role in cardiac reprogramming remains undefined. We show that the addition of TBX20 to the MGT133 cocktail (MGT+TBX20) promotes cardiac reprogramming and activates genes associated with cardiac contractility, maturation, and ventricular heart. Human induced cardiomyocytes produced with MGT+TBX20 demonstrated more frequent beating, calcium oscillation, and higher energy metabolism as evidenced by increased mitochondria numbers and mitochondrial respiration. Mechanistically, comprehensive transcriptomic, chromatin occupancy, and epigenomic studies revealed that TBX20 colocalizes with MGT reprogramming factors at cardiac gene enhancers associated with heart contraction, promotes chromatin binding and co-occupancy of MGT factors at these loci, and synergizes with MGT for more robust activation of target gene transcription. CONCLUSIONS TBX20 consolidates MGT cardiac reprogramming factors to activate cardiac enhancers to promote cardiac cell fate conversion. Human induced cardiomyocytes generated with TBX20 showed enhanced cardiac function in contractility and mitochondrial respiration.
Collapse
Affiliation(s)
- Yawen Tang
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Sajesan Aryal
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Xiaoxiao Geng
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Xinyue Zhou
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Vladimir G. Fast
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Jianyi Zhang
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Rui Lu
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Yang Zhou
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| |
Collapse
|
14
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
15
|
Pingul BY, Huang H, Chen Q, Alikarami F, Zhang Z, Qi J, Bernt KM, Berger SL, Cao Z, Shi J. Dissection of the MEF2D-IRF8 transcriptional circuit dependency in acute myeloid leukemia. iScience 2022; 25:105139. [PMID: 36193052 PMCID: PMC9526175 DOI: 10.1016/j.isci.2022.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/05/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Transcriptional dysregulation is a prominent feature in leukemia. Here, we systematically surveyed transcription factor (TF) vulnerabilities in leukemia and uncovered TF clusters that exhibit context-specific vulnerabilities within and between different subtypes of leukemia. Among these TF clusters, we demonstrated that acute myeloid leukemia (AML) with high IRF8 expression was addicted to MEF2D. MEF2D and IRF8 form an autoregulatory loop via direct binding to mutual enhancer elements. One important function of this circuit in AML is to sustain PU.1/MEIS1 co-regulated transcriptional outputs via stabilizing PU.1’s chromatin occupancy. We illustrated that AML could acquire dependency on this circuit through various oncogenic mechanisms that results in the activation of their enhancers. In addition to forming a circuit, MEF2D and IRF8 can also separately regulate gene expression, and dual perturbation of these two TFs leads to a more robust inhibition of AML proliferation. Collectively, our results revealed a TF circuit essential for AML survival. MEF2D is a context-specific vulnerability in IRF8hi AML MEF2D and IRF8 form a transcriptional circuit via binding to each other’s enhancers MEF2D-IRF8 circuit supports PU.1’s chromatin occupancy and transcriptional output MEF2D and IRF8 can regulate separate gene expression programs alongside the circuit
Collapse
|
16
|
Harada T, Heshmati Y, Kalfon J, Perez MW, Xavier Ferrucio J, Ewers J, Hubbell Engler B, Kossenkov A, Ellegast JM, Yi JS, Bowker A, Zhu Q, Eagle K, Liu T, Kai Y, Dempster JM, Kugener G, Wickramasinghe J, Herbert ZT, Li CH, Vrabič Koren J, Weinstock DM, Paralkar VR, Nabet B, Lin CY, Dharia NV, Stegmaier K, Orkin SH, Pimkin M. A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia. Genes Dev 2022; 36:368-389. [PMID: 35301220 PMCID: PMC8973843 DOI: 10.1101/gad.349284.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
In this study, Harada et al. identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. This study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes. Acute myeloid leukemia with KMT2A (MLL) rearrangements is characterized by specific patterns of gene expression and enhancer architecture, implying unique core transcriptional regulatory circuitry. Here, we identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. Rapid transcription factor degradation followed by measurements of genome-wide transcription rates and superresolution microscopy revealed that MEF2D and IRF8 form a distinct core regulatory module with a narrow direct transcriptional program that includes activation of the key oncogenes MYC, HOXA9, and BCL2. Our study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes.
Collapse
Affiliation(s)
- Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yaser Heshmati
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jérémie Kalfon
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Monika W Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Juliana Xavier Ferrucio
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jazmin Ewers
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Benjamin Hubbell Engler
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Jana M Ellegast
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Joanna S Yi
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Allyson Bowker
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Qian Zhu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Ken Eagle Consulting, Houston, Texas 77494, USA
| | - Tianxin Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yan Kai
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Joshua M Dempster
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Guillaume Kugener
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | | | - Zachary T Herbert
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | - David M Weinstock
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Vikram R Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Charles Y Lin
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Neekesh V Dharia
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02215, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|