1
|
Kushwaha AC, Mrunalini B, Malhotra P, Karmakar S, Roy Choudhury S. Bone-Marrow-Targeted Nanocomposite Abrogates C-Myb-Survivin Cross Talk in MLL-AF9-Rearranged Acute Myeloid Leukemia in In Vitro and In Vivo Patient-Derived Xenograft Models. ACS APPLIED MATERIALS & INTERFACES 2025; 17:711-724. [PMID: 39711012 DOI: 10.1021/acsami.4c18737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The heterogeneous form of malignancy in the myeloid lineage of normal hematopoietic stem cells (HSCs) is characterized as acute myeloid leukemia (AML). The t(9;11) reciprocal translocation (p22;q23) generates MLL-AF9 oncogene, which results in myeloid-based monoblastic AML with frequent relapse and poor survival. MLL-AF9 binds with the C-Myb promoter and regulates AML onset, maintenance, and survival. The bone marrow microenvironment (BMM) protects leukemia stem cells (LSCs) from therapeutic agents, which can lead to relapsed condition. Targeting leukemia BMM can be a viable therapeutics approach for AML treatment, wherein bone homing bisphosphonate, ibandronic acid (IBD), can localize to the BMM. In order to target the BMM of AML, C-Myb siRNA was entrapped in Vitamin D nanoemulsion-functionalized with BMM-targeted IBD, which exhibited binding with ex vivo bone slices and localization into mice bone marrow. IBD functionalization and C-Myb siRNA nanotherapy enhanced the suppression of LSCs (c-Kit+) and the upregulation of myeloid differentiation markers CD11b and Gr-1 in peripheral blood and bone marrow of athymic nude mice and patient-derived xenograft models. IBD functionalization enhanced the downregulation of C-Myb and C-Myb-Survivin cross talk in bone marrow and spleen tissue responsible for AML onset, maintenance, and pathogenesis. Further C-Myb binding to Survivin promoter was abrogated by the present bone-marrow-targeted nanotherapy, signifying its translational potential for AML therapeutics.
Collapse
MESH Headings
- Humans
- Animals
- Proto-Oncogene Proteins c-myb/metabolism
- Proto-Oncogene Proteins c-myb/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Mice
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Survivin/metabolism
- Survivin/genetics
- Bone Marrow/pathology
- Bone Marrow/metabolism
- Bone Marrow/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Nanocomposites/chemistry
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Mice, Nude
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/chemistry
Collapse
Affiliation(s)
- Avinash Chandra Kushwaha
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Boddu Mrunalini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Nehru Hospital, Post-Graduate Institute of Medical Education and Research, Room No. 18, Fourth Level, F Block, Chandigarh 160020, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Gambi G, Boccalatte F, Rodriguez Hernaez J, Lin Z, Nadorp B, Polyzos A, Tan J, Avrampou K, Inghirami G, Kentsis A, Apostolou E, Aifantis I, Tsirigos A. 3D chromatin hubs as regulatory units of identity and survival in human acute leukemia. Mol Cell 2025; 85:42-60.e7. [PMID: 39719705 PMCID: PMC11934262 DOI: 10.1016/j.molcel.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response. Single-cell mapping reveals heterogeneous gene activation in discrete epigenetic clones, aiding in patient stratification for relapse risk after chemotherapy. Finally, we identify MYB as a 3D hub regulator in leukemia cells and show that the targeting of key regulators leads to hub dissolution, thereby providing a novel and effective anti-leukemic strategy. Overall, our work demonstrates the relevance of studying oncogenic 3D hubs to better understand cancer biology and tumor heterogeneity and to propose novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanni Gambi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Javier Rodriguez Hernaez
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jimin Tan
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute and Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Departments of Pediatrics, Pharmacology, Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Booth CA, Bouyssou JM, Togami K, Armand O, Rivas HG, Yan K, Rice S, Cheng S, Lachtara EM, Bourquin JP, Kentsis A, Rheinbay E, DeCaprio JA, Lane AA. BPDCN MYB fusions regulate cell cycle genes, impair differentiation, and induce myeloid-dendritic cell leukemia. JCI Insight 2024; 9:e183889. [PMID: 39499902 DOI: 10.1172/jci.insight.183889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
MYB fusions are recurrently found in select cancers, including blastic plasmacytoid DC neoplasm (BPDCN), an acute leukemia with poor prognosis. They are markedly enriched in BPDCN compared with other blood cancers and, in some patients, are the only obvious somatic mutation detected. This suggests that they may alone be sufficient to drive DC transformation. MYB fusions are hypothesized to alter the normal transcription factor activity of MYB, but, mechanistically, how they promote leukemogenesis is poorly understood. Using CUT&RUN chromatin profiling, we found that, in BPDCN leukemogenesis, MYB switches from being a regulator of DC lineage genes to aberrantly regulating G2/M cell cycle control genes. MYB fusions found in patients with BPDCN increased the magnitude of DNA binding at these locations, and this was linked to BPDCN-associated gene expression changes. Furthermore, expression of MYB fusions in vivo impaired DC differentiation and induced transformation to generate a mouse model of myeloid-dendritic acute leukemia. Therapeutically, we present evidence that all-trans retinoic acid (ATRA) may cause loss of MYB protein and cell death in BPDCN.
Collapse
Affiliation(s)
- Christopher Ag Booth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliette M Bouyssou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Hembly G Rivas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Kezhi Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Siobhan Rice
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuyuan Cheng
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | - Emily M Lachtara
- Krantz Family Center for Cancer Research, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jean-Pierre Bourquin
- Division of Oncology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, New York, USA
| | - Esther Rheinbay
- Krantz Family Center for Cancer Research, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Li Y, Jia Z, Liu X, Zhao H, Cui G, Luo J, Kong X. Single-cell sequencing technology to characterize stem T-cell subpopulations in acute T-lymphoblastic leukemia and the role of stem T-cells in the disease process. Aging (Albany NY) 2024; 16:13117-13131. [PMID: 39422621 PMCID: PMC11552640 DOI: 10.18632/aging.206123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Precursor T-cell acute lymphoblastic leukemia (Pre-T ALL) is a malignant neoplastic disease in which T-cells proliferate in the bone marrow. Single-cell sequencing technology could identify characteristic cell types, facilitating the study of the therapeutic mechanisms in Pre-T ALL. METHODS The single-cell sequencing data (scRNA-seq) of Pre-T ALL were obtained from public databases. Key immune cell subpopulations involved in the progression of Pre-T ALL were identified by clustering and annotating the cellular data using AUCell. Next, pseudo-temporal analysis was performed to identify the differentiation trajectories of immune cell subpopulations using Monocle. Copy number mutation landscape of cell subpopulations was characterized by inferCNV. Finally, cellphoneDB was used to analyze intercellular communication relationships. RESULTS A total of 10 cellular subpopulations were classified, with Pre-T ALL showing a higher proportion of NK/T cells. NK/T cells were further clustered into two subpopulations. Stem T cells showed a high expression of marker genes related to hematopoietic stem cells, Naive T cells had a high expression of CCR7, CCR7, RCAN3, and NK cells high-expressed KLRD1, TRDC. The cell proliferation was reduced and the activation of T cell was increased during the differentiation of stem T cells to Naive T cells. We observed interaction between stem T cells with dendritic cells such as CD74-COPA, CD74-MIF as well as co-inhibition-related interactions such as LGALS9-HAVCR2, TGFB1-TGFBR3. CONCLUSION Stem T cells were involved in the development of Pre-T-ALL through the regulatory effects of transcription factors (TFs) KLF2 and FOS and multiple ligand-receptor pairs.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Handan First Hospital, Handan, Hebei 056001, China
| | - Zhenwei Jia
- Department of Hematology, Handan First Hospital, Handan, Hebei 056001, China
| | - Xiaoyan Liu
- Department of Hematology, Handan First Hospital, Handan, Hebei 056001, China
| | - Hongbo Zhao
- Department of Hematology, Handan First Hospital, Handan, Hebei 056001, China
| | - Guirong Cui
- Department of Hematology, Handan First Hospital, Handan, Hebei 056001, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaoyang Kong
- Department of Hematology, Handan First Hospital, Handan, Hebei 056001, China
| |
Collapse
|
5
|
Morii M, Kubota S, Iimori M, Yokomizo-Nakano T, Hamashima A, Bai J, Nishimura A, Tasaki M, Ando Y, Araki K, Sashida G. TIF1β activates leukemic transcriptional program in HSCs and promotes BCR::ABL1-induced myeloid leukemia. Leukemia 2024; 38:1275-1286. [PMID: 38734786 DOI: 10.1038/s41375-024-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
TIF1β/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1β was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1β gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1β drove the progression of BCR::ABL1-induced leukemia. In addition, the deletion of Tif1β sensitized BCR::ABL1 KI leukemic cells to dasatinib. The deletion of Tif1β decreased the expression levels of TIF1β-target genes and chromatin accessibility peaks enriched with the Fosl1-binding motif in BCR::ABL1 KI stem cells. TIF1β directly bound to the promoters of proliferation genes, such as FOSL1, in human BCR::ABL1 cells, in which TIF1β and FOSL1 bound to adjacent regions of chromatin. Since the expression of Fosl1 was critical for the enhanced growth of BCR::ABL1 KI cells, Tif1β and Fosl1 interacted to activate the leukemic transcriptional program in and cellular function of BCR::ABL1 KI stem cells and drove the progression of myeloid leukemia.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Transcription, Genetic
- Tripartite Motif-Containing Protein 28/metabolism
- Tripartite Motif-Containing Protein 28/genetics
Collapse
Affiliation(s)
- Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiho Nishimura
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Masayoshi Tasaki
- Department of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
6
|
Almeida A, T'Sas S, Pagliaro L, Fijalkowski I, Sleeckx W, Van Steenberge H, Zamponi R, Lintermans B, Van Loocke W, Palhais B, Reekmans A, Bardelli V, Demoen L, Reunes L, Deforce D, Van Nieuwerburgh F, Kentsis A, Ntziachristos P, Van Roy N, De Moerloose B, Mecucci C, La Starza R, Roti G, Goossens S, Van Vlierberghe P, Pieters T. Myb overexpression synergizes with the loss of Pten and is a dependency factor and therapeutic target in T-cell lymphoblastic leukemia. Hemasphere 2024; 8:e51. [PMID: 38463444 PMCID: PMC10924755 DOI: 10.1002/hem3.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has improved over time, the outcome of T-ALL patients with primary resistant or relapsed leukemia remains poor. Therefore, further progress in the treatment of T-ALL requires a better understanding of its biology and the development of more effective precision oncologic therapies. The proto-oncogene MYB is highly expressed in diverse hematologic malignancies, including T-ALLs with genomic aberrations that further potentiate its expression and activity. Previous studies have associated MYB with a malignant role in the pathogenesis of several cancers. However, its role in the induction and maintenance of T-ALL remains relatively poorly understood. In this study, we found that an increased copy number of MYB is associated with higher MYB expression levels, and might be associated with inferior event-free survival of pediatric T-ALL patients. Using our previously described conditional Myb overexpression mice, we generated two distinct MYB-driven T-ALL mouse models. We demonstrated that the overexpression of Myb synergizes with Pten deletion but not with the overexpression of Lmo2 to accelerate the development of T-cell lymphoblastic leukemias. We also showed that MYB is a dependency factor in T-ALL since RNA interference of Myb blocked cell cycle progression and induced apoptosis in both human and murine T-ALL cell lines. Finally, we provide preclinical evidence that targeting the transcriptional activity of MYB can be a useful therapeutic strategy for the treatment of T-ALL.
Collapse
Affiliation(s)
- André Almeida
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Sara T'Sas
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Luca Pagliaro
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Igor Fijalkowski
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Wouter Sleeckx
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Hannah Van Steenberge
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | - Béatrice Lintermans
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Wouter Van Loocke
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Bruno Palhais
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Alexandra Reekmans
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Valentina Bardelli
- Institute of Hematology and Center for Hemato‐Oncology ResearchUniversity of Perugia and S.M. Misericordia HospitalPerugiaItaly
| | - Lisa Demoen
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Lindy Reunes
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
| | | | - Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute and Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Panagiotis Ntziachristos
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Nadine Van Roy
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Lab for Translational Oncogenomics and Bioinformatics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Pediatric Precision Oncology Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Department of Pediatric Hematology‐OncologyGhent University HospitalGhentBelgium
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato‐Oncology ResearchUniversity of Perugia and S.M. Misericordia HospitalPerugiaItaly
| | - Roberta La Starza
- Institute of Hematology and Center for Hemato‐Oncology ResearchUniversity of Perugia and S.M. Misericordia HospitalPerugiaItaly
| | - Giovanni Roti
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Pieter Van Vlierberghe
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Tim Pieters
- Normal and Malignant Hematopoiesis Lab, Department of Biomolecular MedicineGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
- Unit for Translational Research in Oncology, Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Leukemia Therapy Resistance Laboratory and Center for Medical Genetics, Department of Biomolecular MedicineGhent UniversityGhentBelgium
| |
Collapse
|
7
|
Zhou R, Guo J, Feng X, Zhou W. Mechanisms of the role of proto-oncogene activation in promoting malignant transformation of mature B cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:113-121. [PMID: 38615172 PMCID: PMC11017026 DOI: 10.11817/j.issn.1672-7347.2024.230304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 04/15/2024]
Abstract
Malignant tumors continue to pose a significant threat to human life and safety and their development is primarily due to the activation of proto-oncogenes and the inactivation of suppressor genes. Among these, the activation of proto-oncogenes possesses greater potential to drive the malignant transformation of cells. Targeting oncogenes involved in the malignant transformation of tumor cells has provided a novel approach for the development of current antitumor drugs. Several preclinical and clinical studies have revealed that the development pathway of B cells, and the malignant transformation of mature B cells into tumors have been regulated by oncogenes and their metabolites. Therefore, summarizing the key oncogenes involved in the process of malignant transformation of mature B cells and elucidating the mechanisms of action in tumor development hold significant importance for the clinical treatment of malignant tumors.
Collapse
Affiliation(s)
- Ruiqi Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410006, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
8
|
Clarke ML, Gabrielsen OS, Frampton J. MYB as a Critical Transcription Factor and Potential Therapeutic Target in AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:341-358. [PMID: 39017851 DOI: 10.1007/978-3-031-62731-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.
Collapse
Affiliation(s)
- Mary Louise Clarke
- Department of Biomedical Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|