1
|
Snyder MR, Maitta RW. Anti-ADAMTS13 Autoantibodies in Immune-Mediated Thrombotic Thrombocytopenic Purpura. Antibodies (Basel) 2025; 14:24. [PMID: 40136473 PMCID: PMC11939265 DOI: 10.3390/antib14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Autoantibodies to ADAMTS13 are at the center of pathology of the immune-mediated thrombotic thrombocytopenic purpura. These autoantibodies can be either inhibitory (enzymatic function) or non-inhibitory, resulting in protein depletion. Under normal physiologic conditions, antibodies are generated in response to foreign antigens, which can include infectious agents; however, these antibodies may at times cross-react with self-epitopes. This is one of the possible mechanisms mediating formation of anti-ADAMTS13 autoantibodies. The process known as "antigenic mimicry" may be responsible for the development of these autoantibodies that recognize and bind cryptic epitopes in ADAMTS13, disrupting its enzymatic function over ultra large von Willebrand factor multimers, forming the seeds for platelet activation and microthrombi formation. In particular, specific amino acid sequences in ADAMTS13 may lead to conformational structures recognized by autoantibodies. Generation of these antibodies may occur more frequently among patients with a genetic predisposition. Conformational changes in ADAMTS13 between open and closed states can also constitute the critical change driving either interactions with autoantibodies or their generation. Nowadays, there is a growing understanding of the role that autoantibodies play in ADAMTS13 pathology. This knowledge, especially of functional qualitative differences among antibodies and the ADAMTS13 sequence specificity of such antibodies, may make possible the development of targeted therapeutic agents to treat the disease. This review aims to present what is known of autoantibodies against ADAMTS13 and how their structure and function result in disease.
Collapse
Affiliation(s)
| | - Robert W. Maitta
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| |
Collapse
|
2
|
Tanaka H, Sakai K, Tamura S, Shiwaku H, Nakamura J, Ueda Y, Bamba S, Nishikubo M, Nagai Y, Matsumoto M. Challenges in managing iTTP: insights into ADAMTS13 inhibitor boosting during caplacizumab therapy. Ann Hematol 2025; 104:1507-1514. [PMID: 40105947 PMCID: PMC12031809 DOI: 10.1007/s00277-025-06318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare but life-threatening disorder characterized by severe thrombocytopenia, hemolytic anemia, and end-organ ischemic damage. The introduction of caplacizumab, an anti-von Willebrand factor A1 nanobody, has revolutionized the treatment of patients with iTTP by preventing fatal thrombotic events and shortening the time to platelet normalization. Despite its benefits, caplacizumab does not address the challenge of anti-ADAMTS13 autoantibody production, posing a risk of ADAMTS13 inhibitor boosting and delayed recovery of ADAMTS13 activity. Here, we highlight three challenging cases from the Japanese TTP registry involving patients with iTTP who experienced severe ADAMTS13 inhibitor boosting. This delayed the recovery of ADAMTS13, and extended administration of caplacizumab while requiring additional therapeutic plasma exchange (TPE) and immunosuppressive therapy. All patients demonstrated delayed recovery of ADAMTS13 activity despite initial clinical improvement. Prolonged use of caplacizumab masked the persistence of ADAMTS13 inhibitors, emphasizing the need for close monitoring and timely interventions. Although recent proposals for TPE-free regimens show promise, our findings underscore that TPE remains essential for removing residual autoantibodies and preventing disease exacerbation in certain patients. Stratifying patients based on initial ADAMTS13 inhibitor titers and optimizing immunosuppressive strategies may help identify those at risk of severe inhibitor boosting. Further research is required to refine treatment protocols and ensure the safe withdrawal of caplacizumab while achieving sustained recovery of ADAMTS13 activity.
Collapse
Affiliation(s)
- Haruyuki Tanaka
- Department of Hematology, Nara Medical University, Kashihara, Nara, Japan
| | - Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shusuke Tamura
- Department of Internal Medicine, Chiba-Nishi General Hospital, Matsudo, Japan
| | - Hiroya Shiwaku
- Department of Internal Medicine, Chiba-Nishi General Hospital, Matsudo, Japan
| | - Junko Nakamura
- Department of Hematology/Oncology and Transfusion and Hemapheresis Center, Kurashiki Central Hospital, Kurashiki, Japan
| | - Yasunori Ueda
- Department of Hematology/Oncology and Transfusion and Hemapheresis Center, Kurashiki Central Hospital, Kurashiki, Japan
| | - Seiya Bamba
- Department of Hematology, Kobe city Medical Center General Hospital, Kobe, Japan
| | - Masashi Nishikubo
- Department of Hematology, Kobe city Medical Center General Hospital, Kobe, Japan
| | - Yuya Nagai
- Department of Hematology, Kobe city Medical Center General Hospital, Kobe, Japan
| | - Masanori Matsumoto
- Department of Hematology, Nara Medical University, Kashihara, Nara, Japan.
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
3
|
Dolin HH, Maitta RW. Pathological Mechanisms and Novel Testing Methods in Thrombotic Thrombocytopenic Purpura. Biomedicines 2024; 12:621. [PMID: 38540234 PMCID: PMC10968366 DOI: 10.3390/biomedicines12030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is an uncommon, but potentially disabling or even deadly, thrombotic microangiopathy with a well-studied mechanism of ADAMTS13 deficiency or dysfunction. While established treatments are largely effective, the standard ADAMTS13 testing required to definitively diagnose TTP may cause delays in diagnosis and treatment, highlighting the need for rapid and effective diagnostic methods. Additionally, the heterogeneous presentation and varied inciting events of TTP suggest more variation in its mechanism than previously thought, implying three potential pathways rather than the accepted two. The recent discovery of ADAMTS13 conformation as a potential contributor to TTP in addition to the proposal of using the absolute immature platelet count (A-IPC) as a biomarker, present novel areas for monitoring and treatment. A-IPC in particular may serve as a more rapid and accurate diagnostic test to distinguish TTP from non-TTP TMAs and to monitor treatment response and relapse. These considerations highlight the need to further study TTP in order to improve best practices and patient care.
Collapse
Affiliation(s)
| | - Robert W. Maitta
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
4
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
5
|
Dainese C, Valeri F, Bruno B, Borchiellini A. Anti-ADAMTS13 Autoantibodies: From Pathophysiology to Prognostic Impact-A Review for Clinicians. J Clin Med 2023; 12:5630. [PMID: 37685697 PMCID: PMC10488355 DOI: 10.3390/jcm12175630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a fatal disease in which platelet-rich microthrombi cause end-organ ischemia and damage. TTP is caused by markedly reduced ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity. ADAMTS13 autoantibodies (autoAbs) are the major cause of immune TTP (iTTP), determining ADAMTS13 deficiency. The pathophysiology of such autoAbs as well as their prognostic role are continuous objects of scientific studies in iTTP fields. This review aims to provide clinicians with the basic information and updates on autoAbs' structure and function, how they are typically detected in the laboratory and their prognostic implications. This information could be useful in clinical practice and contribute to future research implementations on this specific topic.
Collapse
Affiliation(s)
- Cristina Dainese
- Regional Centre for Hemorrhagic and Thrombotic Diseases, AOU Città Della Salute e Della Scienza, 10126 Turin, Italy; (F.V.); (A.B.)
- Division of Hematology, AOU Città Della Salute e Della Scienza and University of Turin, 10124 Turin, Italy;
| | - Federica Valeri
- Regional Centre for Hemorrhagic and Thrombotic Diseases, AOU Città Della Salute e Della Scienza, 10126 Turin, Italy; (F.V.); (A.B.)
- Division of Hematology, AOU Città Della Salute e Della Scienza and University of Turin, 10124 Turin, Italy;
| | - Benedetto Bruno
- Division of Hematology, AOU Città Della Salute e Della Scienza and University of Turin, 10124 Turin, Italy;
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Alessandra Borchiellini
- Regional Centre for Hemorrhagic and Thrombotic Diseases, AOU Città Della Salute e Della Scienza, 10126 Turin, Italy; (F.V.); (A.B.)
- Division of Hematology, AOU Città Della Salute e Della Scienza and University of Turin, 10124 Turin, Italy;
| |
Collapse
|