1
|
Tremblay D, Hasserjian RP, Rampal RK. Myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: a practical guide to diagnosis and management. Leukemia 2025:10.1038/s41375-025-02620-8. [PMID: 40253543 DOI: 10.1038/s41375-025-02620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes are a rare group of biologically and clinically connected hematologic malignancies that includes chronic myelomonocytic leukemia (CMML), the most common subtype, as well as atypical chronic myeloid leukemia, MDS/MPN with SF3B1 and thrombocytosis, and MDS/MPN, not otherwise specified. Given their rarity and overlapping clinical features, accurate diagnosis and risk stratification presents a significant challenge. Therapeutic approaches are largely borrowed from either MDS or MPN and the only curative option for appropriate patients is allogeneic stem cell transplantation. Recent advances have started to uncover the pathobiologic basis for these diseases, leading to novel clinical trials for MDS/MPN overlap syndromes, in particular CMML. This review is a practical guide for the diagnosis and management of MDS/MPN overlap syndromes and presents novel therapeutics being specifically designed for these diseases to improve their historically poor outcomes.
Collapse
Affiliation(s)
- Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | | |
Collapse
|
2
|
Castaño-Díez S, López-Guerra M, Zugasti I, Calvo X, Schulz FI, Avendaño A, Mora E, Falantes J, Azaceta G, Ibáñez M, Chen T, Notario C, Amer N, Palomo L, Pomares H, Vila J, Bernal del Castillo T, Jiménez-Vicente C, Esteban D, Guijarro F, Álamo J, Cortés-Bullich A, Torrecillas-Mayayo V, Triguero A, Mont-de Torres L, Carcelero E, Cardús A, Germing U, Betz B, Rozman M, Arenillas L, Zamora L, Díez-Campelo M, Xicoy B, Esteve J, Díaz-Beyá M. AML typical mutations (CEBPA, FLT3, NPM1) identify a high-risk chronic myelomonocytic leukemia independent of CPSS molecular. Blood Adv 2025; 9:39-53. [PMID: 39388660 PMCID: PMC11732582 DOI: 10.1182/bloodadvances.2024013648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
ABSTRACT Mutations commonly associated with acute myeloid leukemia (AML), such as CEBPA, FLT3, IDH1/2, and NPM1, are rarely found in chronic myelomonocytic leukemia (CMML), and their prognostic significance in CMML has not been clearly identified. In 127 patients with CMML, we have retrospectively analyzed next-generation sequencing and polymerase chain reaction data from bone marrow samples collected at the time of CMML diagnosis. Seven patients harbored CEBPA mutations, 8 FLT3 mutations, 12 IDH1 mutations, 26 IDH2 mutations, and 11 NPM1 mutations. Patients with CMML harboring CEBPA, FLT3, and/or NPM1 mutations (mutCFN) more frequently had the myeloproliferative subtype, a high prevalence of severe cytopenia, and elevated blast counts. Regardless of their CMML Prognostic Scoring System molecular classification, mutCFN patients with CMML had a poor prognosis, and the multivariate analysis identified mutCFN as an independent marker of overall survival. The genetic profile of these mutCFN patients with CMML closely resembled that of patients with AML, with higher-risk clinical characteristics. Our findings lead us to suggest including the assessment of these mutations in CMML prognostic models and treating these patients with AML-type therapies, including intensive chemotherapy and allogeneic stem cell transplantation, whenever feasible. Furthermore, certain targeted therapies approved for use in AML should be considered.
Collapse
MESH Headings
- Humans
- Nucleophosmin
- Mutation
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/mortality
- fms-Like Tyrosine Kinase 3/genetics
- Male
- Female
- Middle Aged
- Aged
- Nuclear Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Prognosis
- Adult
- Aged, 80 and over
- Retrospective Studies
Collapse
Affiliation(s)
- Sandra Castaño-Díez
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
| | - Mònica López-Guerra
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Inés Zugasti
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Xavier Calvo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital del Mar, Barcelona, Spain
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alejandro Avendaño
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca, Spain
| | - Elvira Mora
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - José Falantes
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Gemma Azaceta
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Clínico Universitario Lozano Blesa de Zaragoza, Spain
| | - Mariam Ibáñez
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital General Universitario de Valencia, grupo de Investigación de Hematología y Hemoterapia de la Fundación de Investigación del Hospital General Universitario de Valencia, Spain
| | - Tzu Chen
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - Cristina Notario
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Neus Amer
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario Son Llàtzer, Palma de Mallorca, Spain
| | - Laura Palomo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology, University Hospital Vall d'Hebron, Barcelona, Spain. Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Helena Pomares
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d'Oncologia - Hospital Duran i Reynals, L'Hospitalet de LLobregat, LLobregat, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, Spain
| | - Jordi Vila
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d'Oncologia - Hospital Dr. Josep Trueta, Girona, Spain
| | - Teresa Bernal del Castillo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Carlos Jiménez-Vicente
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Daniel Esteban
- Department of Hematology, Institut Català d’Oncologia-Hospital Universitari Germans Trias i Pujol, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, Barcelona, Spain
| | - Francesca Guijarro
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - José Álamo
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
| | - Albert Cortés-Bullich
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | | | - Ana Triguero
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | | | - Ester Carcelero
- Department of Pharmacy, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Aina Cardús
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Beate Betz
- Institute for Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Rozman
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
| | - Leonor Arenillas
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital del Mar, Barcelona, Spain
| | - Lurdes Zamora
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d’Oncologia-Hospital Universitari Germans Trias i Pujol, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, Barcelona, Spain
| | - María Díez-Campelo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca, Spain
| | - Blanca Xicoy
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d’Oncologia-Hospital Universitari Germans Trias i Pujol, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, Barcelona, Spain
| | - Jordi Esteve
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Marina Díaz-Beyá
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| |
Collapse
|
3
|
Elbaz Younes I, Mroz P, Tashakori M, Hamed A, Sen S. Chronic Neutrophilic Leukemia: Advances in Diagnosis, Genetic Insights, and Management Strategies. Cancers (Basel) 2025; 17:227. [PMID: 39858009 PMCID: PMC11763460 DOI: 10.3390/cancers17020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
CNL is a rare subtype of MPNs characterized by persistent neutrophilia, bone marrow hypercellularity, and specific genetic mutations, particularly in the CSF3R gene. Advances in molecular diagnostics have greatly enhanced our understanding of CNL, distinguishing it from other myeloproliferative disorders and refining diagnostic criteria. This review provides an updated overview of CNL, focusing on breakthroughs in genetic profiling, including novel mutations with potential prognostic value and implications for targeted therapy. We discuss current management strategies, emphasizing the role of JAK inhibitors, allogeneic stem cell transplantation, and evolving investigational treatments. Challenges in early diagnosis, therapeutic resistance, and future directions in research are also addressed, underscoring the need for a personalized medicine approach to improve outcomes for patients with CNL.
Collapse
Affiliation(s)
- Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (P.M.); (M.T.); (A.H.); (S.S.)
| | | | | | | | | |
Collapse
|
4
|
Hasserjian RP. The spectrum of Ph-negative disease: CNL and CSF3R-related disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:270-278. [PMID: 39643989 PMCID: PMC11665692 DOI: 10.1182/hematology.2024000555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Chronic neutrophilic leukemia (CNL) is a very rare myeloid neoplasm characterized by peripheral blood neutrophilia and a hypercellular marrow with increased granulopoiesis. An activating mutation in CSF3R is present in 80% to 90% of cases. CNL displays some biological overlap in terms of clinical presentation and behavior, as well as genetic profile, with several other myeloid neoplasms, particularly myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and other MPN. Distinguishing these related entities can be challenging, requires close attention to peripheral blood and bone marrow morphology, and can be informed by the mutation pattern: CNL is strongly associated with CSF3R mutation, usually lacks JAK2, MPL, or CALR mutations, and, by definition, lacks BCR::ABL1 rearrangement. Pitfalls in diagnosis include subjectivity in assessing neutrophil dysplasia and distinguishing true neoplastic neutrophilia from reactive neutrophilias that may be superimposed upon or occur as a manifestation of the progression of other myeloid neoplasms. Accurate distinction between neutrophilic myeloid neoplasms is important, as it helps guide patient management and may disclose specific genetic lesions amenable to targeted therapy.
Collapse
|
5
|
Sun Y, Wang Q, Zhang Z, Wang Q, Cen J, Zhu M, Pan J, Liu D, Shen H, Cai Y, Chen S. Distinct clinical profiles and patient outcomes in aCML and CNL. Ann Hematol 2024:10.1007/s00277-024-06032-z. [PMID: 39375227 DOI: 10.1007/s00277-024-06032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The classification of atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) as a single disease entity remains a topic of debate. To elucidate the characteristics of both entities, this retrospective cohort study was conducted, encompassing 36 cases of aCML and 18 cases of CNL. We discovered that aCML and CNL presented distinct blood counts, genetics, molecular profiles and outcomes. Specifically, hemoglobin levels (P < 0.001) and platelet counts (P < 0.001) were significantly lower in aCML cases than in CNL cases, with no significant difference in mean white blood cells (P = 0.637). The proportion of abnormal karyotypes was higher in aCML cases compared with CNL cases (P = 0.010). Notably, we found that aCML and CNL showed distinct gene expression profiles by transcriptome sequencing technology. The median follow-up duration for the entire cohort was 8 months (rang 0.4 to 36.6 months), and the median overall survival (OS) was significantly shorter in aCML cases (7.3 months, 95%CI 5.4 to 20.5 months) than in CNL cases (median OS not reached). The one-year OS rate for aCML patients was 31.0% (9/29), compared to 92.9% (13/14) for CNL patients. In conclusion, our study supports the notion that aCML and CNL are indeed distinct disease entities characterized by unique hematological features and clinical outcomes.
Collapse
Affiliation(s)
- Yingxin Sun
- Affiliated Hospital of Nantong University, Nantong, China
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Qinrong Wang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Zhiyu Zhang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Qian Wang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Jiannong Cen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Mingqing Zhu
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Jinlan Pan
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Dandan Liu
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Hongjie Shen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Yifeng Cai
- Affiliated Hospital of Nantong University, Nantong, China.
| | - Suning Chen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
| |
Collapse
|
6
|
Gao J, Han S, Deng B, Deng Y, Gao X. Research progress of additional pathogenic mutations in chronic neutrophilic leukemia. Ann Hematol 2024; 103:2591-2600. [PMID: 37993585 DOI: 10.1007/s00277-023-05550-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare type of myeloproliferative neoplasm (MPN). Due to its nonspecific clinical symptoms and lack of specific molecular markers, it was previously difficult to distinguish it from other diseases with increased neutrophils. However, the discovery of the CSF3R mutation in CNL 10 years ago and the update of the diagnostic criteria by the World Health Organization (WHO) in 2016 brought CNL into a new era of molecular diagnosis. Next-generation sequencing (NGS) technology has led to the identification of numerous mutant genes in CNL. While CSF3R is commonly recognized as the driver mutation of CNL, other mutations have also been detected in CNL using NGS, including mutations in other signaling pathway genes (CBL, JAK2, NARS, PTPN11) and chromatin modification genes (ASXL1, SETBP1, EZH2), DNA methylation genes (DNMT3A, TET2), myeloid-related transcription factor genes (RUNX1, GATA2), and splicing and RNA metabolism genes (SRSF2, U2AF1). The coexistence of these mutated genes and CSF3R mutations, as well as the different evolutionary sequences of clones, deepens the complexity of CNL molecular biology. The purpose of this review is to summarize the genetic research findings of CNL in the last decade, focusing on the common mutated genes in CNL and their clinical significance, as well as the clonal evolution pattern and sequence of mutation acquisition in CNL, to provide a basis for the appropriate management of CNL patients.
Collapse
Affiliation(s)
- Jiapei Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shuai Han
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yifan Deng
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, China
| | - Xiaohui Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
7
|
Kim SY, Song IC, Kim J, Kwon GC. Analysis of CSF3R mutations in atypical chronic myeloid leukemia and other myeloid malignancies. Ann Diagn Pathol 2024; 71:152317. [PMID: 38642470 DOI: 10.1016/j.anndiagpath.2024.152317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
We report a series of patients with CSF3R-mutant (CSF3Rmut) atypical chronic myeloid leukemia (aCML), chronic neutrophilic leukemia (CNL) or other hematologic malignancies. We included 25 patients: 5 aCML and 4 CNL CSF3Rmut patients; 1 aCML, 2 CNL, and 2 myelodysplastic/myeloproliferative neoplasm, not otherwise specified patients without CSF3R mutation; and 11 CSF3Rmut patients with other diseases [8 acute myeloid leukemia (AML), 1 chronic myelomonocytic leukemia (CMML), 1 myelodysplastic syndrome (MDS), and 1 acute lymphoblastic leukemia (ALL)]. Patients with aCML or CNL were tested by Sanger sequencing and pyrosequencing to identify CSF3R T618I. Twenty-two patients underwent gene panel analysis. CSF3R mutations, mostly T618I (8/9), were found at high frequencies in both aCML and CNL patients [5/6 aCML and 4/6 CNL]. Two aCML patients in early adulthood with CSF3R T618I and biallelic or homozygous CEBPA mutations without other mutations presented with increased blasts and exhibited remission for >6 years after transplantation. The other 7 CSF3Rmut aCML or CNL patients were elderly adults who all had ASXL1 mutations and frequently presented with SEBP1 and SRSF2 mutations. Five AML patients had CSF3R exon 14 or 15 point mutations, and 6 other patients (3 AML, 1 CMML, 1 MDS, and 1 ALL) had truncating mutations, demonstrating differences in leukocyte counts and mutation status. In conclusion, CSF3R mutations were found at a higher frequency in aCML patients than in previous studies, which might reflect ethnic differences. Additional studies are needed to confirm these findings and the relationship between CSF3R and CEBPA mutations.
Collapse
MESH Headings
- Humans
- Receptors, Colony-Stimulating Factor/genetics
- Male
- Female
- Mutation
- Middle Aged
- Aged
- Adult
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Aged, 80 and over
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
Collapse
Affiliation(s)
- Seon Young Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jimyung Kim
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Gye Cheol Kwon
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Xiao W, Nardi V, Stein E, Hasserjian RP. A practical approach on the classifications of myeloid neoplasms and acute leukemia: WHO and ICC. J Hematol Oncol 2024; 17:56. [PMID: 39075565 PMCID: PMC11287910 DOI: 10.1186/s13045-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
In 2022, two new classifications of myeloid neoplasms and acute leukemias were published: the 5th edition WHO Classification (WHO-HAEM5) and the International Consensus Classification (ICC). As with prior classifications, the WHO-HAEM5 and ICC made updates to the prior classification (revised 4th edition WHO Classification, WHO-HAEM4R) based on a consensus of groups of experts, who examined new evidence. Both WHO-HAEM5 and ICC introduced several new disease entities that are based predominantly on genetic features, superseding prior morphologic definitions. While it is encouraging that two groups independently came to similar conclusions in updating the classification of myeloid neoplasms and acute leukemias, there are several divergences in how WHO-HAEM5 and ICC define specific entities as well as differences in nomenclature of certain diseases. In this review, we highlight the similarities and differences between the WHO-HAEM5 and ICC handling of myeloid neoplasms and acute leukemias and present a practical approach to diagnosing and classifying these diseases in this current era of two divergent classification guidelines.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Valentina Nardi
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Eytan Stein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert P Hasserjian
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Jiang M, Chen M, Yan L, Zhang Y, Yang X, Zhang W. Atypical chronic myeloid leukemia found in a patient with eosinophilia for six years: a case report. BMC Geriatr 2024; 24:595. [PMID: 38992589 PMCID: PMC11241931 DOI: 10.1186/s12877-024-05196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Atypical chronic myeloid leukemia (aCML) is a highly aggressive type of blood cancer that falls under the category of myelodysplastic/myeloproliferative neoplasms (MDS/MPN). In the fifth edition of the WHO classification of tumors, this category has been renamed MDS/MPN with neutrophilia. Although eosinophilia is commonly observed in blood cancers, it is rarely seen in aCML. CASE PRESENTATION This study presents a case of aCML that was diagnosed six years after the patient developed eosinophilia. The patient had undergone tests to rule out other primary and secondary diseases, but the eosinophilia remained unexplained. Treatment with corticosteroids and hydroxyurea had proven ineffective. Six years later, the patient experienced an increase in white blood cells, primarily neutrophils. After ruling out other possible diagnoses, a combination of morphologic and molecular genetic findings led to the diagnosis of aCML. The patient responded well to treatment with azacitidine. CONCLUSIONS This study summarizes the current state of aCML diagnosis and management and discusses the possible connection between eosinophilia and aCML.
Collapse
Affiliation(s)
- Moqin Jiang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Meng Chen
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Lixiang Yan
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Ying Zhang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiangdong Yang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Weifeng Zhang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| |
Collapse
|
10
|
Mohamed A, Gao J, Chen YH, Abaza Y, Altman J, Jennings L, Vormittag-Nocito E, Sukhanova M, Lu X, Chen Q. CSF3R mutated myeloid neoplasms: Beyond chronic neutrophilic leukemia. Hum Pathol 2024; 149:66-74. [PMID: 38879086 DOI: 10.1016/j.humpath.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
CSF3R activating mutation is a genetic hallmark of chronic neutrophilic leukemia (CNL), and is also present in a subset of atypical chronic myeloid leukemia (aCML), but infrequent in other myeloid neoplasms. However, the occurrence of CSF3R mutations in various myeloid neoplasms is not well studied. Here we evaluate the spectrum of CSF3R mutations and the clinicopathologic features of CSF3R mutated myeloid neoplasms. We retrospectively identified CSF3R mutations in a variety of myeloid neoplasms: two CNL, three atypical chronic myeloid leukemia (aCML), nine acute myeloid leukemia (AML), one chronic myelomonocytic leukemia, and one myeloproliferative neoplasm. The prototypic T618I mutation was found in 50% of cases: CNL (2/2), aCML (2/3) and AML (4/9). We observed a new recurrent CSF3R mutation Q776* in 25% of cases, and a potential-germline mutation in a 20-year-old patient. Co-occurring mutations were often in epigenetic modifier and spliceosome. IDH/RUNX1 and tumor suppressor mutations were frequent in AML but absent in CNL/aCML. All CNL/aCML patients succumbed within 2-years of diagnosis. We demonstrate that CSF3R mutations are not restricted to CNL. CNL and aCML show similar clinicopathologic and molecular features, suggesting that CNL may be best classified as myelodysplastic/myeloproliferative neoplasm rather than myeloproliferative neoplasm.
Collapse
MESH Headings
- Humans
- Receptors, Colony-Stimulating Factor/genetics
- Male
- Mutation
- Middle Aged
- Female
- Aged
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Neutrophilic, Chronic/pathology
- Retrospective Studies
- Adult
- Young Adult
- Aged, 80 and over
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- DNA Mutational Analysis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Genetic Predisposition to Disease
- Biomarkers, Tumor/genetics
- Phenotype
Collapse
Affiliation(s)
- Ahmed Mohamed
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA.
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Yasmin Abaza
- Hematology Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Jessica Altman
- Hematology Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Lawrence Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Erica Vormittag-Nocito
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E Huron Street, Chicago, IL, 60611, USA
| |
Collapse
|
11
|
Szuber N, Orazi A, Tefferi A. Chronic neutrophilic leukemia and atypical chronic myeloid leukemia: 2024 update on diagnosis, genetics, risk stratification, and management. Am J Hematol 2024; 99:1360-1387. [PMID: 38644693 DOI: 10.1002/ajh.27321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare BCR::ABL1-negative myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis and bone marrow granulocyte hyperplasia. Atypical chronic myeloid leukemia (aCML) (myelodysplastic "[MDS]/MPN with neutrophilia" per World Health Organization [WHO]) is a MDS/MPN overlap disorder featuring dysplastic neutrophilia and circulating myeloid precursors. Both manifest with frequent hepatosplenomegaly and less commonly, bleeding, with high rates of leukemic transformation and death. The 2022 revised WHO classification conserved CNL diagnostic criteria of leukocytosis ≥25 × 109/L, neutrophils ≥80% with <10% circulating precursors, absence of dysplasia, and presence of an activating CSF3R mutation. ICC criteria are harmonized with those of other myeloid entities, with a key distinction being lower leukocytosis threshold (≥13 × 109/L) for cases CSF3R-mutated. Criteria for aCML include leukocytosis ≥13 × 109/L, dysgranulopoiesis, circulating myeloid precursors ≥10%, and at least one cytopenia for MDS-thresholds (ICC). In both classifications ASXL1 and SETBP1 (ICC), or SETBP1 ± ETNK1 (WHO) mutations can be used to support the diagnosis. Both diseases show hypercellular bone marrow due to a granulocytic proliferation, aCML distinguished by dysplasia in granulocytes ± other lineages. Absence of monocytosis, rare/no basophilia, or eosinophilia, <20% blasts, and exclusion of other MPN, MDS/MPN, and tyrosine kinase fusions, are mandated. Cytogenetic abnormalities are identified in ~1/3 of CNL and ~15-40% of aCML patients. The molecular signature of CNL is a driver mutation in colony-stimulating factor 3 receptor-classically T618I, documented in >80% of cases. Atypical CML harbors a complex genomic backdrop with high rates of recurrent somatic mutations in ASXL1, SETBP1, TET2, SRSF2, EZH2, and less frequently in ETNK1. Leukemic transformation rates are ~10-25% and 30-40% for CNL and aCML, respectively. Overall survival is poor: 15-31 months in CNL and 12-20 months in aCML. The Mayo Clinic CNL risk model for survival stratifies patients according to platelets <160 × 109/L (2 points), leukocytes >60 × 109/L (1 point), and ASXL1 mutation (1 point); distinguishing low- (0-1 points) versus high-risk (2-4 points) categories. The Mayo Clinic aCML risk model attributes 1 point each for: age >67 years, hemoglobin <10 g/dL, and TET2 mutation, delineating low- (0-1 risk factor) and high-risk (≥2 risk factors) subgroups. Management is risk-driven and symptom-directed, with no current standard of care. Most commonly used agents include hydroxyurea, interferon, Janus kinase inhibitors, and hypomethylating agents, though none are disease-modifying. Hematopoietic stem cell transplant is the only potentially curative modality and should be considered in eligible patients. Recent genetic profiling has disclosed CBL, CEBPA, EZH2, NRAS, TET2, and U2AF1 to represent high-risk mutations in both entities. Actionable mutations (NRAS/KRAS, ETNK1) have also been identified, supporting novel agents targeting involved pathways. Preclinical and clinical studies evaluating new drugs (e.g., fedratinib, phase 2) and combinations are detailed.
Collapse
MESH Headings
- Humans
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Mutation
- Risk Assessment
- Receptors, Colony-Stimulating Factor/genetics
- Carrier Proteins
- Nuclear Proteins
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Liu L, Song X, Dong W, Li Z, Guo D. Case report: Safety and efficacy of synergistic treatment using selinexor and azacitidine in patients with atypical chronic myeloid leukemia with resistance to decitabine. Front Oncol 2024; 14:1353818. [PMID: 38384813 PMCID: PMC10879427 DOI: 10.3389/fonc.2024.1353818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Atypical chronic myeloid leukemia (aCML) is a BCR::ABL1 negative myelodysplastic/myeloproliferative neoplasm with poor overall survival. Some patients can be treated by allogeneic hematopoietic stem cell transplantation (allo-HSCT) from suitable donors. The effectiveness of decitabine or azacitidine (AZA) has recently been reported; however, their combined efficacy with selinexor has not yet been reported. Case description In this study, we report the case of a patient with aCML who was successfully treated with selinexor combined with AZA. A 67-year-old man with a history of gastric mucosa-associated lymphoid tissue (MALT) lymphoma was admitted to the hospital with fatigue and emaciation. He was diagnosed with aCML and no longer responded to decitabine treatment after undergoing seven cycles. The patient was subsequently administered hydroxyurea (HU), selinexor, and AZA. After four courses of combination therapy, his blood cell counts improved; he no longer required transfusions and was able to discontinue HU. The patient continued receiving selinexor and AZA without severe complications. This case is the first to show that combinatorial selinexor and AZA therapy can effectively treat aCML. Conclusion Our case sheds light on the importance of selinexor and AZA combined therapy in the exploration of new treatment strategies for aCML. Moreover, this treatment approach offers the possibility of bridging with allo-HSCT.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Wenhao Dong
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Zhao Li
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Dongmei Guo
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| |
Collapse
|
13
|
Klein SK, Huls GA, Visser O, Kluin-Nelemans HC, Dinmohamed AG. Characteristics, primary treatment, and survival of MDS/MPN with neutrophilia: a population-based study. Blood Adv 2023; 7:7554-7563. [PMID: 37934881 PMCID: PMC10761362 DOI: 10.1182/bloodadvances.2023011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Myelodysplastic and myeloproliferative neoplasms (MDS/MPN) with neutrophilia, until recently called atypical chronic myeloid leukemia (aCML), being part of the MDS/MPN is a very rare disease with poor prognosis. Although emerging data reveal its cytogenetic and molecular profile, integrated survival and treatment data remain scarce. We analyzed a cohort of 347 adult patients diagnosed with MDS/MPN with neutrophilia, registered in the Netherlands Cancer Registry between 2001 and 2019. Our demographic baseline data align with other cohorts. We observed cytogenetic aberrations exclusively in patients aged >65 years, with trisomy 8 being the most common abnormality. We identified 16 distinct molecular mutations, with some patients (16/101) harboring up to 3 different mutations; ASXL1 being the most frequent one (22%). In a multivariable Cox regression analysis, only age, hemoglobin level and allogeneic hematopoietic stem cell transplant (alloHSCT) were associated with overall survival (aged >65 years; hazard ratio [HR] 1.85; P = .001 and alloHSCT HR, 0.51; P = .039). Because no other treatment modality seemed to affect survival and might cause toxicity, we propose that all patients eligible for alloHSCT should, whenever possible, receive an allogeneic transplant. It is imperative that we strive to improve outcomes for patients who are not eligible for alloHSCT. Tackling this challenge requires international collaborative efforts to conduct prospective intervention studies.
Collapse
MESH Headings
- Adult
- Humans
- Aged
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/genetics
- Prospective Studies
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Chromosome Aberrations
- Leukocytosis
Collapse
Affiliation(s)
- Saskia K. Klein
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerwin A. Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Otto Visser
- Department of Registration, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - Hanneke C. Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Avinash G. Dinmohamed
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Breccia M. Atypical CML: diagnosis and treatment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:476-482. [PMID: 38066919 PMCID: PMC10727105 DOI: 10.1182/hematology.2023000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Atypical chronic myeloid leukemia (aCML) is included in the group of myelodysplastic/myeloproliferative neoplasms by the International Consensus Classification and has been renamed as MDS/MPN with neutrophilia by the fifth edition of World Health Organization classification. It is always characterized by morphologic identification of granulocytic dysplasia with >10% circulating immature myeloid cells, 2 distinguished features that differentiate this disease among the others. Somatic mutations may help to diagnose but are not specifically pathognomonic of the disease, with the most detected including ASXL1, SETBP1, NRAS, KRAS, SRSF2, and TET2 and with low-frequency CBL, CSF3R, JAK2, and ETNK1. The genomic landscape of aCML has been recently unravelling, revealing that SETBP1 and ETNK1 are usually not ancestral but secondary events associated with disease progression. Unfortunately, until now, no consensus on risk stratification and treatment has been developed: Mayo Clinic prognostic score identified as adverse events age >67 years, hemoglobin level <10 g/dL, and TET2 mutations. Although some possible genetic markers have been identified, allogeneic transplant remains the only curative strategy.
Collapse
MESH Headings
- Humans
- Aged
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Myelodysplastic-Myeloproliferative Diseases/diagnosis
- Mutation
- Prognosis
- Disease Progression
Collapse
Affiliation(s)
- Massimo Breccia
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Carreño-Tarragona G, Álvarez-Larrán A, Hernández-Boluda JC, Ayala R, Cross NCP. Should we move to a genomic classification of neutrophilic myeloid neoplasms? Blood Adv 2023; 7:6705-6706. [PMID: 37672387 PMCID: PMC10641471 DOI: 10.1182/bloodadvances.2023011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Gonzalo Carreño-Tarragona
- Department of Hematology, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | | | | | - Rosa Ayala
- Department of Hematology, Hospital Universitario 12 de Octubre, I+12, CNIO, Complutense University, CIBERONC, Madrid, Spain
| | - Nicholas C. P. Cross
- Wessex Genomic Laboratory Service, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
16
|
Tremblay D, Sastow D, Mascarenhas J. CNL and aCML are prognostically distinct: a large National Cancer Database analysis. Blood Adv 2023; 7:4400-4402. [PMID: 37289504 PMCID: PMC10432596 DOI: 10.1182/bloodadvances.2023010722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dahniel Sastow
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|