1
|
Vives Corrons JL. Understanding Rare Anemias: Emerging Frontiers for Diagnosis and Treatment. J Clin Med 2024; 13:3180. [PMID: 38892889 PMCID: PMC11172750 DOI: 10.3390/jcm13113180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background-This review provides a comprehensive overview of rare anemias, emphasizing their hereditary and acquired causes, diagnostic advancements, and evolving treatment strategies. It outlines the significance of rare anemias within public health, historical challenges in recognition and treatment, and the role of European initiatives like ENERCA and EuroBloodNet in advancing care. Content-This document discusses diagnostic technologies like next-generation sequencing and the impact of artificial intelligence, alongside the promising avenues of gene therapy, targeted drug treatments, and stem cell transplantation. It underscores the importance of a patient-tailored approach, advances in diagnostic tools, and the necessity for continued research, patient advocacy, and international collaboration to improve outcomes for individuals with rare anemias.
Collapse
Affiliation(s)
- Joan-Lluis Vives Corrons
- Rare Anaemias and Erythropoietic Disorders Research, Institute for Leukaemia Research Josep Carreras, 08916 Barcelona, Spain;
- Ektacytometry Unit, Clinical Centre for Ambulatory Medicine, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Yoshida N. Recent advances in the diagnosis and treatment of pediatric acquired aplastic anemia. Int J Hematol 2024; 119:240-247. [PMID: 36867357 DOI: 10.1007/s12185-023-03564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
Acquired aplastic anemia (AA) in children is a rare bone marrow failure that requires several special considerations for its diagnosis and treatment compared with that in adults. The most common issue is the differential diagnosis with refractory cytopenia of childhood and inherited bone marrow failure syndromes, which is crucial for making decisions on the appropriate treatment for pediatric AA. In addition to detailed morphological evaluation, a comprehensive diagnostic work-up that includes genetic analysis using next-generation sequencing will play an increasingly important role in identifying the underlying etiology of pediatric AA. When discussing treatment strategies for children with acquired AA, the long-term sequelae and level of hematopoietic recovery that affect daily or school life should also be considered, although the overall survival rate has reached 90% after immunosuppressive therapy or hematopoietic cell transplantation (HCT). Recent advances in HCT for pediatric patients with acquired AA have been remarkable, with the successful use of upfront bone marrow transplantation from a matched unrelated donor, unrelated cord blood transplantation or haploidentical HCT as salvage treatment, and fludarabine/melphalan-based conditioning regimens. This review discusses current clinical practices in the diagnosis and treatment of acquired AA in children based on the latest data.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya, Aichi, 453-8511, Japan.
| |
Collapse
|
3
|
Ongie L, Raj HA, Stevens KB. Genetic Counseling and Family Screening Recommendations in Patients with Telomere Biology Disorders. Curr Hematol Malig Rep 2023; 18:273-283. [PMID: 37787873 DOI: 10.1007/s11899-023-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) encompass a spectrum of genetic diseases with a common pathogenesis of defects in telomerase function and telomere maintenance causing extremely short telomere lengths. Here, we review the current literature surrounding genetic testing strategies, cascade testing, reproductive implications, and the role of genetic counseling. RECENT FINDINGS The understanding of the genetic causes and clinical symptoms of TBDs continues to expand while genetic testing and telomere length testing are nuanced tools utilized in the diagnosis of this condition. Access to genetic counseling is becoming more abundant and is valuable in supporting patients and their families in making informed decisions. Patient resources and support groups are valuable to this community. Defining which populations should be offered genetic counseling and testing is imperative to provide proper diagnoses and medical management for not only the primary patient, but also their biological relatives.
Collapse
Affiliation(s)
| | - Hannah A Raj
- Team Telomere, Inc., New York, NY, USA
- College of Medicine, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
4
|
Berrada S, Martínez-Balsalobre E, Larcher L, Azzoni V, Vasquez N, Da Costa M, Abel S, Audoly G, Lee L, Montersino C, Castellano R, Combes S, Gelot C, Ceccaldi R, Guervilly JH, Soulier J, Lachaud C. A clickable melphalan for monitoring DNA interstrand crosslink accumulation and detecting ICL repair defects in Fanconi anemia patient cells. Nucleic Acids Res 2023; 51:7988-8004. [PMID: 37395445 PMCID: PMC10450163 DOI: 10.1093/nar/gkad559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Fanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan. Our results demonstrate that click-melphalan is as effective as its unmodified counterpart in generating ICLs and associated toxicity. The lesions induced by click-melphalan can be detected in cells by post-labelling with a fluorescent reporter and quantified using flow cytometry. Since click-melphalan induces both ICLs and monoadducts, we generated click-mono-melphalan, which only induces monoadducts, in order to distinguish between the two types of DNA repair. By using both molecules, we show that FANCD2 knock-out cells are deficient in removing click-melphalan-induced lesions. We also found that these cells display a delay in repairing click-mono-melphalan-induced monoadducts. Our data further revealed that the presence of unrepaired ICLs inhibits monoadduct repair. Finally, our study demonstrates that these clickable molecules can differentiate intrinsic DNA repair deficiencies in primary FA patient cells from those in primary xeroderma pigmentosum patient cells. As such, these molecules may have potential for developing diagnostic tests.
Collapse
Affiliation(s)
- Sara Berrada
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Lise Larcher
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Violette Azzoni
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nadia Vasquez
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mélanie Da Costa
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sébastien Abel
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Gilles Audoly
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Lara Lee
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Camille Montersino
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Rémy Castellano
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sébastien Combes
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Camille Gelot
- Inserm U830, PSL Research University, Institut Curie, Paris, France
| | - Raphaël Ceccaldi
- Inserm U830, PSL Research University, Institut Curie, Paris, France
| | | | - Jean Soulier
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christophe Lachaud
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
5
|
Aplastic Anemia as a Roadmap for Bone Marrow Failure: An Overview and a Clinical Workflow. Int J Mol Sci 2022; 23:ijms231911765. [PMID: 36233062 PMCID: PMC9569739 DOI: 10.3390/ijms231911765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, it has become increasingly apparent that bone marrow (BM) failures and myeloid malignancy predisposition syndromes are characterized by a wide phenotypic spectrum and that these diseases must be considered in the differential diagnosis of children and adults with unexplained hematopoiesis defects. Clinically, hypocellular BM failure still represents a challenge in pathobiology-guided treatment. There are three fundamental topics that emerged from our review of the existing data. An exogenous stressor, an immune defect, and a constitutional genetic defect fuel a vicious cycle of hematopoietic stem cells, immune niches, and stroma compartments. A wide phenotypic spectrum exists for inherited and acquired BM failures and predispositions to myeloid malignancies. In order to effectively manage patients, it is crucial to establish the right diagnosis. New theragnostic windows can be revealed by exploring BM failure pathomechanisms.
Collapse
|
6
|
Abstract
Telomere biology was first studied in maize, ciliates, yeast, and mice, and in recent decades, it has informed understanding of common disease mechanisms with broad implications for patient care. Short telomere syndromes are the most prevalent premature aging disorders, with prominent phenotypes affecting the lung and hematopoietic system. Less understood are a newly recognized group of cancer-prone syndromes that are associated with mutations that lengthen telomeres. A large body of new data from Mendelian genetics and epidemiology now provides an opportunity to reconsider paradigms related to the role of telomeres in human aging and cancer, and in some cases, the findings diverge from what was interpreted from model systems. For example, short telomeres have been considered potent drivers of genome instability, but age-associated solid tumors are rare in individuals with short telomere syndromes, and T cell immunodeficiency explains their spectrum. More commonly, short telomeres promote clonal hematopoiesis, including somatic reversion, providing a new leukemogenesis paradigm that is independent of genome instability. Long telomeres, on the other hand, which extend the cellular life span in vitro, are now appreciated to be the most common shared germline risk factor for cancer in population studies. Through this contemporary lens, I revisit here the role of telomeres in human aging, focusing on how short and long telomeres drive cancer evolution but through distinct mechanisms.
Collapse
Affiliation(s)
- Mary Armanios
- Departments of Oncology, Genetic Medicine, Pathology, and Molecular Biology and Genetics; Telomere Center at Johns Hopkins; and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
7
|
Park M. Overview of inherited bone marrow failure syndromes. Blood Res 2022; 57:49-54. [PMID: 35483926 PMCID: PMC9057667 DOI: 10.5045/br.2022.2022012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 01/02/2023] Open
Abstract
Patients with inherited bone marrow failure syndrome (IBMFS) can develop peripheral blood cytopenia, which can ultimately progress to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Although some cases of IBMFS are diagnosed based on their typical presentation, variable disease penetrance and expressivity may result in diagnostic dilemmas. With recent advances in genomic evaluation including next-generation sequencing, many suspected cases of IBMFS with atypical presentations can be identified. Identification of the genetic causes of IBMFS has led to important advances in understanding DNA repair, telomere biology, ribosome biogenesis, and hematopoietic stem cell regulation. An overview of this syndromes is summarized in this paper.
Collapse
Affiliation(s)
- Meerim Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|