1
|
Ahmed S, Ahmed A, Rådegran G. Circulating biomarkers in pulmonary arterial hypertension: State-of-the-art review and future directions. JHLT OPEN 2024; 6:100152. [PMID: 40145036 PMCID: PMC11935499 DOI: 10.1016/j.jhlto.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Pulmonary arterial hypertension is a complex and heterogeneous condition, associated with a considerable diagnostic delay, diminished exercise capacity, and poor outcomes. In pulmonary arterial hypertension, biomarker research has become a subject of intense inquiry, and novel circulating biomarkers acknowledged in a multitude of mechanistic pathways are emerging. Beyond the widely used natriuretic peptides, novel biomarkers may provide deeper pathophysiological understanding, support clinical decision-making, and prompt the incorporation of precision medicine by enabling a more precise individual phenotyping. In this state-of-the-art review, the recent advances in circulating biomarkers in pulmonary arterial hypertension from a clinical perspective are discussed, with particular emphasis on the current state of knowledge, gaps in evidence, and future perspectives.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Favoino E, Prete M, Liakouli V, Leone P, Sisto A, Navarini L, Vomero M, Ciccia F, Ruscitti P, Racanelli V, Giacomelli R, Perosa F. Idiopathic and connective tissue disease-associated pulmonary arterial hypertension (PAH): Similarities, differences and the role of autoimmunity. Autoimmun Rev 2024; 23:103514. [PMID: 38181859 DOI: 10.1016/j.autrev.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Pre-capillary pulmonary arterial hypertension (PAH) is hemodynamically characterized by a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg, pulmonary capillary wedge pressure (PAWP) ≤15 mmHg and pulmonary vascular resistance (PVR) > 2. PAH is classified in six clinical subgroups, including idiopathic PAH (IPAH) and PAH associated to connective tissue diseases (CTD-PAH), that will be the main object of this review. The aim is to compare these two PAH subgroups in terms of epidemiology, histological and pathogenic findings in an attempt to define disease-specific features, including autoimmunity, that may explain the heterogeneity of response to therapy between IPAH and CTD-PAH.
Collapse
Affiliation(s)
- Elvira Favoino
- Laboratory of Cellular and Molecular Immunology, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Vasiliki Liakouli
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Adriana Sisto
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Luca Navarini
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Marta Vomero
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Francesco Ciccia
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Roberto Giacomelli
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
3
|
Ahmed S, Lundgren J, Ahmed A, Rådegran G. Plasma VEGF-D and sFLT-1 are potential biomarkers of hemodynamics and congestion in heart failure and following heart transplantation. JHLT OPEN 2023; 2:100013. [PMID: 40144016 PMCID: PMC11935418 DOI: 10.1016/j.jhlto.2023.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Inflammation and tyrosine-kinases are known mediators in the pathobiology of cardiovascular disease. Plasma biomarkers reflecting these systems may provide a noninvasive complement reflecting hemodynamics, aiding in clinical decision-making. We therefore aimed to investigate the plasma levels of vascular and inflammatory proteins, and their associations with invasive hemodynamics in advanced heart failure (HF) before, and at multiple follow-ups after heart transplantation (HT). Methods Using multiplex sandwich immunoassays, absolute plasma concentrations of 9 vascular and inflammatory proteins were assessed in 26 patients with advanced HF, before HT, and at 4 weeks, 6 months, and 1year after HT. Right heart catheterization hemodynamics were assessed at the time of blood sampling. Repeated measures correlations were performed to evaluate the overall intra-individual development of plasma protein levels in relation to hemodynamics' development over time. Results Out of 9 proteins included initially, in advanced HF, elevated plasma levels of vascular endothelial growth factor D (VEGF-D) and soluble fms-like tyrosine kinase-1 (sFlt-1) decreased most markedly at 4 weeks (p < 0.0001), and decreased further at 6 months (p < 0.05) and at the 1 year follow-ups after-HT (p < 0.05). Over time, plasma VEGF-D correlated strongest with hemodynamic parameters including pulmonary arterial wedge pressure (PAWP) (r mr = 0.75, 95% bootstrapped confidence interval (CI) 0.61-0.84, p < 0.0001), followed by mean right atrial pressure (MRAP) (r mr = 0.74, 95% CI 0.61-0.82, p < 0.0001), and mean pulmonary arterial pressure (mPAP) (r mr = 0.74, 95% CI 0.58-0.82, p < 0.0001). Plasma sFlt-1 correlated also with multiple hemodynamic parameters including PAWP (r mr = 0.66, 95% CI 0.58-0.79, p < 0.0001), MRAP (r mr = 0.64, 95% CI 0.58-0.81, p < 0.0001), and mPAP (r mr = 0.61, 95% CI 0.51-0.76, p < 0.0001). Conclusions In advanced HF, elevated plasma VEGF-D and sFlt-1 levels decrease early, already within 4 weeks after HT, and further throughout the first year postoperatively. Our findings support that high plasma VEGF-D and sFlt-1 concentrations before HT are related to congestion and overall hemodynamic improvement. Plasma VEGF-D and sFlt-1 may consequently be potential noninvasive biomarkers for monitoring hemodynamic deterioration and congestion in HF, and surveillance after HT.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Jakob Lundgren
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Li YJ, Wu XF, Wang DD, Li P, Liang H, Hu XY, Gan JQ, Sun YZ, Li JH, Li J, Shu X, Song AL, Yang CY, Yang ZY, Yu WF, Yang LQ, Wang XB, Belguise K, Xia ZY, Yi B. Serum Soluble Vascular Endothelial Growth Factor Receptor 1 as a Potential Biomarker of Hepatopulmonary Syndrome. J Clin Transl Hepatol 2023; 11:1150-1160. [PMID: 37577229 PMCID: PMC10412700 DOI: 10.14218/jcth.2022.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims The results of basic research implicate the vascular endothelial growth factor (VEGF) family as a potential target of hepatopulmonary syndrome (HPS). However, the negative results of anti-angiogenetic therapy in clinical studies have highlighted the need for markers for HPS. Therefore, we aimed to determine whether VEGF family members and their receptors can be potential biomarkers for HPS through clinical and experimental studies. Methods Clinically, patients with chronic liver disease from two medical centers were enrolled and examined for HPS. Patients were divided into HPS, intrapulmonary vascular dilation [positive contrast-enhanced echocardiography (CEE) and normal oxygenation] and CEE-negative groups. Baseline information and perioperative clinical data were compared between HPS and non-HPS patients. Serum levels of VEGF family members and their receptors were measured. In parallel, HPS rats were established by common bile duct ligation. Liver, lung and serum samples were collected for the evaluation of pathophysiologic changes, as well as the expression levels of the above factors. Results In HPS rats, all VEGF family members and their receptors underwent significant changes; however, only soluble VEGFR1 (sFlt-1) and the sFlt-1/ placental growth factor (PLGF) ratio were changed in almost the same manner as those in HPS patients. Furthermore, through feature selection and internal and external validation, sFlt-1 and the sFlt-1/PLGF ratio were identified as the most important variables to distinguish HPS from non-HPS patients. Conclusions Our results from animal and human studies indicate that sFlt-1 and the sFlt-1/PLGF ratio in serum are potential markers for HPS.
Collapse
Affiliation(s)
- Yu-Jie Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xian-Feng Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan-Dan Wang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Hao Liang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Yan Hu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jia-Qi Gan
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yi-Zhu Sun
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun-Hong Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Shu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ai-Lin Song
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chun-Yong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi-Yong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Jose A, Elwing JM, Kawut SM, Pauciulo MW, Sherman KE, Nichols WC, Fallon MB, McCormack FX. Human liver single nuclear RNA sequencing implicates BMPR2, GDF15, arginine, and estrogen in portopulmonary hypertension. Commun Biol 2023; 6:826. [PMID: 37558836 PMCID: PMC10412637 DOI: 10.1038/s42003-023-05193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Portopulmonary hypertension (PoPH) is a type of pulmonary vascular disease due to portal hypertension that exhibits high morbidity and mortality. The mechanisms driving disease are unknown, and transcriptional characteristics unique to the PoPH liver remain unexplored. Here, we apply single nuclear RNA sequencing to compare cirrhotic livers from patients with and without PoPH. We identify characteristics unique to PoPH in cells surrounding the central hepatic vein, including increased growth differentiation factor signaling, enrichment of the arginine biosynthesis pathway, and differential expression of the bone morphogenic protein type II receptor and estrogen receptor type I genes. These results provide insight into the transcriptomic characteristics of the PoPH liver and mechanisms by which PoPH cellular dysfunction might contribute to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Arun Jose
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jean M Elwing
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth E Sherman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Francis X McCormack
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Doppler Echocardiography Combined with NTproBNP/BNP in the Diagnosis of Pulmonary Artery Hypertension Associated with Congenital Heart Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:1896026. [PMID: 36814803 PMCID: PMC9940967 DOI: 10.1155/2023/1896026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
Background Pulmonary artery hypertension (PAH) is a common complication of congenital heart disease (CHD) and is associated with worse outcomes and increased mortality. The Doppler echocardiography (DE) is a commonly used imaging tool for both diagnosis and follow-up examination of PAH. Here is to evaluate the diagnostic performance of DE combined with NTproBNP/BNP as screening strategy in PAH patients with CHD. Methods A retrospective study in 64 patients with CHD has been carried out to compare estimate pulmonary artery systolic pressure (PASP) measured with DE to that measured with right heart catheterization (RHC). The Pearson correlation analyses were used to calculate the correlation coefficients between RHC and DE. The Bland-Altman analyses were carried out to assess the agreement between the two methods. ROC analyses were used to evaluate the diagnostic performance of DE, NTproBNP/BNP, and DE combined with NTproBNP/BNP. Results Our data have demonstrated that a mild correlation (r = 0.4401, P < 0.01) was observed between PASP (78.1 ± 29.0 mmHg) measured during RHC and PASP (74.9 ± 19.7 mmHg) as estimated using DE. The Bland-Altman analysis demonstrated that the bias for DE PASP estimates was 3.2 mmHg with 95% limits of agreement ranging from -49.53 to 55.90 mmHg. The results of DE showed an AUC of 0.848 (95% CI = 0.666-1; P < 0.001), the sensitivity of which was 98.3% and the specificity was 77.8%. The AUC of NTproBNP/BNP for the identification of PAH was 0.804 (95% CI = 0.651-0.956; P < 0.001), the sensitivity of which was 81.4% and the specificity was 87.5%. The AUC of DE combined with NTproBNP/BNP was 0.857 (95% CI = 0.676-1; P < 0.001), of which sensitivity was 100% and specificity was 77.8%. The positive predictive value (PPV) and negative predictive value (NPV) were 96.6% and 100%, respectively. Conclusions Our study shows that the Doppler echocardiography combined with NTproBNP/BNP has better diagnostic performance in pulmonary artery hypertension associated with congenital heart disease, especially when DE negative screening in PAH patients.
Collapse
|
7
|
Hirsch K, Nolley S, Ralph DD, Zheng Y, Altemeier WA, Rhodes CJ, Morrell NW, Wilkins MR, Leary PJ, Rayner SG. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension. J Heart Lung Transplant 2023; 42:173-182. [PMID: 36470771 PMCID: PMC9840657 DOI: 10.1016/j.healun.2022.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Subtypes of pulmonary arterial hypertension (PAH) differ in both fundamental disease features and clinical outcomes. Angiogenesis and inflammation represent disease features that may differ across subtypes and are of special interest in connective tissue disease-associated PAH (CTD-PAH). We compared inflammatory and angiogenic biomarker profiles across different etiologies of PAH and related them to clinical outcomes. METHODS Participants with idiopathic PAH, CTD-PAH, toxin-associated PAH (tox-PAH), or congenital heart disease-associated PAH (CHD-PAH) were enrolled into a prospective observational cohort. Baseline serum concentrations of 33 biomarkers were related to 3-year mortality, echocardiogram, REVEAL score, and 6-minute walk distance (6MWD). Findings were validated using plasma proteomic data from the UK PAH Cohort Study. RESULTS One hundred twelve patients were enrolled: 45 idiopathic, 27 CTD-PAH, 20 tox-PAH, and 20 CHD-PAH. Angiogenic and inflammatory biomarkers were distinctly elevated within the CTD-PAH cohort. Six biomarkers were associated with mortality within the entire PAH cohort: interleukin-6 (IL-6, HR:1.6, 95% CI:1.18-2.18), soluble fms-like tyrosine kinase 1 (sFlt-1, HR:1.35, 95% CI:1.02-1.80), placental growth factor (PlGF, HR:1.55, 95% CI:1.07-2.25), interferon gamma-induced protein 10 (IP-10, HR:1.44, 95% CI:1.04-1.99), tumor necrosis factor-beta (TNF-β, HR:1.81, 95% CI:1.11-2.95), and NT-proBNP (HR:2.19, 95% CI:1.52-3.14). Only IL-6 and NT-proBNP remained significant after controlling for multiple comparisons. IL-6, IP-10, and sFlt-1 significantly associated with mortality in CTD-PAH, but not non-CTD-PAH subgroups. In the UK cohort, IP-10, PlGF, TNF-β, and NT-proBNP significantly associated with 5-year survival. CONCLUSION Levels of angiogenic and inflammatory biomarkers are elevated in CTD-PAH, compared with other etiologies of PAH, and may correlate with clinical outcomes including mortality.
Collapse
Affiliation(s)
- Kellen Hirsch
- Department of Medicine, University of Washington, Seattle, Washington
| | - Stephanie Nolley
- Department of Medicine, University of Washington, Seattle, Washington
| | - David D Ralph
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - William A Altemeier
- Department of Medicine, University of Washington, Seattle, Washington; Center for Lung Biology, University of Washington, Seattle, Washington
| | - Christopher J Rhodes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J Leary
- Department of Medicine, University of Washington, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| | - Samuel G Rayner
- Department of Medicine, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington; Center for Lung Biology, University of Washington, Seattle, Washington.
| |
Collapse
|
8
|
Hojda SE, Chis IC, Clichici S. Biomarkers in Pulmonary Arterial Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12123033. [PMID: 36553040 PMCID: PMC9776459 DOI: 10.3390/diagnostics12123033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe medical condition characterized by elevated pulmonary vascular resistance (PVR), right ventricular (RV) failure, and death in the absence of appropriate treatment. The progression and prognosis are strictly related to the etiology, biochemical parameters, and treatment response. The gold-standard test remains right-sided heart catheterization, but dynamic monitoring of systolic pressure in the pulmonary artery is performed using echocardiography. However, simple and easily accessible non-invasive assays are also required in order to monitor this pathology. In addition, research in this area is in continuous development. In recent years, more and more biomarkers have been studied and included in clinical guidelines. These biomarkers can be categorized based on their associations with inflammation, endothelial cell dysfunction, cardiac fibrosis, oxidative stress, and metabolic disorders. Moreover, biomarkers can be easily detected in blood and urine and correlated with disease severity, playing an important role in diagnosis, prognosis, and disease progression.
Collapse
|
9
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
He W, Liu C, Liao J, Liu F, Lei H, Wei D, Ruan H, Kunwar B, Lu W, Wang J, Wang T. TIMP-1: A Circulating Biomarker for Pulmonary Hypertension Diagnosis Among Chronic Obstructive Pulmonary Disease Patients. Front Med (Lausanne) 2022; 8:774623. [PMID: 35284430 PMCID: PMC8914225 DOI: 10.3389/fmed.2021.774623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD) and induces increased mortality among COPD patients. However, there are no blood biomarkers to identify PH in COPD. Here, we investigated whether circulating angiogenic factors and cytokines could serve as (a) biomarker (s) for COPD-PH patients. Using Angiogenesis and Cytokine proteome profile array assay, we measured the level of 36 cytokines and 55 angiogenesis-associated proteins in plasma from four COPD patients with PH (COPD-PH) and four COPD patients without PH (COPD), respectively, tissue inhibitor of metalloproteinase 1 (TIMP-1) and thrombospondin 1(TSP-1) were significantly different between the two groups. Enzyme-linked immunosorbent assay (ELISA) was applied to measured TIMP-1 and TSP-1 in a validation cohort (COPD-PH, n = 28; COPD, n = 18), and TIMP-1 was the only factor that was significantly different between COPD-PH and COPD patients (P < 0.01). Logistic regression analysis demonstrated that elevated TIMP-1 was an independent risk factor for COPD-PH [odds ratio (OR) = 1.258, 95% CI: 1.005–1.574, P < 0.05). Next, we explored the expression level and function of TIMP-1 in human pulmonary arterial smooth muscle cells (hPASMCs) exposed to cigarette smoking extract (CSE, a major etiological factor of COPD). In cultured hPASMCs, CSE treatment increased both TIMP-1 protein level and cell proliferation, and exogenous TIMP-1 (25 ng/mL) treatment inhibited CSE-induced hPASMCs proliferation. Overall, our results indicated that TIMP-1 elevation could serve as a circulating biomarker to diagnose PH among COPD patients, and TIMP-1 elevation in COPD-PH could be adaptive.
Collapse
Affiliation(s)
- Wenjun He
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Fei Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Hui Lei
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Danmei Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Bibhav Kunwar
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jian Wang
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Vascular Diseases, Guangzhou Medical University, Guangzhou, China
- Tao Wang
| |
Collapse
|
11
|
Zagorski J, Neto‐Neves E, Alves NJ, Fisher AJ, Kline JA. Modulation of soluble guanylate cyclase ameliorates pulmonary hypertension in a rat model of chronic thromboembolic pulmonary hypertension by stimulating angiogenesis. Physiol Rep 2022; 10:e15156. [PMID: 35001565 PMCID: PMC8743875 DOI: 10.14814/phy2.15156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 04/15/2023] Open
Abstract
Acute pulmonary embolism (PE) does not always resolve after treatment and can progress to chronic thromboembolic disease (CTED) or the more severe chronic thromboembolic pulmonary hypertension (CTEPH). The mechanisms surrounding the likelihood of PE resolution or progress to CTED/CTEPH remain largely unknown. We have developed a rat model of CTEPH that closely resembles the human disease in terms of hemodynamics and cardiac manifestations. Embolization of rats with polystyrene microspheres followed by suppression of angiogenesis with the inhibitor of vascular endothelial growth factor receptor 2 (VEGF-R2) SU5416 results in transient, acute pulmonary hypertension that progresses into chronic PE with PH with sustained right ventricular systolic pressures exceeding 70 mmHg (chronic pulmonary embolism [CPE] model). This model is similar to the widely utilized hypoxia/SU5416 model with the exception that the "first hit" is PE. Rats with CPE have impaired right heart function characterized by reduced VO2 Max, reduced cardiac output, and increased Fulton index. None of these metrics are adversely affected by PE alone. Contrast-mediated CT imaging of lungs from rats with PE minus SU5416 show large increases in pulmonary vascular volume, presumably due to an angiogenic response to acute PE/PH. Co-treatment with SU5416 suppresses angiogenesis and produces the CTEPH-like phenotype. We report here that treatment of CPE rats with agonists for soluble guanylate cyclase, a source of cGMP which is in turn a signal for angiogenesis, markedly increases angiogenesis in lungs, and ameliorates the cardiac deficiencies in the CPE model. These results have implications for future development of therapies for human CTEPH.
Collapse
Affiliation(s)
- John Zagorski
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Present address:
Department of MedicineIndiana University School of MedicineRiley R2 435, 950 W. Walnut St.IndianapolisIndiana46202USA
| | - Evandro Neto‐Neves
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Present address:
Department of PharmacologyRiberiao Proto Medical SchoolUniversity of San PauloSau PauloBrazil
| | - Nathan J. Alves
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Amanda J. Fisher
- Department of AnesthesiaIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeffrey A. Kline
- Department of Emergency MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
12
|
Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709509. [PMID: 34447792 PMCID: PMC8382733 DOI: 10.3389/fcvm.2021.709509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) diseases are the major cause of death in industrialized countries. The main function of the CV system is to deliver nutrients and oxygen to all tissues. During most CV pathologies, oxygen and nutrient delivery is decreased or completely halted. Several mechanisms, including increased oxygen transport and delivery, as well as increased blood flow are triggered to compensate for the hypoxic state. If the compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis, glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and survival, among others. The overall regulation of the expression of HIF-dependent genes depends on the severity, duration, and location of hypoxia. In the present review, common CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly from their stabilization and activation, are related to the development and perpetuation of hypoxia in these pathologies. We further classify CV diseases into acute and chronic hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis, disease progression and clinical outcomes of these diseases. We conclude that HIFs and their derived factors are fundamental in the genesis and progression of CV diseases. Understanding these mechanisms will lead to more effective treatment strategies leading to reduced morbidity and mortality.
Collapse
Affiliation(s)
| | - Cleva Villanueva
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Richard A Bond
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
13
|
Pullamsetti SS, Tello K, Seeger W. Utilising biomarkers to predict right heart maladaptive phenotype: a step toward precision medicine. Eur Respir J 2021; 57:57/4/2004506. [PMID: 33833075 DOI: 10.1183/13993003.04506-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/11/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany
| | - Khodr Tello
- Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Dept of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Adachi S, Kikuchi R, Shimokata S, Suzuki A, Yoshida M, Imai R, Nakano Y, Kondo T, Murohara T. Endostatin and Vascular Endothelial Growth Factor-A 165b May Contribute to Classification of Pulmonary Hypertension. Circ Rep 2021; 3:161-169. [PMID: 33738349 PMCID: PMC7956881 DOI: 10.1253/circrep.cr-20-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Pulmonary hypertension (PH) is characterized by dysregulation of small pulmonary arteries. In addition to endostatin (ES), placenta growth factor (PlGF), vascular endothelial growth factor-A (VEGF-A), and the anti-angiogenesis isoform of VEGF-A (VEGF-A165b) are associated with PH. However, the usefulness of these biomarkers in PH in unknown. We investigated whether these 4 biomarkers are related to PH classification. Methods and Results: Between July 2015 and August 2017, 33 control patients and 107 PH patients were enrolled in the study. Among the PH patients, 48 had pulmonary arterial hypertension (PAH), 5 had left heart disease-associated PH (LHD-PH), 4 had lung disease-associated PH (LD-PH), and 50 had chronic thromboembolic PH (CTEPH). Among the PAH patients, 16 had idiopathic PAH (IPAH) and 17 had connective tissue disease-associated PAH (CTD-PAH). PlGF, total VEGF-A, and VEGF-A165b levels were measured in the control and PH groups. ES was only measured in the PH group. VEGF-A165b levels were significantly higher in the LD-PH group than in the PAH, LHD-PH, and CTEPH groups (all P<0.001). PlGF levels were significantly higher in the CTD-PAH group than in the IPAH and control groups. ES levels were significantly correlated with the 6-min walk distance (P<0.001), B-type natriuretic peptide (P<0.001), and pulmonary vascular resistance (P=0.008). Conclusions: ES could detect CTD-PAH in PAH and may be an indicator of PH severity. VEGF-A165b was useful in detecting LD-PH.
Collapse
Affiliation(s)
- Shiro Adachi
- Department of Cardiology, Nagoya University Hospital Nagoya Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital Nagoya Japan
| | | | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital Nagoya Japan
| | - Masahiro Yoshida
- Department of Cardiology, Nagoya University Hospital Nagoya Japan
| | - Ryo Imai
- Department of Cardiology, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshihisa Nakano
- Department of Advanced Medicine in Cardiopulmonary Disease, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Takahisa Kondo
- Department of Advanced Medicine in Cardiopulmonary Disease, Nagoya University Graduate School of Medicine Nagoya Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
15
|
F Zaky A, Froelich M, Meers B, Sturdivant AB, Densmore R, Subramaniam A, Carter T, Tita AN, Matalon S, Jilling T. Noninvasive Assessment of Right Ventricle Function and Pulmonary Artery Pressure Using Transthoracic Echocardiography in Women With Pre-Eclampsia: An Exploratory Study. Cureus 2021; 13:e13419. [PMID: 33763315 PMCID: PMC7980723 DOI: 10.7759/cureus.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and objective Pre-eclampsia (PEC) is associated with the release of anti-angiogenic factors that are incriminated in raising systemic and pulmonary vascular resistance (PVR). Compared to the left heart and systemic circulation, much less attention has been paid to the right heart and pulmonary circulation in patients with PEC. We used transthoracic echocardiography (TTE) to estimate pulmonary artery (PA) pressure and right ventricular (RV) function in women with PEC. Materials and methods We conducted a case-control study at a tertiary care academic center. Ten early PEC (<34-week gestation) and nine late PEC (≥34-week gestation) patients with 11 early and 10 late gestational age-matched controls were enrolled. Two-dimensional TTE was performed on all patients. The estimated mean PA pressure (eMPAP) was calculated based on PA acceleration time (PAAT). PVR was estimated from eMPAP and RV cardiac output (RV CO). RV myocardial performance index (RV MPI), tricuspid annular plane systolic excursion (TAPSE), tissue tricuspid annular displacement (TTAD), and lateral tricuspid annular tissue peak systolic velocity (S’) were measured. Results Compared to early controls, in early PEC, the eMPAP and estimated PVR (ePVR) were elevated, PAAT was reduced, RV MPI was increased, TTAD was reduced, and TAPSE and TV S’ were unchanged. Compared to late controls, in late PEC, the eMPAP and ePVR were elevated, PAAT was reduced, and RV MPI was increased, while TAPSE, TTAD, and TV S’ were unchanged. Conclusions In a sample of women with PEC, early PEC was found to be associated with increased eMPAP and ePVR and subclinical decrement of RV function as assessed by TTE. TTE may be a useful noninvasive screening tool for early detection of pulmonary hypertension and RV dysfunction in PEC. An adequately powered longitudinal study is needed to determine the implications of these findings on long-term outcomes.
Collapse
Affiliation(s)
- Ahmed F Zaky
- Anesthesiology, University of Alabama at Birmingham, Birmingham, USA
| | - Michael Froelich
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Brad Meers
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Adam B Sturdivant
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, USA
| | | | - Akila Subramaniam
- Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, USA
| | - Tekuila Carter
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Alan N Tita
- Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, USA
| | - Sadis Matalon
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Tamas Jilling
- Pediatrics, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
16
|
Dara A, Arvanitaki A, Theodorakopoulou M, Athanasiou C, Pagkopoulou E, Boutou A. Non-Invasive Assessment of Endothelial Dysfunction in Pulmonary Arterial Hypertension. Mediterr J Rheumatol 2021; 32:6-14. [PMID: 34386697 PMCID: PMC8314877 DOI: 10.31138/mjr.32.1.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterised by an increased pressure in the pulmonary arterial circulation, resulting in the elevation of pulmonary vascular resistance. Pulmonary endothelial dysfunction and inflammation, triggered by shear stress and hypoxia, constitute the hallmarks of pulmonary vasculopathy by promoting endothelial and smooth muscle cells proliferation, vasoconstriction, and thrombosis. While research was predominantly focused on pulmonary vasculature, the investigation of peripheral endothelial damage in different vascular beds has attracted the interest over the last years. As a result, effective non-invasive methods that can assess the endothelial function and the architectural integrity have been utilized for the evaluation of pulmonary and peripheral vasculature. Non-invasive plethysmography, pulmonary flow reserve, nailfold videocapillaroscopy, near-infrared spectroscopy, and imaging techniques such as magnetic resonance angiography and perfusion imaging coupled by a number of biomarkers can be used for the assessment of peripheral vascular function in PAH individuals. In this review, we summarise and critically approach the current evidence of more systemic derangement of vascular function in PAH defined by novel, non-invasive methods employed for functional and morphological assessment of endothelium and microcirculation.
Collapse
Affiliation(s)
- Athanasia Dara
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Arvanitaki
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.,First Department of Cardiology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Adult Congenital Heart Centre and National Centre for Pulmonary Arterial Hypertension, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Imperial College, London, UK
| | | | - Christos Athanasiou
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pagkopoulou
- Fourth Department of Internal Medicine, Hippokration University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
17
|
Khandagale A, Åberg M, Wikström G, Bergström Lind S, Shevchenko G, Björklund E, Siegbahn A, Christersson C. Role of Extracellular Vesicles in Pulmonary Arterial Hypertension: Modulation of Pulmonary Endothelial Function and Angiogenesis. Arterioscler Thromb Vasc Biol 2020; 40:2293-2309. [PMID: 32757648 DOI: 10.1161/atvbaha.120.314152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Extracellular vesicles (EVs) have the potential to act as intercellular communicators. The aims were to characterize circulating EVs in patients with pulmonary arterial hypertension (PAH) and to explore whether these EVs contribute to endothelial activation and angiogenesis. Approach and Results: Patients with PAH (n=70) and healthy controls (HC; n=20) were included in this cross-sectional study. EVs were characterized and human pulmonary endothelial cells (hPAECs) were incubated with purified EVs. Endothelial cell activity and proangiogenic markers were analyzed. Tube formation analysis was performed for hPAECs, and the involvement of PSGL-1 (P-selectin glycoprotein ligand 1) was evaluated. The numbers of CD62P+, CD144+, and CD235a EVs were higher in blood from PAH compared with HC. Thirteen proteins were differently expressed in PAH and HC EVs, where complement fragment C1q was the most significantly elevated protein (P=0.0009) in PAH EVs. Upon EVs-internalization in hPAECs, more PAH compared with HC EVs evaded lysosomes (P<0.01). As oppose to HC, PAH EVs stimulated hPAEC activation and induced transcription and translation of VEGF-A (vascular endothelial growth factor A; P<0.05) and FGF (fibroblast growth factor; P<0.005) which were released in the cell supernatant. These proangiogenic proteins were higher in patient with PAH plasma compered with HC. PAH EVs induced a complex network of angiotubes in vitro, which was abolished by inhibitory PSGL-1antibody. Anti-PSGL-1 also inhibited EV-induced endothelial cell activation and PAH EV dependent increase of VEGF-A. CONCLUSIONS Patients with PAH have higher levels of EVs harboring increased amounts of angiogenic proteins, which induce activation of hPAECs and in vitro angiogenesis. These effects were partly because of platelet-derived EVs evasion of lysosomes upon internalization within hPAEC and through possible involvement of P-selectin-PSGL-1 pathway.
Collapse
Affiliation(s)
- Avinash Khandagale
- From the Department of Medical Sciences, Cardiology and Clinical Chemistry (A.K.), Uppsala University, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry (M.Å., A.S.), Uppsala University, Sweden
| | - Gerhard Wikström
- Department of Medical Sciences, Cardiology and Internal Medicine (G.W.), Uppsala University, Sweden
| | - Sara Bergström Lind
- Department of Chemistry - BMC, Analytical Chemistry (S.B.L., G.S.), Uppsala University, Sweden
| | - Ganna Shevchenko
- Department of Chemistry - BMC, Analytical Chemistry (S.B.L., G.S.), Uppsala University, Sweden
| | - Erik Björklund
- Department of Medical Sciences, Cardiology (E.B., C.C.), Uppsala University, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry (M.Å., A.S.), Uppsala University, Sweden
| | | |
Collapse
|
18
|
Chen S, Xu H, Hu F, Wang T. Identification of Key Players Involved in CoCl 2 Hypoxia Induced Pulmonary Artery Hypertension in vitro. Front Genet 2020; 11:232. [PMID: 32391042 PMCID: PMC7193018 DOI: 10.3389/fgene.2020.00232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background The proliferation of human pulmonary artery smooth muscle cells (HPASMCs) induced by hypoxia was considered as the main cause of pulmonary arterial hypertension (PAH). This study aimed to explore potential genes and long non-coding RNAs (lncRNAs) involved in the mechanism of hypoxia-induced PAH. Methods CoCl2 was utilized to induce hypoxia in HPASMCs, and then cell proliferation, apoptosis, and expression of hypoxia-inducible factors (HIF)-1α were determined. Meanwhile, the RNA isolated from CoCl2-treated cells and control cells were sequenced and differentially expressed genes/lncRNA (DEGs/DELs) were screened, followed by protein-protein interaction (PPI) construction, functional enrichment analyses, and lncRNA-target prediction. Finally, the expression of key genes and lncRNAs were validated using quantitative real-time PCR and western blotting. Results CoCl2 treatment could significantly increase the expression of HIF-1α and the proliferation of HPASMCs. A total of 360 DEGs and 57 DELs were identified between CoCl2 treated and control cells. Functional enrichment analysis showed that up-regulated DEGs and DELs’ targets, including LDHA, PFKP, and VEGFA, were significantly enriched in biological processes related to hypoxia or oxygen levels, and the downregulated DEGs and DELs’ targets were significantly enriched in extracellular-matrix-related biological processes. In addition, LDHA, PFKP, and VEGFA exhibited a strong relationship with miR-100HG and TSPEAR-AS2 in lncRNA-target network. The protein level of LDHA, PFKP, and VEGFA were all increased. Conclusion LDHA, PFKP, VEGFA, and lncRNA miR-100HG and TSPEAR-AS2 probably played crucial roles in the pathogenesis of CoCl2 hypoxia-induced-HAP, which might serve as promising therapeutic targets for PAH.
Collapse
Affiliation(s)
- Shu Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Weiss A, Boehm M, Egemnazarov B, Grimminger F, Savai Pullamsetti S, Kwapiszewska G, Schermuly RT. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction. Br J Pharmacol 2020; 178:31-53. [PMID: 31709514 DOI: 10.1111/bph.14919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive pulmonary vasculopathy that causes chronic right ventricular pressure overload and often leads to right ventricular failure. Various kinase inhibitors have been studied in the setting of PH and either improved or worsened the disease, highlighting the importance of understanding the specific role of the respective kinases in a spatiotemporal cellular context. In this review, we will summarize the knowledge on the role of kinases in PH and focus on druggable targets for which certain criteria are met: (a) deregulation of the kinase in PH; (b) small-molecule inhibitors are available (e.g. from the oncology field); (c) preclinical studies have shown their efficacy in PH models; and (d) when available, therapeutic exploitation in human PH has been initiated. Along this line, clinical considerations such as personalized medicine approaches to predict therapy response and adverse side events such as cardiotoxicity together with their clinical management are discussed. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Astrid Weiss
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Mario Boehm
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Friedrich Grimminger
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Otto Loewi Center, Physiology, Medical University of Graz, Graz, Austria
| | - Ralph T Schermuly
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
20
|
Hewes JL, Lee JY, Fagan KA, Bauer NN. The changing face of pulmonary hypertension diagnosis: a historical perspective on the influence of diagnostics and biomarkers. Pulm Circ 2020; 10:2045894019892801. [PMID: 32110383 PMCID: PMC7000867 DOI: 10.1177/2045894019892801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension is a complex, multifactorial disease that results in right heart failure and premature death. Since the initial reports of pulmonary hypertension in the late 1800s, the diagnosis of pulmonary hypertension has evolved with respect to its definition, screening tools, and diagnostic techniques. This historical perspective traces the earliest roots of pulmonary hypertension detection and diagnosis through to the current recommendations for classification. We highlight the diagnostic tools used in the past and present, and end with a focus on the future directions of early detection. Early detection of pulmonary hypertension and pulmonary arterial hypertension and the proper determination of etiology are vital for the early therapeutic intervention that can prolong life expectancy and improve quality of life. The search for a non-invasive screening tool for the identification and classification of pulmonary hypertension is ongoing, and we discuss the role of animal models of the disease in this search.
Collapse
Affiliation(s)
- Jenny L. Hewes
- Department of Pharmacology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
| | - Ji Young Lee
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Division of Pulmonary and Critical Care
Medicine, University Hospital,
University
of South Alabama, Mobile, AL, USA
- Department of Physiology and Cell
Biology, College of Medicine,
University
of South Alabama, Mobile, AL, USA
| | - Karen A. Fagan
- Department of Pharmacology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Division of Pulmonary and Critical Care
Medicine, University Hospital,
University
of South Alabama, Mobile, AL, USA
| | - Natalie N. Bauer
- Department of Pharmacology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
| |
Collapse
|
21
|
Gaynitdinova VV, Avdeev SN. [Novel Biomarkers of Pulmonary Hypertension]. ACTA ACUST UNITED AC 2019; 59:84-94. [PMID: 31322094 DOI: 10.18087/cardio.2019.7.10259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 11/18/2022]
Abstract
Pulmonary hypertension (PH) is a clinical syndrome characterized by a progressive increase in pulmonary vascular resistance (PVR), which leads to remodeling of the right ventricle (RV), right heart failure and premature death of patients. Early diagnosis and monitoring of disease progression are crucial for making decisions about the necessary therapy. The gold standard for the diagnosis of pulmonary hypertension is the right heart catheterization. The estimation of systolic pressure in pulmonary artery by means of transthoracic echocardiography is also used for monitoring the course of the disease. At present, there is still a need for non-invasive biomarkers that reflect pathological changes in pulmonary arterial vessels and allow diagnosing of PH. Our review outlines the new data about some biomarkers potentially useful for diagnosis and prognostication of PH. These biomarkers (mid-regional pro-adrenomedullin, carboxyterminal pro-endothelin-1, copeptin, asymmetric dimethylarginine, growth differentiation factor 15, and others) are classified based on their relationship to endothelial cell dysfunction, inflammation, epigenetics, cardiac function, oxidative stress, extracellular matrix. The determination of biomarkers that are of diagnostic value for predicting the severity, progression of PH and response to therapy, in a simple blood test or condensate of exhaled air, can significantly reduce treatment costs and improve PH management.
Collapse
Affiliation(s)
| | - S N Avdeev
- Sechenov First Moscow State Medical University (Sechenov University); Pulmonology Research Institute
| |
Collapse
|
22
|
Perveen S, Ayasolla K, Zagloul N, Patel H, Ochani K, Orner D, Benveniste H, Salerno M, Vaska P, Zuo Z, Alabed Y, Nasim M, Miller EJ, Ahmed M. MIF inhibition enhances pulmonary angiogenesis and lung development in congenital diaphragmatic hernia. Pediatr Res 2019; 85:711-718. [PMID: 30759452 DOI: 10.1038/s41390-019-0335-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/31/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a complex birth anomaly with significant mortality and morbidity. Lung hypoplasia and persistent pulmonary hypertension (PPHN) limit survival in CDH. Macrophage migration inhibitory factor (MIF), a key regulator of innate immunity, is involved in hypoxia-induced vascular remodeling and PPHN. We hypothesized that antenatal inhibition of MIF in CDH fetuses, would reduce vascular remodeling, and improve angiogenesis and lung development. METHODS Pregnant rats were randomized into three groups: Control, nitrofen, and nitrofen + ISO-92. Lung volumes of pups were measured by CT scanning. Right ventricular systolic pressure (RVSP) and vascular wall thickness (VWT) were measured together with MIF concentration, angiogenesis markers, lung morphometry, and histology. RESULTS Prenatal treatment with ISO-92, an MIF inhibitor, improved normalization of static lung volume, lung volume-to-body weight ratio, decreased alveolar septal thickness, RVSP and VWT and improved radial alveolar count as compared to the non-treated group. Expression of MIF was unaffected by ISO-92; however, ISO-92 increased p-eNOS and VEGF activities and reduced arginase 1, 2 and Sflt-1. CONCLUSION Prenatal inhibition of MIF activity in CDH rat model improves angiogenesis and lung development. This selective intervention may be a future therapeutic strategy to reduce the morbidity and mortality of this devastating condition.
Collapse
Affiliation(s)
- Shahana Perveen
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Kamesh Ayasolla
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Nahla Zagloul
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Hardik Patel
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Kanta Ochani
- Heart and Lung Research Unit, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Orner
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Salerno
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Paul Vaska
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Zhang Zuo
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Yousef Alabed
- Department of Medicinal Chemistry, Center for Molecular Innovation, Manhasset, NY, USA
| | - Mansoor Nasim
- Department of Pathology, Northwell Health, New Hyde Park, NY, USA
| | - Edmund J Miller
- Heart and Lung Research Unit, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mohamed Ahmed
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, and Lilling Family Neonatal Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
23
|
Kovacs G, Dumitrescu D, Barner A, Greiner S, Grünig E, Hager A, Köhler T, Kozlik-Feldmann R, Kruck I, Lammers AE, Mereles D, Meyer A, Meyer J, Pabst S, Seyfarth HJ, Sinning C, Sorichter S, Stähler G, Wilkens H, Held M. Definition, clinical classification and initial diagnosis of pulmonary hypertension: Updated recommendations from the Cologne Consensus Conference 2018. Int J Cardiol 2018; 272S:11-19. [DOI: 10.1016/j.ijcard.2018.08.083] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022]
|
24
|
Kylhammar D, Hesselstrand R, Nielsen S, Scheele C, Rådegran G. Angiogenic and inflammatory biomarkers for screening and follow-up in patients with pulmonary arterial hypertension. Scand J Rheumatol 2018. [DOI: 10.1080/03009742.2017.1378714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D Kylhammar
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - R Hesselstrand
- Department of Clinical Sciences Lund, Rheumatology, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Rheumatology, VO Gastroenterology, Nephrology and Rheumatology, Skåne University Hospital, Lund, Sweden
| | - S Nielsen
- Centre for Inflammation and Metabolism, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - C Scheele
- Centre for Inflammation and Metabolism, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - G Rådegran
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
25
|
Säleby J, Bouzina H, Lundgren J, Rådegran G. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension. SCAND CARDIOVASC J 2017; 51:261-270. [PMID: 28776404 DOI: 10.1080/14017431.2017.1359419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Pulmonary hypertension (PH) is a serious condition where diagnosis often is delayed due to unspecific symptoms. New methods to diagnose and differentiate PH earlier would therefore be of great value. The aim of this study was therefore to evaluate the relationship between circulating angiogenic and inflammatory biomarkers and various hemodynamic variables in relation to different causes of PH. DESIGN Plasma samples from 63 patients at diagnosis were extracted from Lund Cardio Pulmonary Register, separated into pulmonary arterial hypertension (PAH, n = 22), chronic thromboembolic pulmonary hypertension (CTEPH, n = 15) and left heart disease (LHD) with (n = 21) and without (n = 5) PH. Blood samples from eight control subjects devoid of PH were additionally evaluated. Plasma concentrations of angiogenic (PlGF, Tie2, VEGF-A, VEGF-D, bFGF, sFlt-1) and inflammatory (IL-6, IL-8, TNF-α) biomarkers were analysed and related to hemodynamic variables. RESULTS SFlt-1 (p < .004) and VEGF-A (p < .035) were higher in all PH groups compared to controls. TNF-α (p < .030) were elevated in PAH patients in relation to the other PH groups as well as controls. Likewise, plasma VEGF-D (p < .008) were elevated in LHD with PH compared to the other groups with PH and controls. In PAH, higher sFlt-1 concentrations correlated to a worse state of hemodynamics. CONCLUSIONS Our findings indicate that sFlt-1 and VEGF-A may be future tools when discriminating PH from non-PH. Moreover, TNF-α may differentiate PAH and VEGF- D may differentiate LHD with PH, from the other groups with PH, as well as controls. SFlt-1 may furthermore play a role as a future marker of disease severity.
Collapse
Affiliation(s)
- Joanna Säleby
- a Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine , Lund University , Lund , Sweden.,b The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine , Skåne University Hospital , Lund , Sweden
| | - Habib Bouzina
- a Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine , Lund University , Lund , Sweden.,b The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine , Skåne University Hospital , Lund , Sweden
| | - Jakob Lundgren
- a Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine , Lund University , Lund , Sweden.,b The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine , Skåne University Hospital , Lund , Sweden
| | - Göran Rådegran
- a Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine , Lund University , Lund , Sweden.,b The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine , Skåne University Hospital , Lund , Sweden
| |
Collapse
|
26
|
Hwangbo C, Lee HW, Kang H, Ju H, Wiley DS, Papangeli I, Han J, Kim JD, Dunworth WP, Hu X, Lee S, El-Hely O, Sofer A, Pak B, Peterson L, Comhair S, Hwang EM, Park JY, Thomas JL, Bautch VL, Erzurum SC, Chun HJ, Jin SW. Modulation of Endothelial Bone Morphogenetic Protein Receptor Type 2 Activity by Vascular Endothelial Growth Factor Receptor 3 in Pulmonary Arterial Hypertension. Circulation 2017; 135:2288-2298. [PMID: 28356442 DOI: 10.1161/circulationaha.116.025390] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signaling has multiple roles in the development and function of the blood vessels. In humans, mutations in BMP receptor type 2 (BMPR2), a key component of BMP signaling, have been identified in the majority of patients with familial pulmonary arterial hypertension (PAH). However, only a small subset of individuals with BMPR2 mutation develops PAH, suggesting that additional modifiers of BMPR2 function play an important role in the onset and progression of PAH. METHODS We used a combination of studies in zebrafish embryos and genetically engineered mice lacking endothelial expression of Vegfr3 to determine the interaction between vascular endothelial growth factor receptor 3 (VEGFR3) and BMPR2. Additional in vitro studies were performed by using human endothelial cells, including primary lung endothelial cells from subjects with PAH. RESULTS Attenuation of Vegfr3 in zebrafish embryos abrogated Bmp2b-induced ectopic angiogenesis. Endothelial cells with disrupted VEGFR3 expression failed to respond to exogenous BMP stimulation. Mechanistically, VEGFR3 is physically associated with BMPR2 and facilitates ligand-induced endocytosis of BMPR2 to promote phosphorylation of SMADs and transcription of ID genes. Conditional, endothelial-specific deletion of Vegfr3 in mice resulted in impaired BMP signaling responses, and significantly worsened hypoxia-induced pulmonary hypertension. Consistent with these data, we found significant decrease in VEGFR3 expression in pulmonary arterial endothelial cells from human PAH subjects, and reconstitution of VEGFR3 expression in PAH pulmonary arterial endothelial cells restored BMP signaling responses. CONCLUSIONS Our findings identify VEGFR3 as a key regulator of endothelial BMPR2 signaling and a potential determinant of PAH penetrance in humans.
Collapse
Affiliation(s)
- Cheol Hwangbo
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Heon-Woo Lee
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyeseon Kang
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyekyung Ju
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - David S Wiley
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Irinna Papangeli
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jinah Han
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jun-Dae Kim
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - William P Dunworth
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Xiaoyue Hu
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Seyoung Lee
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Omar El-Hely
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Avraham Sofer
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Boryeong Pak
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Laura Peterson
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Suzy Comhair
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Eun Mi Hwang
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jae-Yong Park
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jean-Leon Thomas
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Victoria L Bautch
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Serpil C Erzurum
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyung J Chun
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.).
| | - Suk-Won Jin
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.).
| |
Collapse
|
27
|
Neto-Neves EM, Brown MB, Zaretskaia MV, Rezania S, Goodwill AG, McCarthy BP, Persohn SA, Territo PR, Kline JA. Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:700-712. [PMID: 28183533 DOI: 10.1016/j.ajpath.2016.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 02/03/2023]
Abstract
Our understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments.
Collapse
Affiliation(s)
- Evandro M Neto-Neves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary B Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, Indiana
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Samin Rezania
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian P McCarthy
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Scott A Persohn
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey A Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
28
|
Richter MJ, Tiede SL, Sommer N, Schmidt T, Seeger W, Ghofrani HA, Schermuly R, Gall H. Circulating Angiopoietin-1 Is Not a Biomarker of Disease Severity or Prognosis in Pulmonary Hypertension. PLoS One 2016; 11:e0165982. [PMID: 27802345 PMCID: PMC5089726 DOI: 10.1371/journal.pone.0165982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Background Circulating angiopoietin-1 (Ang-1) has been linked to pulmonary hypertension (PH) in experimental studies. However, the clinical relevance of Ang-1 as a biomarker in PH remains unknown. We aimed to investigate the prognostic and clinical significance of Ang-1 in PH using data from the prospectively recruiting Giessen PH Registry. Methods Patients with suspected PH (without previous specific pulmonary arterial hypertension [PAH] therapy) who underwent initial right heart catheterization (RHC) in our national referral center between July 2003 and May 2012 and who agreed to optional biomarker analysis were included if they were diagnosed with idiopathic PAH, connective tissue disease-associated PAH (CTD-PAH), PH due to left heart disease (PH-LHD), or chronic thromboembolic PH (CTEPH), or if PH was excluded by RHC (non-PH controls). The association of Ang-1 levels with disease severity (6-minute walk distance and pulmonary hemodynamics) was assessed using linear regression, and the impact of Ang-1 levels on transplant-free survival (primary endpoint) and clinical worsening was assessed using Kaplan—Meier curves, receiver operating characteristic (ROC) analyses, and Cox regression. Results 151 patients (39, 39, 32, and 41 with idiopathic PAH, CTD-PAH, PH-LHD, and CTEPH, respectively) and 41 non-PH controls were included. Ang-1 levels showed no significant difference between groups (p = 0.8), and no significant associations with disease severity in PH subgroups (p ≥ 0.07). In Kaplan—Meier analyses, Ang-1 levels (stratified by quartile) had no significant impact on transplant-free survival (p ≥ 0.27) or clinical worsening (p ≥ 0.51) in PH subgroups. Regression models found no significant association between Ang-1 levels and outcomes (p ≥ 0.31). ROC analyses found no significant cut-off that would maximize sensitivity and specificity. Conclusions Despite a strong pathophysiological association in experimental studies, this first comprehensive analysis of Ang-1 in PH subgroups suggests that Ang-1 is not a predictive and clinically relevant biomarker in PH.
Collapse
Affiliation(s)
- Manuel Jonas Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Department of Pneumology, Kerckhoff Heart, Rheuma and Thoracic Center, Bad Nauheim, Germany
| | - Svenja Lena Tiede
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Thomas Schmidt
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Department of Pneumology, Kerckhoff Heart, Rheuma and Thoracic Center, Bad Nauheim, Germany
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Ralph Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- * E-mail:
| |
Collapse
|
29
|
Andersen C, Mellemkjær S, Hilberg O, Bendstrup E. NT-proBNP <95 ng/l can exclude pulmonary hypertension on echocardiography at diagnostic workup in patients with interstitial lung disease. Eur Clin Respir J 2016; 3:32027. [PMID: 27478030 PMCID: PMC4967712 DOI: 10.3402/ecrj.v3.32027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/07/2016] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a serious complication to interstitial lung disease (ILD) and has a poor prognosis. PH is often diagnosed by screening with echocardiography followed by right heart catheterisation. A previous study has shown that a value of NT-pro-brain natriuretic peptide (NT-proBNP) <95 ng/l could be used to rule out PH in patients with ILD. Aim To evaluate this rule-out test for PH in a new cohort of incident patients with ILD. Methods An established database with data from 148 consecutive patients referred from January 2012 to October 2014 was used to identify patients and obtain data from echocardiography, NT-proBNP, diagnosis and lung function. Signs of PH on echocardiography were defined as a tricuspid pressure gradient (TR) ≥40 mmHg, decreased right ventricular systolic function or dilatation. Sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) of NT-proBNP >95 ng/l for signs of PH on echocardiography were calculated. The study was approved by the Danish Health Authority. Results In 118 patients, data from both echocardiography and measurements of NT-proBNP were available. Eleven of these were screened positive for PH on echocardiography. Sensitivity, specificity, NPV and PPV of NT-proBNP <95 ng/l for PH were 100, 44, 16 and 100%, respectively. Furthermore, no patients with left heart failure as the cause of dyspnoea were missed using this cut-off value. Conclusion NT-proBNP <95 ng/l precludes a positive echocardiographic screen for PH in ILD patients at referral for diagnostic workup.
Collapse
Affiliation(s)
- Charlotte Andersen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark;
| | - Søren Mellemkjær
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Hilberg
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Anwar A, Ruffenach G, Mahajan A, Eghbali M, Umar S. Novel biomarkers for pulmonary arterial hypertension. Respir Res 2016; 17:88. [PMID: 27439993 PMCID: PMC4955255 DOI: 10.1186/s12931-016-0396-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/04/2016] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension is a deadly disease characterized by elevated pulmonary arterial pressures leading to right ventricular hypertrophy and failure. The confirmatory gold standard test is the invasive right heart catheterization. The disease course is monitored by pulmonary artery systolic pressure measurement via transthoracic echocardiography. A simple non-invasive test to frequently monitor the patients is much needed. Search for a novel biomarker that can be detected by a simple test is ongoing and many different options are being studied. Here we review some of the new and unique pre-clinical options for potential pulmonary hypertension biomarkers. These biomarkers can be broadly categorized based on their association with endothelial cell dysfunction, inflammation, epigenetics, cardiac function, oxidative stress, metabolism,extracellular matrix, and volatile compounds in exhaled breath condensate. A biomarker that can be detected in blood, urine or breath condensate and correlates with disease severity, progression and response to therapy may result in significant cost reduction and improved patient outcomes.
Collapse
Affiliation(s)
- Anjum Anwar
- Departmentof Anesthesiology, Stanford University, Palo Alto, CA, USA
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Rameh V, Kossaify A. Role of Biomarkers in the Diagnosis, Risk Assessment, and Management of Pulmonary Hypertension. Biomark Insights 2016; 11:85-9. [PMID: 27385910 PMCID: PMC4920202 DOI: 10.4137/bmi.s38323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/03/2022] Open
Abstract
Pulmonary hypertension is a severe and debilitating disease with no definite cure, and the domain of targeted therapies is a promising field for better management of this severe condition. The disease comprises pulmonary arterial remodeling, hypoxia, endothelial dysfunction, and inflammation, with subsequent organ damage including right heart and liver dysfunction. Biomarkers have a valuable role at different levels of the disease, from diagnosis to risk assessment and management, in order to decrease the burden of the disease in terms of both morbidity and mortality.
Collapse
Affiliation(s)
- Vanessa Rameh
- Echocardiography Unit, Cardiology division, University Hospital Notre Dame des Secours, Byblos, Lebanon
| | - Antoine Kossaify
- Echocardiography Unit, Cardiology division, University Hospital Notre Dame des Secours, Byblos, Lebanon
| |
Collapse
|
32
|
Lala A, Pinney SP. Recognizing Pulmonary Hypertension and Right Ventricular Dysfunction in Heart Failure. Prog Cardiovasc Dis 2016; 58:416-24. [PMID: 26780235 DOI: 10.1016/j.pcad.2016.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Pulmonary hypertension (PH) in the setting of left heart disease (LHD) or heart failure (HF) is the most common form of PH, yet its prevalence is underappreciated. Varying terminology possibly leads to misconceptions in pathophysiology, diagnosis and management. The accurate diagnosis of PH due to LHD is contingent upon hemodynamic assessment via right heart catheterization, however due to limitations in access, comprehensive echocardiography and integrative scoring systems are frequently used. When present in the setting of PH due to LHD, right ventricular dysfunction (RVD) confers a poor clinical prognosis. The management of RVD is directed towards treating underlying HF and/or valvular disease. Implantable hemodynamic monitors may offer opportunity to obtain longitudinal information to increase diagnostic accuracy as well as monitor the effect of treatment of PH in the setting of HF with and without the presence of RVD.
Collapse
Affiliation(s)
- Anuradha Lala
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Hospital, New York, NY.
| | - Sean P Pinney
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Hospital, New York, NY
| |
Collapse
|