1
|
Pietranis KA, Kostro AM, Dzięcioł-Anikiej Z, Moskal-Jasińska D, Kuryliszyn-Moskal A. Impact of COVID-19 on Diaphragmatic Function: Understanding Multiorgan Involvement and Long-Term Consequences. J Clin Med 2024; 13:6493. [PMID: 39518632 PMCID: PMC11546792 DOI: 10.3390/jcm13216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The COVID-19 pandemic has brought significant attention to the respiratory system, with much focus on lung-related disorders. However, the diaphragm, a crucial component of respiratory physiology, has not been adequately studied, especially in the context of long COVID. This review explores the multipotential role of the diaphragm in both respiratory health and disease, emphasizing its involvement in long-term complications following SARS-CoV-2 infection. The diaphragm's fundamental role in respiratory physiology and its impact on balance and posture control, breathing patterns, and autonomic nervous system regulation are discussed. This review examines complications arising from COVID-19, highlighting the diaphragm's involvement in neurological, musculoskeletal, and inflammatory responses. Particular attention is given to the neuroinvasive impact of SARS-CoV-2, the inflammatory response, and the direct viral effects on the diaphragm. The diaphragm's role in long COVID is explored, with a focus on specific symptoms such as voice disorders, pelvic floor dysfunction, and sleep disturbances. Diagnostic challenges, current methods for assessing diaphragmatic dysfunction, and the complexities of differentiating it from other conditions are also explored. This article is the first to comprehensively address diaphragmatic dysfunction resulting from COVID-19 and long COVID across various physiological and pathological aspects, offering a new perspective on its diagnosis and treatment within a multisystem context.
Collapse
Affiliation(s)
- Katarzyna Anna Pietranis
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| | - Amanda Maria Kostro
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| | - Zofia Dzięcioł-Anikiej
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| | - Diana Moskal-Jasińska
- Department of Clinical Phonoaudiology and Speech Therapy, Medical University of Bialystok, 37 Szpitalna St., 15-295 Bialystok, Poland;
| | - Anna Kuryliszyn-Moskal
- Department of Rehabilitation, Medical University of Bialystok, 24A M. Skłodowskiej-Curie St., 15-276 Bialystok, Poland; (A.M.K.); (Z.D.-A.); (A.K.-M.)
| |
Collapse
|
2
|
Watanabe S, Sekiguchi K, Suehiro H, Yoshikawa M, Noda Y, Kamiyama N, Matsumoto R. Decreased diaphragm moving distance measured by ultrasound speckle tracking reflects poor prognosis in amyotrophic lateral sclerosis. Clin Neurophysiol Pract 2024; 9:252-260. [PMID: 39534515 PMCID: PMC11554585 DOI: 10.1016/j.cnp.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Decreased cephalocaudal diaphragm movement may indicate respiratory dysfunction in amyotrophic lateral sclerosis (ALS). We aimed to evaluate diaphragm function in ALS using ultrasound speckle tracking, an image-analysis technology that follows similar pixel patterns. Methods We developed an offline application that tracks pixel patterns of recorded ultrasound video images using speckle-tracking methods. Ultrasonography of the diaphragm movement during spontaneous quiet respiration was performed on 19 ALS patients and 21 controls to measure the diaphragm moving distance (DMD) in the cephalocaudal direction during a single respiration. We compared respiratory function measures and analyzed the relationship between the clinical profiles and DMD. Results DMD was significantly lower in ALS patients than in the control group (0.6 ± 1.4 mm vs 2.2 ± 2.2 mm, p < 0.01) and positively correlated with phrenic nerve compound motor action potential amplitude (R = 0.63, p = 0.01). DMD was negatively correlated with the change in the ALS Functional Rating Scale-Revised scores per month after the exam (R = -0.61, p = 0.02), and those with a larger rate of decline had a significantly lower DMD (p = 0.03). Conclusions Diaphragm ultrasound speckle tracking enabled the detection of diaphragm dysfunction in ALS. Significance Diaphragm ultrasound speckle tracking may be useful for predicting prognosis.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neurology, Kobe Red Cross Hospital, Kobe, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirotomo Suehiro
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaaki Yoshikawa
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neurology, Saga University Faculty of Medicine, Saga, Japan
| | - Yoshikatsu Noda
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Spiliopoulos KC, Lykouras D, Veltsista D, Skaramagkas V, Karkoulias K, Tzouvelekis A, Chroni E. The utility of diaphragm ultrasound thickening indices for assessing respiratory decompensation in amyotrophic lateral sclerosis. Muscle Nerve 2023; 68:850-856. [PMID: 37814924 DOI: 10.1002/mus.27980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION/AIMS Amyotrophic lateral sclerosis (ALS) leads to diaphragmatic weakness at some point during its course, which is a major cause of respiratory insufficiency. The aim of this study was to evaluate ultrasound-based measures for assessing the diaphragmatic competency and the need for ventilatory support. METHODS Twenty-six subjects with ALS and 12 healthy controls were enrolled. All participants underwent B-mode diaphragm ultrasound (DUS). Diaphragm thickness and thickening indices were recorded. In the subjects with ALS, further assessments included functional scales and spirometry. We investigated the diagnostic accuracy of DUS thickening indices in predicting diaphragmatic dysfunction and the correlation between clinical, spirometric, and DUS data. RESULTS Significant relationships were found between forced vital capacity and all diaphragmatic thickening indices. Similarly, all diaphragmatic thickening indices correlated with both Milano Torino staging and disease progression rate. Only thickening fraction (TFdi) correlated with score on the revised ALS Functional Rating Scale (r = 0.459, P = .024). TFdi had better accuracy in predicting diaphragmatic dysfunction (area under the curve [AUC] = 0.839, 95% confidence interval [CI] 0.643 to 0.953) and the need for initiation of noninvasive ventilation (NIV) (AUC = 0.989, 95% CI 0.847 to 1.000) compared with the other indices. A TFdi cut-off point of 0.50 was a sensitive threshold to consider NIV. DISCUSSION DUS successfully identifies diaphragmatic dysfunction in ALS, being a valuable accessory modality for investigating respiratory symptoms. TFdi was found to be the most useful DUS index, which encourages further investigation.
Collapse
Affiliation(s)
| | - Dimosthenis Lykouras
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Dimitra Veltsista
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasileios Skaramagkas
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Greece
| | - Kiriakos Karkoulias
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Soták M, Tyll T, Roubík K. Temporary phrenic nerve stimulated patients: What is the role of ultrasound examination? Artif Organs 2023; 47:464-469. [PMID: 36398921 DOI: 10.1111/aor.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prolonged mechanical ventilation caused by ventilator-induced diaphragm dysfunction (VIDD) is a serious problem in critically ill patients. Identification of patients who will have difficulty weaning from ventilation along with attempts to reduce total time on mechanical ventilation is some of the aims of intensive care medicine. OBSERVATIONS This article briefly summarizes current options for temporary phrenic nerve stimulation therapy in an effort to keep the diaphragm active as direct prevention and treatment of ventilator-associated diaphragmatic dysfunction in patients on mechanical ventilation. The results of feasibility studies using different approaches are promising but so far, the clinical relevance is low. One important question is which tool would reliably identify early signs of diaphragmatic dysfunction and also be useful in guiding therapy. The authors present a brief overview of the current options considering the advantages and disadvantages of the available examination modalities. Despite the fact that current data point out some limitations of ultrasound examination, we believe that it still has a unique position in the bedside examination of critically ill patients on mechanical ventilation. CONCLUSION Temporary phrenic nerve stimulation, regardless of the specific approach used, has the potential to directly treat or reverse VIDD, and ultrasound examination plays an important role in the comprehensive care of critically ill patients.
Collapse
Affiliation(s)
- Michal Soták
- Military University Hospital Prague, Department of Anesthesiology and Intensive Care, 1st Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic.,Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tomáš Tyll
- Military University Hospital Prague, Department of Anesthesiology and Intensive Care, 1st Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic
| | - Karel Roubík
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Sales de Campos P, Olsen WL, Wymer JP, Smith BK. Respiratory therapies for Amyotrophic Lateral Sclerosis: A state of the art review. Chron Respir Dis 2023; 20:14799731231175915. [PMID: 37219417 PMCID: PMC10214054 DOI: 10.1177/14799731231175915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition noteworthy for upper and lower motor neuron death. Involvement of respiratory motor neuron pools leads to progressive pathology. These impairments include decreases in neural activation and muscle coordination, progressive airway obstruction, weakened airway defenses, restrictive lung disease, increased risk of pulmonary infections, and weakness and atrophy of respiratory muscles. These neural, airway, pulmonary, and neuromuscular changes deteriorate integrated respiratory-related functions including sleep, cough, swallowing, and breathing. Ultimately, respiratory complications account for a large portion of morbidity and mortality in ALS. This state-of-the-art review highlights applications of respiratory therapies for ALS, including lung volume recruitment, mechanical insufflation-exsufflation, non-invasive ventilation, and respiratory strength training. Therapeutic acute intermittent hypoxia, an emerging therapeutic tool for inducing respiratory plasticity will also be introduced. A focus on emerging evidence and future work underscores the common goal to continue to improve survival for patients living with ALS.
Collapse
Affiliation(s)
- Priscila Sales de Campos
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Wendy L Olsen
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL, USA
| | - James P Wymer
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Boussuges A, Rives S, Finance J, Chaumet G, Vallée N, Risso JJ, Brégeon F. Ultrasound Assessment of Diaphragm Thickness and Thickening: Reference Values and Limits of Normality When in a Seated Position. Front Med (Lausanne) 2021; 8:742703. [PMID: 34778304 PMCID: PMC8579005 DOI: 10.3389/fmed.2021.742703] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Diagnosing diaphragm dysfunction in the absence of complete paralysis remains difficult. The aim of the present study was to assess the normal values of the thickness and the inspiratory thickening of both hemidiaphragms as measured by ultrasonography in healthy volunteers while in a seated position. Methods: Healthy volunteers with a normal pulmonary function test were recruited. The diaphragmatic thickness was measured on both sides at the zone of apposition of the diaphragm to the rib cage during quiet breathing at end-expiration, end-inspiration, and after maximal inspiration. The thickening ratio, the thickening fraction, and the thickness at end-inspiration divided by the thickness at deep breathing were determined. The mean values and the lower and upper limits of normal were determined for men and women. Results: 200 healthy volunteers (100 men and 100 women) were included in the study. The statistical analysis revealed that women had a thinner hemidiaphragm than men on both sides and at the various breathing times studied. The lower limit of normality of the diaphragm thickness measured at end-expiration was estimated to be 1.3 mm in men and 1.1 mm in women, on both sides. The thickening fraction did not differ significantly between men and women. In men, it ranged from 60 to 260% on the left side and from 57 to 200% on the right side. In women, it ranged from 58 to 264% on the left side and from 60 to 229% on the right side. The lower limits of normality of the thickening fraction were determined to be 40 and 39% in men and 39 and 48% in women for the right and left hemidiaphragms, respectively. The upper limit for normal of the mean of both sides of the ratio thickness at end-inspiration divided by the thickness at deep breathing was determined to be 0.78 in women and 0.79 in men. Conclusion: The normal values of thickness and the indexes of diaphragmatic function should help clinicians with detecting diaphragm atrophy and dysfunction.
Collapse
Affiliation(s)
- Alain Boussuges
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France.,Center for Cardiovascular and Nutrition Research (C2VN), Aix Marseille Université, INSERM, INRAE, Marseille, France.,Service d'Explorations Fonctionnelles Respiratoires, CHU Nord, Assistance Publique des Hôpitaux de Marseille et Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Sarah Rives
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France.,Center for Cardiovascular and Nutrition Research (C2VN), Aix Marseille Université, INSERM, INRAE, Marseille, France
| | - Julie Finance
- Service d'Explorations Fonctionnelles Respiratoires, CHU Nord, Assistance Publique des Hôpitaux de Marseille et Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Nicolas Vallée
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France
| | - Jean-Jacques Risso
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France
| | - Fabienne Brégeon
- Service d'Explorations Fonctionnelles Respiratoires, CHU Nord, Assistance Publique des Hôpitaux de Marseille et Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Bordoni B, Walkowski S, Escher A, Ducoux B. The Importance of the Posterolateral Area of the Diaphragm Muscle for Palpation and for the Treatment of Manual Osteopathic Medicine. Complement Med Res 2021; 29:74-82. [PMID: 34237723 DOI: 10.1159/000517507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
The eupneic act in healthy subjects involves a coordinated combination of functional anatomy and neurological activation. Neurologically, a central pattern generator, the components of which are distributed between the brainstem and the spinal cord, are hypothesized to drive the process and are modeled mathematically. A functionally anatomical approach is easier to understand although just as complex. Osteopathic manipulative treatment (OMT) is part of osteopathic medicine, which has many manual techniques to approach the human body, trying to improve the patient's homeostatic response. The principle on which OMT is based is the stimulation of self-healing processes, researching the intrinsic physiological mechanisms of the person, taking into consideration not only the physical aspect, but also the emotional one and the context in which the patient lives. This article reviews how the diaphragm muscle moves, with a brief discussion on anatomy and the respiratory neural network. The goal is to highlight the critical issues of OMT on the correct positioning of the hands on the posterolateral area of the diaphragm around the diaphragm, trying to respect the existing scientific anatomical-physiological data, and laying a solid foundation for improving the data obtainable from future research. The correctness of the position of the operator's hands in this area allows a more effective palpatory perception and, consequently, a probably more incisive result on the respiratory function.
Collapse
Affiliation(s)
- Bruno Bordoni
- Department of Cardiology, Foundation Don Carlo Gnocchi IRCCS, Institute of Hospitalization and Care with Scientific Address, Milan, Italy
| | - Stevan Walkowski
- Osteopathic Manipulative Medicine, Heritage College of Osteopathic Medicine-Dublin, Dublin, Ohio, USA
| | - Allan Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bruno Ducoux
- Osteopathy, Formation Recherche Ostéopathie Prévention (FROP), Bordeaux, France
| |
Collapse
|
8
|
van Doorn JLM, Pennati F, Hansen HHG, van Engelen BGM, Aliverti A, Doorduin J. Respiratory muscle imaging by ultrasound and MRI in neuromuscular disorders. Eur Respir J 2021; 58:13993003.00137-2021. [PMID: 33863737 DOI: 10.1183/13993003.00137-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022]
Abstract
Respiratory muscle weakness is common in neuromuscular disorders and leads to significant respiratory difficulties. Therefore, reliable and easy assessment of respiratory muscle structure and function in neuromuscular disorders is crucial. In the last decade, ultrasound and MRI emerged as promising imaging techniques to assess respiratory muscle structure and function. Respiratory muscle imaging directly measures the respiratory muscles and, in contrast to pulmonary function testing, is independent of patient effort. This makes respiratory muscle imaging suitable to use as tool in clinical respiratory management and as outcome parameter in upcoming drug trials for neuromuscular disorders, particularly in children. In this narrative review, we discuss the latest studies and technological developments in imaging of the respiratory muscles by US and MR, and its clinical application and limitations. We aim to increase understanding of respiratory muscle imaging and facilitate its use as outcome measure in daily practice and clinical trials.
Collapse
Affiliation(s)
- Jeroen L M van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Hendrik H G Hansen
- Department of Medical Imaging, Medical Ultrasound Imaging Center (MUSIC), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Hadda V, Kumar R, Tiwari P, Mittal S, Kalaivani M, Madan K, Mohan A, Guleria R. Decline in diaphragm thickness and clinical outcomes among patients with sepsis. Heart Lung 2021; 50:284-291. [PMID: 33383547 DOI: 10.1016/j.hrtlng.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The decline in the diaphragm thickness is common among patients with sepsis. The purpose of this study is to examine the relationship between the decline in diaphragm thickness as assessed by ultrasonography and various outcomes in septic patients. METHODS This prospective study included patients with sepsis whose diaphragm thickness was measured during inspiration (DTinsp) and expiration (DTexp) using ultrasonography on days 1, 3, 5, 7, 10, and 14 of admission in the ICU and thereafter weekly measurements until discharge or death. RESULTS The study included 70 (45 male) patients with sepsis [mean (SD) age = 55.91(14.08) years]. The mean (SD) DTinsp and DTexp (mm) on day-1 were 2.84 (0.32) and 2.33(0.27), respectively. During the hospital stay, there was a decline in DTinsp and DTexp. The decline in DTinsp and DTexp on days 3, 5, and 7 was significantly higher among patients with difficult weaning, non-survivors, and worse 90-day outcomes. Early decline (from day-1 to day-3) in diaphragm thickness predicted difficult weaning, in-hospital mortality, and worse 90-day outcome. CONCLUSIONS Among patients with sepsis, the decline in diaphragm thickness detected by ultrasonography is associated with worse in-hospital and short-term post-discharge outcomes. The role of early decline in diaphragm thickness on ultrasonography as a marker of worse outcomes needs further evaluation.
Collapse
Affiliation(s)
- Vijay Hadda
- Associate Professor, Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Rohit Kumar
- Consultant, Department of Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India.
| | - Pawan Tiwari
- Assistant Professor, Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Saurabh Mittal
- Assistant Professor, Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Mani Kalaivani
- Associate Professor, Biostatistics, All India Institute of Medical Sciences, New Delhi, India.
| | - Karan Madan
- Associate Professor, Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Anant Mohan
- Professor & Head, Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Randeep Guleria
- Director & Professor, Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Diaphragm ultrasound in the diagnosis of respiratory dysfunction in patients with amyotrophic lateral sclerosis. Rev Neurol (Paris) 2020; 177:639-646. [PMID: 33279221 DOI: 10.1016/j.neurol.2020.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE In this study, we aimed to select the best diaphragm ultrasonography (DUS) parameter as an alternative index for the diagnosis of lung function impairment in amyotrophic lateral sclerosis (ALS). METHODS Twenty-nine patients with ALS and 15 healthy subjects were enrolled in the study. DUS, lung function tests, phrenic nerve conduction study and arterial blood gas analysis were performed. RESULTS Patients with respiratory dysfunction had a significantly lower level of ΔTmax than those without (P=0.039). Significant correlations (P<0.05) were found between forced vital capacity (FVC) and Tdi-ins (r=0.665, P<0.0001) and ΔTmax (r=-0.748, P<0.0001) and Δins-exp (r=0.627, P<0.0001) and ΔTdi (r=0.485, P<0.0001). Receiver Operating Curves analysis demonstrated that ΔTmax (AUC=0.76, P=0.044) had a better overall accuracy for detection of respiratory dysfunction compared with Tdi-ins (AUC=0.27, P=0.067), Δins-exp (AUC=0.312, P=0.139), and ΔTdi (AUC=0.38, P=0.359). CONCLUSION ΔTmax is the most valuable DUS index in the diagnosis of diaphragmatic dysfunction. SIGNIFICANCE DUS can provide functional and structural information of diaphragm and help to diagnose diaphragmatic dysfunction in ALS.
Collapse
|
11
|
|
12
|
Guimarães-Costa R, Niérat MC, Rivals I, Morélot-Panzini C, Romero NB, Menegaux F, Salachas F, Gonzalez-Bermejo J, Similowski T, Bruneteau G. Implanted Phrenic Stimulation Impairs Local Diaphragm Myofiber Reinnervation in Amyotrophic Lateral Sclerosis. Am J Respir Crit Care Med 2019; 200:1183-1187. [PMID: 31291123 DOI: 10.1164/rccm.201903-0653le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Raquel Guimarães-Costa
- Assistance Publique-Hôpitaux de ParisParis, France.,Institut du Cerveau et de la Moelle EpinièreParis, France
| | | | - Isabelle Rivals
- Sorbonne UniversitéParis, Franceand.,PSL Research UniversityParis, France
| | | | | | | | | | | | - Thomas Similowski
- Assistance Publique-Hôpitaux de ParisParis, France.,Sorbonne UniversitéParis, Franceand
| | - Gaëlle Bruneteau
- Assistance Publique-Hôpitaux de ParisParis, France.,Sorbonne UniversitéParis, Franceand
| | | |
Collapse
|
13
|
Swindell WR, Kruse CPS, List EO, Berryman DE, Kopchick JJ. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J Transl Med 2019; 17:170. [PMID: 31118040 PMCID: PMC6530130 DOI: 10.1186/s12967-019-1909-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a debilitating disease with few treatment options. Progress towards new therapies requires validated disease biomarkers, but there is no consensus on which fluid-based measures are most informative. METHODS This study analyzed microarray data derived from blood samples of patients with ALS (n = 396), ALS mimic diseases (n = 75), and healthy controls (n = 645). Goals were to provide in-depth analysis of differentially expressed genes (DEGs), characterize patient-to-patient heterogeneity, and identify candidate biomarkers. RESULTS We identified 752 ALS-increased and 764 ALS-decreased DEGs (FDR < 0.10 with > 10% expression change). Gene expression shifts in ALS blood broadly resembled acute high altitude stress responses. ALS-increased DEGs had high exosome expression, were neutrophil-specific, associated with translation, and overlapped significantly with genes near ALS susceptibility loci (e.g., IFRD1, TBK1, CREB5). ALS-decreased DEGs, in contrast, had low exosome expression, were erythroid lineage-specific, and associated with anemia and blood disorders. Genes encoding neurofilament proteins (NEFH, NEFL) had poor diagnostic accuracy (50-53%). However, support vector machines distinguished ALS patients from ALS mimics and controls with 87% accuracy (sensitivity: 86%, specificity: 87%). Expression profiles were heterogeneous among patients and we identified two subgroups: (i) patients with higher expression of IL6R and myeloid lineage-specific genes and (ii) patients with higher expression of IL23A and lymphoid-specific genes. The gene encoding copper chaperone for superoxide dismutase (CCS) was most strongly associated with survival (HR = 0.77; P = 1.84e-05) and other survival-associated genes were linked to mitochondrial respiration. We identify a 61 gene signature that significantly improves survival prediction when added to Cox proportional hazard models with baseline clinical data (i.e., age at onset, site of onset and sex). Predicted median survival differed 2-fold between patients with favorable and risk-associated gene expression signatures. CONCLUSIONS Peripheral blood analysis informs our understanding of ALS disease mechanisms and genetic association signals. Our findings are consistent with low-grade neutrophilia and hypoxia as ALS phenotypes, with heterogeneity among patients partly driven by differences in myeloid and lymphoid cell abundance. Biomarkers identified in this study require further validation but may provide new tools for research and clinical practice.
Collapse
Affiliation(s)
- William R. Swindell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH 45236 USA
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Edward O. List
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - Darlene E. Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - John J. Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
14
|
Lechtzin N. Predicting respiratory failure in amyotrophic lateral sclerosis: recruiting a few good pulmonologists. Eur Respir J 2019; 53:53/4/1900360. [PMID: 31000666 DOI: 10.1183/13993003.00360-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/03/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Noah Lechtzin
- Dept of Medicine, Division of Pulmonary, Critical Care and Sleep, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|