1
|
Choi EA, Kim HJ, Kim Y, Jang HB, Hwang YI, Kim YY, Yoo KH, Lee HJ. Epigenetic profiles integrated with transcriptomic reveal the difference between COPD and PRISm in KOCOSS-NIH. Funct Integr Genomics 2025; 25:86. [PMID: 40205238 PMCID: PMC11982123 DOI: 10.1007/s10142-025-01593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
In 2023, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) introduced a provision regarding preserved ratio-impaired spirometry (PRISm), a presumed pre-stage of Chronic Obstructive Pulmonary Disease (COPD), into the COPD guidelines. However, further research in this area is needed. Our study aimed to investigate the epigenetic differences between PRISm and COPD. EWAS (n = 572) and RNA-sequencing (n = 60) were performed on blood samples from the COPD registry, and EWAS was replicated in the KoGES cohort data (n = 98). Our findings revealed significant epigenetic differences between patients with PRISm and COPD. 39,980 CpG-sites displayed differential methylation between PRISm and COPD. Seven gene regions-EEF1A2, EMP2, EPCAM, MTSS1L, ARHGEF10, HYDIN, and FADS2 were not only differentially methylated but also exhibited differential expression. The consistency of differential methylation of CpG sites in five genes, excluding ARHGEF10 and MTSS1L, was replicated in the KoGES study, affirming the distinction between COPD and PRISm. Our research identified seven gene regions as critical contributors related to the modulation of gene expression, including CpG sites that differentiate COPD from PRISm. These results highlight the significance of DNA methylation changes in distinguishing PRISm from COPD and shed light on potential mechanisms by which methylation alterations impact lung function.
Collapse
Affiliation(s)
- Eun-A Choi
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong-Eup, Heungdeok-Gu, Cheongju, Republic of Korea
| | - Hyun Jeong Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong-Eup, Heungdeok-Gu, Cheongju, Republic of Korea.
| | - Youlim Kim
- Division of Pulmonary and Allergy Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Han Byul Jang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong-Eup, Heungdeok-Gu, Cheongju, Republic of Korea
| | - Yong Il Hwang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Young-Youl Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong-Eup, Heungdeok-Gu, Cheongju, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Allergy Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Hye-Ja Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong-Eup, Heungdeok-Gu, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Ragusa R, Bufano P, Tognetti A, Laurino M, Caselli C. Recent Evidences of Epigenetic Alterations in Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review. Int J Mol Sci 2025; 26:2571. [PMID: 40141213 PMCID: PMC11942187 DOI: 10.3390/ijms26062571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous inflammatory condition characterized by progressive airflow limitation, which may be caused by genetic and environmental factors. Furthermore, epigenetic mechanisms could provide valuable insights into the complex interactions between environment and genes and subsequent development of the disease. The aim of this study is to provide a systematic review of the latest knowledge on epigenetic modifications that characterize COPD, summarizing epigenetic factors that could serve as potential novel biomarkers and therapeutic targets for the treatment of COPD patients. We queried the PubMed and Scopus electronic databases with specific keywords, in May 2024, according to the PRISMA guidelines, and articles were included if they met all the inclusion criteria and survived a quality assessment. We identified 5414 publications in our systematic search. Among them, only 51 articles met the criteria of COPD-associated epigenetic modifications in human patients compared to the control group. Eight studies described DNA methylation, one study histone modifications, and forty-two studies non-coding RNAs. Apoptosis and inflammatory pathways have been found to be the main mechanisms regulated by epigenetic elements in COPD patients. In addition, non-coding RNAs may be useful as biomarkers or therapeutic targets of pulmonary disease. Future studies will be needed to confirm the role of epigenetic elements associated with COPD.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
| | - Pasquale Bufano
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy
| | | | - Marco Laurino
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
- Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| |
Collapse
|
3
|
Ritzmann F, Brand M, Bals R, Wegmann M, Beisswenger C. Role of Epigenetics in Chronic Lung Disease. Cells 2025; 14:251. [PMID: 39996724 PMCID: PMC11853132 DOI: 10.3390/cells14040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetics regulates gene expression and thus cellular processes that underlie the pathogenesis of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Environmental factors (e.g., air pollution, smoking, infections, poverty), but also conditions such as gastroesophageal reflux, induce epigenetic changes long before lung disease is diagnosed. Therefore, epigenetic signatures have the potential to serve as biomarkers that can be used to identify younger patients who are at risk for premature loss of lung function or diseases such as IPF. Epigenetic analyses also contribute to a better understanding of chronic lung disease. This can be used directly to improve therapies, as well as for the development of innovative drugs. Here, we highlight the role of epigenetics in the development and progression of chronic lung disease, with a focus on DNA methylation.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| | - Michelle Brand
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| |
Collapse
|
4
|
DeMeo DL. Sex, Gender, and COPD. Annu Rev Physiol 2025; 87:471-490. [PMID: 39586033 DOI: 10.1146/annurev-physiol-042022-014322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Sex and gender have emerged as critical considerations relevant to chronic obstructive pulmonary disease (COPD). Sex differences in lung development and physiologic response to hormones and environmental exposures influence COPD susceptibility, progression, severity, morbidity, and mortality. Gender has been poorly measured in the context of COPD, and gendered exposures further impact biology. The hormonal milieu is critical to study across the life course. Differences in immunity and inflammation likely impact sex- and gender-related features of COPD. Emerging evidence from multiple types of omics data is revealing new genes and pathways to consider as relevant to sex- and gender-divergent features of COPD. Much research to date has focused on autosomes, but the growing awareness of a role for allosomes is highlighting knowledge gaps. Reproductive aging impacts lung function and requires more investigation. Network medicine holds promise as an approach to sex and gender omics to uncover drivers of COPD in men and women.
Collapse
Affiliation(s)
- Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
5
|
Eriksson Ström J, Kebede Merid S, Linder R, Pourazar J, Lindberg A, Melén E, Behndig AF. Airway MMP-12 and DNA methylation in COPD: an integrative approach. Respir Res 2025; 26:10. [PMID: 39794761 PMCID: PMC11724436 DOI: 10.1186/s12931-024-03088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND In COPD, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors [tissue inhibitors of metalloproteinases (TIMPs)] is shifted towards excessive degradation, reflected in bronchoalveolar lavage (BAL) as increased MMP concentrations. Because of their critical role in lung homeostasis, MMP activity is tightly regulated, but to what extent this regulation occurs through epigenetic mechanisms remains unknown. METHODS To explore the interplay between MMPs, TIMPs, and DNA methylation (DNAm) we (1) analysed MMP-9, -12, and TIMP-1 concentrations in BAL fluid, and profiled DNAm in BAL cells from 18 COPD and 30 control subjects, (2) estimated protein-COPD relationships using multivariable regression, (3) identified protein quantitative trait methylation loci (pQTMs) with COPD as a potential modifier in a separate interaction model, and (4) integrated significant interactions with a previous COPD GWAS meta-analysis. RESULTS COPD was associated with higher levels of BAL MMP-12 (p = 0.016) but not with MMP-9 or TIMP-1. Further examination of MMP-12 identified association with DNAm at 34 loci (pQTMs), with TGFBR2 (p = 2.25 × 10-10) and THBS4 (p = 1.11 × 10-9) among the top ten pQTM genes. The interaction model identified 66 sites where the DNAm-MMP-12 association was significantly different in COPD compared to controls. Of these, one was colocalized with SNPs previously associated with COPD. CONCLUSIONS Our findings indicate that airway MMP-12 may partially be regulated by epigenetic mechanisms and that this regulation is disrupted in COPD. Furthermore, integration with COPD GWAS data suggests that this dysregulation is influenced by a combination of environmental factors, disease processes, and genetics, with the latter potentially playing a lesser role.
Collapse
Affiliation(s)
- Jonas Eriksson Ström
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden.
| | - Simon Kebede Merid
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Robert Linder
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs Children's Hospital, Stockholm, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
6
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
7
|
Hopkinson NS, Bush A, Allinson JP, Faner R, Zar HJ, Agustí A. Early Life Exposures and the Development of Chronic Obstructive Pulmonary Disease across the Life Course. Am J Respir Crit Care Med 2024; 210:572-580. [PMID: 38861321 DOI: 10.1164/rccm.202402-0432pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Affiliation(s)
- Nicholas S Hopkinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - James P Allinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | - Rosa Faner
- Unitat Immunologia, Departament de Biomedicina, Universitat de Barcelona, Fundació Clinic Recerca Biomedica-IDIBAPS, Centro Investigación Biomedica en Red, Barcelona, Spain
| | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross Children's Hospital, University of Cape Town, Cape Town, South Africa; and
| | - Alvar Agustí
- Hospital Clinic Barcelona, Universitat de Barcelona, Fundació Clinic Recerca Biomedica-IDIBAPS, Centro Investigación Biomedica en Red, Barcelona, Spain
| |
Collapse
|
8
|
Dharmage SC, Faner R, Agustí A. Treatable traits in pre-COPD: Time to extend the treatable traits paradigm beyond established disease. Respirology 2024; 29:551-562. [PMID: 38862131 DOI: 10.1111/resp.14760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
To date, the treatable traits (TTs) approach has been applied in the context of managing diagnosed diseases. TTs are clinical characteristics and risk factors that can be identified clinically and/or biologically, and that merit treatment if present. There has been an exponential increase in the uptake of this approach by both researchers and clinicians. Realizing the potential of the TTs approach to pre-clinical disease, this expert review proposes that it is timely to consider acting on TTs present before a clinical diagnosis is made, which might help to prevent development of the full disease. Such an approach is ideal for diseases where there is a long pre-clinical phase, such as in chronic obstructive pulmonary disease (COPD). The term 'pre-COPD' has been recently proposed to identify patients with respiratory symptoms and/or structural or functional abnormalities without airflow limitation. They may eventually develop airflow limitation with time but patients with pre-COPD are likely to have traits that are already treatable. This review first outlines the contribution of recently generated knowledge into lifetime lung function trajectories and the conceptual framework of 'GETomics' to the field of pre-COPD. GETomics is a dynamic and cumulative model of interactions between genes and the environment throughout the lifetime that integrates information from multi-omics to understand aetiology and mechanisms of diseases. This review then discusses the current evidence on potential TTs in pre-COPD patients and makes recommendations for practice and future research. At a broader level, this review proposes that introducing the TTs in pre-COPD may help reenergize the preventive approaches to health and diseases.
Collapse
Affiliation(s)
- Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Faner
- Universitat de Barcelona, Biomedicine Department. Immunology Unit, Barcelona, Spain
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
| | - Alvar Agustí
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
- Cathedra Salud Respiratoria, Department of Medicine, University of Barcelona, Barcelona, Spain
- Pulmonary Division, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Chatziparasidis G, Chatziparasidi MR, Kantar A, Bush A. Time-dependent gene-environment interactions are essential drivers of asthma initiation and persistence. Pediatr Pulmonol 2024; 59:1143-1152. [PMID: 38380964 DOI: 10.1002/ppul.26935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Asthma is a clinical syndrome caused by heterogeneous underlying mechanisms with some of them having a strong genetic component. It is known that up to 82% of atopic asthma has a genetic background with the rest being influenced by environmental factors that cause epigenetic modification(s) of gene expression. The interaction between the gene(s) and the environment has long been regarded as the most likely explanation of asthma initiation and persistence. Lately, much attention has been given to the time frame the interaction occurs since the host response (immune or biological) to environmental triggers, differs at different developmental ages. The integration of the time variant into asthma pathogenesis is appearing to be equally important as the gene(s)-environment interaction. It seems that, all three factors should be present to trigger the asthma initiation and persistence cascade. Herein, we introduce the importance of the time variant in asthma pathogenesis and emphasize the long-term clinical significance of the time-dependent gene-environment interactions in childhood.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, Volos, Greece
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamashi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, UK
| |
Collapse
|
10
|
Benincasa G, Napoli C, DeMeo DL. Transgenerational Epigenetic Inheritance of Cardiovascular Diseases: A Network Medicine Perspective. Matern Child Health J 2024; 28:617-630. [PMID: 38409452 DOI: 10.1007/s10995-023-03886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION The ability to identify early epigenetic signatures underlying the inheritance of cardiovascular risk, including trans- and intergenerational effects, may help to stratify people before cardiac symptoms occur. METHODS Prospective and retrospective cohorts and case-control studies focusing on DNA methylation and maternal/paternal effects were searched in Pubmed from 1997 to 2023 by using the following keywords: DNA methylation, genomic imprinting, and network analysis in combination with transgenerational/intergenerational effects. RESULTS Maternal and paternal exposures to traditional cardiovascular risk factors during critical temporal windows, including the preconceptional period or early pregnancy, may perturb the plasticity of the epigenome (mainly DNA methylation) of the developing fetus especially at imprinted loci, such as the insulin-like growth factor type 2 (IGF2) gene. Thus, the epigenome is akin to a "molecular archive" able to memorize parental environmental insults and predispose an individual to cardiovascular diseases onset in later life. Direct evidence for human transgenerational epigenetic inheritance (at least three generations) of cardiovascular risk is lacking but it is supported by epidemiological studies. Several blood-based association studies showed potential intergenerational epigenetic effects (single-generation studies) which may mediate the transmittance of cardiovascular risk from parents to offspring. DISCUSSION In this narrative review, we discuss some relevant examples of trans- and intergenerational epigenetic associations with cardiovascular risk. In our perspective, we propose three network-oriented approaches which may help to clarify the unsolved issues regarding transgenerational epigenetic inheritance of cardiovascular risk and provide potential early biomarkers for primary prevention.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Recto K, Kachroo P, Huan T, Van Den Berg D, Lee GY, Bui H, Lee DH, Gereige J, Yao C, Hwang SJ, Joehanes R, Weiss ST, O'Connor GT, Levy D, DeMeo DL. Epigenome-wide DNA methylation association study of circulating IgE levels identifies novel targets for asthma. EBioMedicine 2023; 95:104758. [PMID: 37598461 PMCID: PMC10462855 DOI: 10.1016/j.ebiom.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS We performed an epigenome-wide association study using whole blood from Framingham Heart Study (FHS; n = 3,471, 46% females) participants and validated results using the Childhood Asthma Management Program (CAMP; n = 674, 39% females) and the Genetic Epidemiology of Asthma in Costa Rica Study (CRA; n = 787, 41% females). Using the closest gene to each IgE-associated CpG, we highlighted biologically plausible pathways underlying IgE regulation and analyzed the transcription patterns linked to IgE-associated CpGs (expression quantitative trait methylation loci; eQTMs). Using prior UK Biobank summary data from genome-wide association studies of asthma and allergy, we performed Mendelian randomization (MR) for causal inference testing using the IgE-associated CpGs from FHS with methylation quantitative trait loci (mQTLs) as instrumental variables. FINDINGS We identified 490 statistically significant differentially methylated CpGs associated with IgE in FHS, of which 193 (39.3%) replicated in CAMP and CRA (FDR < 0.05). Gene ontology analysis revealed enrichment in pathways related to transcription factor binding, asthma, and other immunological processes. eQTM analysis identified 124 cis-eQTMs for 106 expressed genes (FDR < 0.05). MR in combination with drug-target analysis revealed CTSB and USP20 as putatively causal regulators of IgE levels (Bonferroni adjusted P < 7.94E-04) that can be explored as potential therapeutic targets. INTERPRETATION By integrating eQTM and MR analyses in general and clinical asthma populations, our findings provide a deeper understanding of the multidimensional inter-relations of DNA methylation, gene expression, and IgE levels. FUNDING US NIH/NHLBI grants: P01HL132825, K99HL159234. N01-HC-25195 and HHSN268201500001I.
Collapse
Affiliation(s)
- Kathryn Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Priyadarshini Kachroo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - David Van Den Berg
- University of Southern California Methylation Characterization Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Helena Bui
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Jessica Gereige
- Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - George T O'Connor
- The Framingham Heart Study, Framingham, MA 01702, USA; Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA.
| | - Dawn L DeMeo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Multifactorial Diseases of the Heart, Kidneys, Lungs, and Liver and Incident Cancer: Epidemiology and Shared Mechanisms. Cancers (Basel) 2023; 15:cancers15030729. [PMID: 36765688 PMCID: PMC9913123 DOI: 10.3390/cancers15030729] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Within the aging population, the frequency of cancer is increasing dramatically. In addition, multiple genetic and environmental factors lead to common multifactorial diseases, including cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and metabolic-associated fatty liver disease. In recent years, there has been a growing awareness of the connection between cancer and multifactorial diseases, as well as how one can affect the other, resulting in a vicious cycle. Although the exact mechanistic explanations behind this remain to be fully explored, some progress has been made in uncovering the common pathologic mechanisms. In this review, we focus on the nature of the link between cancer and common multifactorial conditions, as well as specific shared mechanisms, some of which may represent either preventive or therapeutic targets. Rather than organ-specific interactions, we herein focus on the shared mechanisms among the multifactorial diseases, which may explain the increased cancer risk. More research on this subject will highlight the significance of developing new drugs that target multiple systems rather than just one disease.
Collapse
|
13
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
14
|
Vila M, Faner R, Agustí A. Beyond the COPD-tobacco binomium: New opportunities for the prevention and early treatment of the disease. Med Clin (Barc) 2022; 159:33-39. [PMID: 35279314 DOI: 10.1016/j.medcli.2022.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has been traditionally understood as a self-inflicted disease cause by tobacco smoking occurring in individuals older than 50-60 years. This traditional paradigm has changed over the last decade because new scientific evidence showed that there are many genetic (G) and environmental (E) factors associated with reduced lung function, that vary, accumulate, and interact over time (T), even before birth (G×E×T). This new perspective opens novel windows of opportunity for the prevention, early diagnosis, and personalized treatment of COPD. This review presents the evidence that supports this proposal, as well as its practical implications, with particular emphasis on the need that clinical histories in patients with suspected COPD should investigate early life events and that spirometry should be used much more widely as a global health marker.
Collapse
Affiliation(s)
- Marc Vila
- Equip d'Assistència Primària Vic (EAP VIC), Barcelona, España; Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, España
| | - Rosa Faner
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, España; Respiratory Institute, Hospital Clínic, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| | - Alvar Agustí
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, España; Respiratory Institute, Hospital Clínic, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; CIBER Enfermedades Respiratorias, Madrid, España.
| |
Collapse
|
15
|
Zhu W, Jiang L, Li Y, Sun J, Lin C, Huang X, Ni W. DNA comethylation analysis reveals a functional association between BRCA1 and sperm DNA fragmentation. Fertil Steril 2022; 117:963-973. [PMID: 35256191 DOI: 10.1016/j.fertnstert.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To identify the DNA comethylation patterns associated with sperm DNA fragmentation (SDF) and to explore the potential associations of hub genes with SDF. DESIGN Prospective study. SETTING University-affiliated reproductive medicine center. PATIENT(S) A total of 300 male patients consulting for couple infertility were recruited from the First Affiliated Hospital of Wenzhou Medical University. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Comethylation network analysis based on the genome-wide methylation profile of spermatozoal DNA from 20 men was performed to identify hub modules and genes involved in SDF. Human spermatozoa were used for targeted bisulfite amplicon sequencing (267 men) or droplet digital polymerase chain reaction (45 men). The potential role of Brca1 in DNA damage was explored in mouse GC2 spermatocyte cells. Oxidative damage to spermatocytes was modeled by incubating GC2 cells with H2O2 (25 mM) for 90 minutes. RESULT(S) BRCA1 was identified as a hub gene in SDF. Promoter hypermethylation of BRCA1 was observed in those samples with a high DNA fragmentation index (DFI) compared to those with a low DFI. Concomitantly, BRCA1 mRNA expression was lower in samples with a high DFI than with a low DFI. In the GC2 cell model, Brca1 knockdown reduced cell proliferation and increased sensitivity to oxidative stress. Moreover, it increased double-strand breaks and decreased the protein levels of the DNA repair genes MRE11 and RAD51. CONCLUSION(S) A prominent cluster of comethylated patterns associated with SDF was identified. BRCA1 may be the hub gene involved in sperm DNA damage.
Collapse
Affiliation(s)
- Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yan Li
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Junhui Sun
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunchun Lin
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xuefeng Huang
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wuhua Ni
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
16
|
Agustí A, Melén E, DeMeo DL, Breyer-Kohansal R, Faner R. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene-environment interactions across the lifespan. THE LANCET. RESPIRATORY MEDICINE 2022; 10:512-524. [PMID: 35427533 PMCID: PMC11428195 DOI: 10.1016/s2213-2600(21)00555-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The traditional view of chronic obstructive pulmonary disease (COPD) as a self-inflicted disease caused by tobacco smoking in genetically susceptible individuals has been challenged by recent research findings. COPD can instead be understood as the potential end result of the accumulation of gene-environment interactions encountered by an individual over the life course. Integration of a time axis in pathogenic models of COPD is necessary because the biological responses to and clinical consequences of different exposures might vary according to both the age of an individual at which a given gene-environment interaction occurs and the cumulative history of previous gene-environment interactions. Future research should aim to understand the effects of dynamic interactions between genes (G) and the environment (E) by integrating information from basic omics (eg, genomics, epigenomics, proteomics) and clinical omics (eg, phenomics, physiomics, radiomics) with exposures (the exposome) over time (T)-an approach that we refer to as GETomics. In the context of this approach, we argue that COPD should be viewed not as a single disease, but as a clinical syndrome characterised by a recognisable pattern of chronic symptoms and structural or functional impairments due to gene-environment interactions across the lifespan that influence normal lung development and ageing.
Collapse
Affiliation(s)
- Alvar Agustí
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, Spain; Respiratory Institute, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine, and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
17
|
Röhl A, Baek SH, Kachroo P, Morrow JD, Tantisira K, Silverman EK, Weiss ST, Sharma A, Glass K, DeMeo DL. Protein interaction networks provide insight into fetal origins of chronic obstructive pulmonary disease. Respir Res 2022; 23:69. [PMID: 35331221 PMCID: PMC8944072 DOI: 10.1186/s12931-022-01963-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a leading cause of death in adults that may have origins in early lung development. It is a complex disease, influenced by multiple factors including genetic variants and environmental factors. Maternal smoking during pregnancy may influence the risk for diseases during adulthood, potentially through epigenetic modifications including methylation. METHODS In this work, we explore the fetal origins of COPD by utilizing lung DNA methylation marks associated with in utero smoke (IUS) exposure, and evaluate the network relationships between methylomic and transcriptomic signatures associated with adult lung tissue from former smokers with and without COPD. To identify potential pathobiological mechanisms that may link fetal lung, smoke exposure and adult lung disease, we study the interactions (physical and functional) of identified genes using protein-protein interaction networks. RESULTS We build IUS-exposure and COPD modules, which identify connected subnetworks linking fetal lung smoke exposure to adult COPD. Studying the relationships and connectivity among the different modules for fetal smoke exposure and adult COPD, we identify enriched pathways, including the AGE-RAGE and focal adhesion pathways. CONCLUSIONS The modules identified in our analysis add new and potentially important insights to understanding the early life molecular perturbations related to the pathogenesis of COPD. We identify AGE-RAGE and focal adhesion as two biologically plausible pathways that may reveal lung developmental contributions to COPD. We were not only able to identify meaningful modules but were also able to study interconnections between smoke exposure and lung disease, augmenting our knowledge about the fetal origins of COPD.
Collapse
Affiliation(s)
- Annika Röhl
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Seung Han Baek
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kelan Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pediatric Respiratory Medicine, University of California San Diego, San Diego, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Complex Network Research, Northeastern University, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Noël A, Perveen Z, Xiao R, Hammond H, Le Donne V, Legendre K, Gartia MR, Sahu S, Paulsen DB, Penn AL. Mmp12 Is Upregulated by in utero Second-Hand Smoke Exposures and Is a Key Factor Contributing to Aggravated Lung Responses in Adult Emphysema, Asthma, and Lung Cancer Mouse Models. Front Physiol 2021; 12:704401. [PMID: 34912233 PMCID: PMC8667558 DOI: 10.3389/fphys.2021.704401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinase-12 (Mmp12) is upregulated by cigarette smoke (CS) and plays a critical role in extracellular matrix remodeling, a key mechanism involved in physiological repair processes, and in the pathogenesis of emphysema, asthma, and lung cancer. While cigarette smoking is associated with the development of chronic obstructive pulmonary diseases (COPD) and lung cancer, in utero exposures to CS and second-hand smoke (SHS) are associated with asthma development in the offspring. SHS is an indoor air pollutant that causes known adverse health effects; however, the mechanisms by which in utero SHS exposures predispose to adult lung diseases, including COPD, asthma, and lung cancer, are poorly understood. In this study, we tested the hypothesis that in utero SHS exposure aggravates adult-induced emphysema, asthma, and lung cancer. Methods: Pregnant BALB/c mice were exposed from gestational days 6–19 to either 3 or 10mg/m3 of SHS or filtered air. At 10, 11, 16, or 17weeks of age, female offspring were treated with either saline for controls, elastase to induce emphysema, house-dust mite (HDM) to initiate asthma, or urethane to promote lung cancer. At sacrifice, specific disease-related lung responses including lung function, inflammation, gene, and protein expression were assessed. Results: In the elastase-induced emphysema model, in utero SHS-exposed mice had significantly enlarged airspaces and up-regulated expression of Mmp12 (10.3-fold compared to air-elastase controls). In the HDM-induced asthma model, in utero exposures to SHS produced eosinophilic lung inflammation and potentiated Mmp12 gene expression (5.7-fold compared to air-HDM controls). In the lung cancer model, in utero exposures to SHS significantly increased the number of intrapulmonary metastases at 58weeks of age and up-regulated Mmp12 (9.3-fold compared to air-urethane controls). In all lung disease models, Mmp12 upregulation was supported at the protein level. Conclusion: Our findings revealed that in utero SHS exposures exacerbate lung responses to adult-induced emphysema, asthma, and lung cancer. Our data show that MMP12 is up-regulated at the gene and protein levels in three distinct adult lung disease models following in utero SHS exposures, suggesting that MMP12 is central to in utero SHS-aggravated lung responses.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| | - Harriet Hammond
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Kelsey Legendre
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Sushant Sahu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
19
|
Walters EH, Shukla SD, Mahmood MQ, Ward C. Fully integrating pathophysiological insights in COPD: an updated working disease model to broaden therapeutic vision. Eur Respir Rev 2021; 30:200364. [PMID: 34039673 PMCID: PMC9488955 DOI: 10.1183/16000617.0364-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Our starting point is that relatively new findings into the pathogenesis and pathophysiology of airway disease in smokers that lead to chronic obstructive pulmonary disease (COPD) need to be reassessed as a whole and integrated into "mainstream" thinking along with traditional concepts which have stood the test of time. Such a refining of the accepted disease paradigm is urgently needed as thinking on therapeutic targets is currently under active reconsideration. We feel that generalised airway wall "inflammation" is unduly over-emphasised, and highlight the patchy and variable nature of the pathology (with the core being airway remodelling). In addition, we present evidence for airway wall disease in smokers/COPD as including a hypocellular, hypovascular, destructive, fibrotic pathology, with a likely spectrum of epithelial-mesenchymal transition states as significant drivers of this remodelling. Furthermore, we present data from a number of research modalities and integrate this with the aetiology of lung cancer, the role of chronic airway luminal colonisation/infection by a specific group of "respiratory" bacteria in smokers (which results in luminal inflammation) and the central role for oxidative stress on the epithelium. We suggest translation of these insights into more focus on asymptomatic smokers and early COPD, with the potential for fresh preventive and therapeutic approaches.
Collapse
Affiliation(s)
- E Haydn Walters
- School of Medicine and Menzies Institute, University of Tasmania, Hobart, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs and School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Malik Q Mahmood
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| | - Chris Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University Medical School, Newcastle University, UK
| |
Collapse
|
20
|
Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev 2021; 30:30/160/210041. [PMID: 34415848 DOI: 10.1183/16000617.0041-2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
COPD is a major cause of morbidity and mortality worldwide. Multimorbidity is common in COPD patients and a key modifiable factor, which requires timely identification and targeted holistic management strategies to improve outcomes and reduce the burden of disease.We discuss the use of integrative approaches, such as cluster analysis and network-based theory, to understand the common and novel pathobiological mechanisms underlying COPD and comorbid disease, which are likely to be key to informing new management strategies.Furthermore, we discuss the current understanding of mechanistic drivers to multimorbidity in COPD, including hypotheses such as multimorbidity as a result of shared common exposure to noxious stimuli (e.g. tobacco smoke), or as a consequence of loss of function following the development of pulmonary disease. In addition, we explore the links to pulmonary disease processes such as systemic overspill of pulmonary inflammation, immune cell priming within the inflamed COPD lung and targeted messengers such as extracellular vesicles as a result of local damage as a cause for multimorbidity in COPD.Finally, we focus on current and new management strategies which may target these underlying mechanisms, with the aim of holistic, patient-centred treatment rather than single disease management.
Collapse
Affiliation(s)
- H Burke
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - T M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospitals Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
21
|
Benincasa G, DeMeo DL, Glass K, Silverman EK, Napoli C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J 2021; 57:13993003.03406-2020. [PMID: 33214212 DOI: 10.1183/13993003.03406-2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms represent potential molecular routes which could bridge the gap between genetic background and environmental risk factors contributing to the pathogenesis of pulmonary diseases. In patients with COPD, asthma and pulmonary arterial hypertension (PAH), there is emerging evidence of aberrant epigenetic marks, mainly including DNA methylation and histone modifications which directly mediate reversible modifications to the DNA without affecting the genomic sequence. Post-translational events and microRNAs can be also regulated epigenetically and potentially participate in disease pathogenesis. Thus, novel pathogenic mechanisms and putative biomarkers may be detectable in peripheral blood, sputum, nasal and buccal swabs or lung tissue. Besides, DNA methylation plays an important role during the early phases of fetal development and may be impacted by environmental exposures, ultimately influencing an individual's susceptibility to COPD, asthma and PAH later in life. With the advances in omics platforms and the application of computational biology tools, modelling the epigenetic variability in a network framework, rather than as single molecular defects, provides insights into the possible molecular pathways underlying the pathogenesis of COPD, asthma and PAH. Epigenetic modifications may have clinical applications as noninvasive biomarkers of pulmonary diseases. Moreover, combining molecular assays with network analysis of epigenomic data may aid in clarifying the multistage transition from a "pre-disease" to "disease" state, with the goal of improving primary prevention of lung diseases and its subsequent clinical management.We describe epigenetic mechanisms known to be associated with pulmonary diseases and discuss how network analysis could improve our understanding of lung diseases.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Napoli
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy .,Clinical Dept of Internal and Specialty Medicine (DAI), University Hospital (AOU), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
22
|
Kachroo P, Morrow JD, Vyhlidal CA, Gaedigk R, Silverman EK, Weiss ST, Tantisira KG, DeMeo DL. DNA methylation perturbations may link altered development and aging in the lung. Aging (Albany NY) 2021; 13:1742-1764. [PMID: 33468710 PMCID: PMC7880367 DOI: 10.18632/aging.202544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Fetal perturbations in DNA methylation during lung development may reveal insights into the enduring impacts on adult lung health and disease during aging that have not been explored altogether before. We studied the association between genome-wide DNA-methylation and post-conception age in fetal-lung (n=78, 42 exposed to in-utero-smoke (IUS)) tissue and chronological age in adult-lung tissue (n=160, 114 with Chronic Obstructive Pulmonary Disease) using multi-variate linear regression models with covariate adjustment and tested for effect modification by phenotypes. Overlapping age-associations were evaluated for functional and tissue-specific enrichment using the Genotype-Tissue-Expression (GTEx) project. We identified 244 age-associated differentially methylated positions and 878 regions overlapping between fetal and adult-lung tissues. Hyper-methylated CpGs (96%) were enriched in transcription factor activity (FDR adjusted P=2x10-33) and implicated in developmental processes including embryonic organ morphogenesis, neurogenesis and growth delay. Hypo-methylated CpGs (2%) were enriched in oxido-reductase activity and VEGFA-VEGFR2 Signaling. Twenty-one age-by-sex and eleven age-by-pack-years interactions were statistically significant (FDR<0.05) in adult-lung tissue. DNA methylation in transcription factors during development in fetal lung recapitulates in adult-lung tissue with aging. These findings reveal molecular mechanisms and pathways that may link disrupted development in early-life and age-associated lung diseases.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jarrett D. Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Roger Gaedigk
- Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|