1
|
Biziorek L, Dériot M, Bonniaud P, Goirand F, Burgy O. [Targeting the TGF-β pathway in pulmonary fibrosis: Is it still a relevant strategy?]. Rev Mal Respir 2025; 42:125-129. [PMID: 40023715 DOI: 10.1016/j.rmr.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, progressive and fatal disease without pharmacologic curative treatments for the patients. TGF-β is a crucial cytokine in the fibrotic process, and its intracellular signaling pathways are complex and rely on the activation of its receptor. This review summarizes our knowledge on the regulatory checkpoints of the TGF-β signaling. In addition, the main strategies and key potential therapeutic targets identified over recent years are presented, with particular emphasis laid on how they can be used to develop new treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- L Biziorek
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France.
| | - M Dériot
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France
| | - P Bonniaud
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France; Institut universitaire du Poumon Dijon-Bourgogne, centre hospitalier universitaire, 21000 Dijon France; Centre de référence constitutif des maladies pulmonaires rares de l'adultes de Dijon, réseau OrphaLung, filière RespiFil, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France
| | - F Goirand
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France; Centre de référence constitutif des maladies pulmonaires rares de l'adultes de Dijon, réseau OrphaLung, filière RespiFil, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France; Laboratoire de pharmacologie et toxicologie, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France
| | - O Burgy
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France; Centre de référence constitutif des maladies pulmonaires rares de l'adultes de Dijon, réseau OrphaLung, filière RespiFil, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France
| |
Collapse
|
2
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Tanguy J, Boutanquoi PM, Burgy O, Dondaine L, Beltramo G, Uyanik B, Garrido C, Bonniaud P, Bellaye PS, Goirand F. HSPB5 Inhibition by NCI-41356 Reduces Experimental Lung Fibrosis by Blocking TGF-β1 Signaling. Pharmaceuticals (Basel) 2023; 16:177. [PMID: 37259327 PMCID: PMC9960643 DOI: 10.3390/ph16020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic, progressive and lethal disease of unknown etiology that ranks among the most frequent interstitial lung diseases. Idiopathic pulmonary fibrosis is characterized by dysregulated healing mechanisms that lead to the accumulation of large amounts of collagen in the lung tissue that disrupts the alveolar architecture. The two currently available treatments, nintedanib and pirfenidone, are only able to slow down the disease without being curative. We demonstrated in the past that HSPB5, a low molecular weight heat shock protein, was involved in the development of fibrosis and therefore was a potential therapeutic target. Here, we have explored whether NCI-41356, a chemical inhibitor of HSPB5, can limit the development of pulmonary fibrosis. In vivo, we used a mouse model in which fibrosis was induced by intratracheal injection of bleomycin. Mice were treated with NaCl or NCI-41356 (six times intravenously or three times intratracheally). Fibrosis was evaluated by collagen quantification, immunofluorescence and TGF-β gene expression. In vitro, we studied the specific role of NCI-41356 on the chaperone function of HSPB5 and the inhibitory properties of NCI-41356 on HSPB5 interaction with its partner SMAD4 during fibrosis. TGF-β1 signaling was evaluated by immunofluorescence and Western Blot in epithelial cells treated with TGF-β1 with or without NCI-41356. In vivo, NCI-41356 reduced the accumulation of collagen, the expression of TGF-β1 and pro-fibrotic markers (PAI-1, α-SMA). In vitro, NCI-41356 decreased the interaction between HSPB5 and SMAD4 and thus modulated the SMAD4 canonical nuclear translocation involved in TGF-β1 signaling, which may explain NCI-41356 anti-fibrotic properties. In this study, we determined that inhibition of HSPB5 by NCI-41356 could limit pulmonary fibrosis in mice by limiting the synthesis of collagen and pro-fibrotic markers. At the molecular level, this outcome may be explained by the effect of NCI-41356 inhibiting HSPB5/SMAD4 interaction, thus modulating SMAD4 and TGF-β1 signaling. Further investigations are needed to determine whether these results can be transposed to humans.
Collapse
Affiliation(s)
- Julie Tanguy
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- UFR des Sciences de Santé, University of Bourgogne-Franche-Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
| | - Pierre-Marie Boutanquoi
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
| | - Olivier Burgy
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- UFR des Sciences de Santé, University of Bourgogne-Franche-Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
| | - Lucile Dondaine
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
| | - Guillaume Beltramo
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- UFR des Sciences de Santé, University of Bourgogne-Franche-Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
| | - Burhan Uyanik
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
| | - Carmen Garrido
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
| | - Philippe Bonniaud
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- UFR des Sciences de Santé, University of Bourgogne-Franche-Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Cancer Center George François Leclerc, 21000 Dijon, France
| | - Françoise Goirand
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, 21000 Dijon, France
- UFR des Sciences de Santé, University of Bourgogne-Franche-Comté, 21000 Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
- Réseau OrphaLung, Filière RespiFIl, Department of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, 21000 Dijon, France
| |
Collapse
|