1
|
Santus P, Signorello JC, Danzo F, Lazzaroni G, Saad M, Radovanovic D. Anti-Inflammatory and Anti-Oxidant Properties of N-Acetylcysteine: A Fresh Perspective. J Clin Med 2024; 13:4127. [PMID: 39064168 PMCID: PMC11278452 DOI: 10.3390/jcm13144127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
N-acetyl-L-cysteine (NAC) was initially introduced as a treatment for mucus reduction and widely used for chronic respiratory conditions associated with mucus overproduction. However, the mechanism of action for NAC extends beyond its mucolytic activity and is complex and multifaceted. Contrary to other mucoactive drugs, NAC has been found to exhibit antioxidant, anti-infective, and anti-inflammatory activity in pre-clinical and clinical reports. These properties have sparked interest in its potential for treating chronic lung diseases, including chronic obstructive pulmonary disease (COPD), bronchiectasis (BE), cystic fibrosis (CF), and idiopathic pulmonary fibrosis (IPF), which are associated with oxidative stress, increased levels of glutathione and inflammation. NAC's anti-inflammatory activity is noteworthy, and it is not solely secondary to its antioxidant capabilities. In ex vivo models of COPD exacerbation, the anti-inflammatory effects have been observed even at very low doses, especially with prolonged treatment. The mechanism involves the inhibition of the activation of NF-kB and neurokinin A production, resulting in a reduction in interleukin-6 production, a cytokine abundantly present in the sputum and breath condensate of patients with COPD and correlates with the number of exacerbations. The unique combination of mucolytic, antioxidant, anti-infective, and anti-inflammatory properties positions NAC as a safe, cost-effective, and efficacious therapy for a plethora of respiratory conditions.
Collapse
Affiliation(s)
- Pierachille Santus
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Juan Camilo Signorello
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Fiammetta Danzo
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Giada Lazzaroni
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
| | - Marina Saad
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20122 Milano, Italy;
| | - Dejan Radovanovic
- Division of Respiratory Diseases, “L. Sacco” University Hospital, Università degli Studi di Milano, 20122 Milano, Italy; (J.C.S.); (F.D.); (G.L.); (D.R.)
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20122 Milano, Italy;
| |
Collapse
|
2
|
Wang Z, Zhang Y, Li X. Mitigation of Oxidative Stress in Idiopathic Pulmonary Fibrosis Through Exosome-Mediated Therapies. Int J Nanomedicine 2024; 19:6161-6176. [PMID: 38911503 PMCID: PMC11193999 DOI: 10.2147/ijn.s453739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) poses a formidable clinical challenge, characterized by the thickening of alveolar septa and the onset of pulmonary fibrosis. The pronounced activation of oxidative stress emerges as a pivotal hallmark of inflammation. Traditional application of exogenous antioxidants proves inadequate in addressing oxidative stress, necessitating exploration into strategies to augment their antioxidant efficacy. Exosomes, nano-sized extracellular vesicles harboring a diverse array of bioactive factors, present as promising carriers with the potential to meet this challenge. Recent attention has been directed towards the clinical applications of exosomes in IPF, fueling the impetus for this comprehensive review. We have compiled fresh insights into the role of exosomes in modulating oxidative stress in IPF and delved into their potential as carriers for regulating endogenous reactive oxygen species generation. This review endeavors to bridge the divide between exosome research and IPF, traversing from bedside to bench. Through the synthesis of recent findings, we propose exosomes as a novel and promising strategy for improving the outcomes of IPF therapy.
Collapse
Affiliation(s)
- Zaiyan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Xiaoning Li
- Department of Geriatric Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
3
|
Sofia C, Comes A, Sgalla G, Richeldi L. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis: a look towards 2023 and beyond. Expert Opin Emerg Drugs 2023; 28:283-296. [PMID: 37953604 DOI: 10.1080/14728214.2023.2281416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Currently approved drug treatments for idiopathic pulmonary fibrosis (IPF), pirfenidone and nintedanib, have been shown to slow lung function decline and improve clinical outcomes. Since significant advances in the understanding of pathogenetic mechanisms in IPF, novel potential agents are being tested to identify new targeted and better tolerated therapeutic strategies. AREAS COVERED This review describes the evidence from IPF phase II and III clinical trials that have been completed or are ongoing in recent years. The literature search was performed using Medline and Clinicaltrials.org databases. Particular attention is paid to the new inhibitor of phosphodiesterase 4B (BI 1015550), being studied in a more advanced research phase. Some emerging critical issues of the pharmacological research are highlighted considering the recent outstanding failures of several phase III trials. EXPERT OPINION An exponential number of randomized clinical trials are underway testing promising new molecules to increase treatment choices for patients with IPF and improve patients' quality of life. The next goals should aim at a deeper understanding of the pathogenic pathways of the disease with the challenging goal of being able not only to stabilize but also to reverse the ongoing fibrotic process in patients with IPF.
Collapse
Affiliation(s)
- Carmelo Sofia
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessia Comes
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giacomo Sgalla
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Dipartimento di scienze mediche e chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Yang F, Wendusubilige, Kong J, Zong Y, Wang M, Jing C, Ma Z, Li W, Cao R, Jing S, Gao J, Li W, Wang J. Identifying oxidative stress-related biomarkers in idiopathic pulmonary fibrosis in the context of predictive, preventive, and personalized medicine using integrative omics approaches and machine-learning strategies. EPMA J 2023; 14:417-442. [PMID: 37605652 PMCID: PMC10439879 DOI: 10.1007/s13167-023-00334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00334-4.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wendusubilige
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqing Jing
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, China
| | - Renshuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuwen Jing
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Podolanczuk AJ, Kim JS, Cooper CB, Lasky JA, Murray S, Oldham JM, Raghu G, Flaherty KR, Spino C, Noth I, Martinez FJ. Design and rationale for the prospective treatment efficacy in IPF using genotype for NAC selection (PRECISIONS) clinical trial. BMC Pulm Med 2022; 22:475. [PMID: 36514019 PMCID: PMC9746571 DOI: 10.1186/s12890-022-02281-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with few treatment options. N-acetylcysteine (NAC) is a well-tolerated, inexpensive treatment with antioxidant and anti-fibrotic properties. The National Heart, Lung, and Blood Institute (NHLBI)-sponsored PANTHER (Prednisone Azathioprine and NAC therapy in IPF) trial confirmed the harmful effects of immunosuppression in IPF, and did not show a benefit to treatment with NAC. However, a post hoc analysis revealed a potential beneficial effect of NAC in a subgroup of individuals carrying a specific genetic variant, TOLLIP rs3750920 TT genotype, present in about 25% of patients with IPF. Here, we present the design and rationale for the Phase III, multi-center, randomized, double-blind, placebo-controlled Prospective Treatment Efficacy in IPF Using Genotype for NAC Selection (PRECISIONS) clinical trial. METHODS The PRECISIONS trial will randomize 200 patients with IPF and the TOLLIP rs3750920 TT genotype 1:1 to oral N-acetylcysteine (600 mg tablets taken three times a day) or placebo for a 24-month duration. The primary endpoint is the composite of time to 10% relative decline in forced vital capacity (FVC), first respiratory hospitalization, lung transplantation, or death from any cause. Secondary endpoints include change in patient-reported outcome scores and proportion of participants with treatment-emergent adverse events. Biospecimens, including blood, buccal, and fecal will be collected longitudinally for future research purposes. Study participants will be offered enrollment in a home spirometry substudy, which explores time to 10% relative FVC decline measured at home, and its comparison with study visit FVC. DISCUSSION The sentinel observation of a potential pharmacogenetic interaction between NAC and TOLLIP polymorphism highlights the urgent, unmet need for better, molecularly focused, and precise therapeutic strategies in IPF. The PRECISIONS clinical trial is the first study to use molecularly-focused techniques to identify patients with IPF most likely to benefit from treatment. PRECISIONS has the potential to shift the paradigm in how trials in this condition are designed and executed, and is the first step toward personalized medicine for patients with IPF. Trial Registration ClinicalTrials.gov identifier: NCT04300920. Registered March 9, 2020. https://clinicaltrials.gov/ct2/show/NCT04300920.
Collapse
Affiliation(s)
- Anna J Podolanczuk
- Department of Medicine, Weill Cornell Medical College, 1305 York Ave, Box 96, New York, NY, 10021, USA.
| | - John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christopher B Cooper
- Department of Medicine and Department of Physiology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Joseph A Lasky
- Deparment of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Susan Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Justin M Oldham
- Deparment of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ganesh Raghu
- Department of Medicine and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kevin R Flaherty
- Deparment of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Fernando J Martinez
- Department of Medicine, Weill Cornell Medical College, 1305 York Ave, Box 96, New York, NY, 10021, USA
| |
Collapse
|
6
|
McCarthy C, Keane MP. Contemporary Concise Review 2021: Interstitial lung disease. Respirology 2022; 27:539-548. [PMID: 35513341 PMCID: PMC9320947 DOI: 10.1111/resp.14278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
The last 2 years have presented previously unforeseen challenges in pulmonary medicine. Despite the significant impact of the SARS‐CoV‐2 pandemic on patients, clinicians and communities, advances in the care and understanding of interstitial lung disease (ILD) continued unabated. Recent studies have led to improved guidelines, better understanding of the role for antifibrotics in fibrosing ILDs, prognostic indicators and novel biomarkers. In this concise contemporary review, we summarize many of the important studies published in 2021, highlighting their relevance and impact to the management and knowledge of ILD.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Michael P Keane
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|