1
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
2
|
Gao J, Liu H, Wang X, Wang L, Gu J, Wang Y, Yang Z, Liu Y, Yang J, Cai Z, Shu Y, Min L. Associative analysis of multi-omics data indicates that acetylation modification is widely involved in cigarette smoke-induced chronic obstructive pulmonary disease. Front Med (Lausanne) 2023; 9:1030644. [PMID: 36714109 PMCID: PMC9877466 DOI: 10.3389/fmed.2022.1030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
We aimed to study the molecular mechanisms of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke more comprehensively and systematically through different perspectives and aspects and to explore the role of protein acetylation modification in COPD. We established the COPD model by exposing C57BL/6J mice to cigarette smoke for 24 weeks, then analyzed the transcriptomics, proteomics, and acetylomics data of mouse lung tissue by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), and associated these omics data through unique algorithms. This study demonstrated that the differentially expressed proteins and acetylation modification in the lung tissue of COPD mice were co-enriched in pathways such as oxidative phosphorylation (OXPHOS) and fatty acid degradation. A total of 19 genes, namely, ENO3, PFKM, ALDOA, ACTN2, FGG, MYH1, MYH3, MYH8, MYL1, MYLPF, TTN, ACTA1, ATP2A1, CKM, CORO1A, EEF1A2, AKR1B8, MB, and STAT1, were significantly and differentially expressed at all the three levels of transcription, protein, and acetylation modification simultaneously. Then, we assessed the distribution and expression in different cell subpopulations of these 19 genes in the lung tissues of patients with COPD by analyzing data from single-cell RNA sequencing (scRNA-seq). Finally, we carried out the in vivo experimental verification using mouse lung tissue through quantitative real-time PCR (qRT-PCR), Western blotting (WB), immunofluorescence (IF), and immunoprecipitation (IP). The results showed that the differential acetylation modifications of mouse lung tissue are widely involved in cigarette smoke-induced COPD. ALDOA is significantly downregulated and hyperacetylated in the lung tissues of humans and mice with COPD, which might be a potential biomarker for the diagnosis and/or treatment of COPD.
Collapse
Affiliation(s)
- Junyin Gao
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongjun Liu
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jianjun Gu
- Department of Cardiology, Institute of Translational Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yuxiu Wang
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Yang
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhibin Cai
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China,Yusheng Shu ✉
| | - Lingfeng Min
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China,*Correspondence: Lingfeng Min ✉
| |
Collapse
|
3
|
Pinezich MR, Tamargo MA, Fleischer S, Reimer JA, Hudock MR, Hozain AE, Kaslow SR, Tipograf Y, Soni RK, Gavaudan OP, Guenthart BA, Marboe CC, Bacchetta M, O'Neill JD, Dorrello NV, Vunjak-Novakovic G. Pathological remodeling of distal lung matrix in end-stage cystic fibrosis patients. J Cyst Fibros 2022; 21:1027-1035. [PMID: 35525782 PMCID: PMC10050894 DOI: 10.1016/j.jcf.2022.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Manifestations of cystic fibrosis, although well-characterized in the proximal airways, are understudied in the distal lung. Characterization of the cystic fibrosis lung 'matrisome' (matrix proteome) has not been previously described, and could help identify biomarkers and inform therapeutic strategies. METHODS We performed liquid chromatography-mass spectrometry, gene ontology analysis, and multi-modal imaging, including histology, immunofluorescence, and electron microscopy for a comprehensive evaluation of distal human lung extracellular matrix (matrix) structure and composition in end-stage cystic fibrosis. RESULTS Quantitative proteomic profiling identified sixty-eight (68) matrix constituents with significantly altered expression in end-stage cystic fibrosis. Over 90% of significantly different matrix peptides detected, including structural and basement membrane proteins, were expressed at lower levels in cystic fibrosis. However, the total abundance of matrix in cystic fibrosis lungs was not significantly different from control lungs, suggesting that cystic fibrosis leads to loss of diversity among lung matrix proteins rather than an absolute loss of matrix. Visualization of distal lung matrix via immunofluorescence and electron microscopy revealed pathological remodeling of distal lung tissue architecture and loss of alveolar basement membrane, consistent with significantly altered pathways identified by gene ontology analysis. CONCLUSIONS Dysregulation of matrix organization and aberrant wound healing pathways are associated with loss of matrix protein diversity and obliteration of distal lung tissue structure in end-stage cystic fibrosis. While many therapeutics aim to functionally restore defective cystic fibrosis transmembrane conductance regulator (CFTR), drugs that target dysregulated matrix pathways may serve as adjunct interventions to support lung recovery.
Collapse
Affiliation(s)
- Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jonathan A Reimer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria R Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ahmed E Hozain
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah R Kaslow
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Yuliya Tipograf
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Olimpia P Gavaudan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - N Valerio Dorrello
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
The PDE4 Inhibitor Tanimilast Restrains the Tissue-Damaging Properties of Human Neutrophils. Int J Mol Sci 2022; 23:ijms23094982. [PMID: 35563373 PMCID: PMC9104715 DOI: 10.3390/ijms23094982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001—is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide—a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.
Collapse
|
5
|
Bai H, Si L, Jiang A, Belgur C, Zhai Y, Plebani R, Oh CY, Rodas M, Patil A, Nurani A, Gilpin SE, Powers RK, Goyal G, Prantil-Baun R, Ingber DE. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun 2022; 13:1928. [PMID: 35396513 PMCID: PMC8993817 DOI: 10.1038/s41467-022-29562-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence innate immune responses to viral infection. Influenza H3N2 infection of mechanically active chips induces a cascade of host responses including increased lung permeability, apoptosis, cell regeneration, cytokines production, and recruitment of circulating immune cells. Comparison with static chips reveals that breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells, which are mediated in part through activation of the mechanosensitive ion channel TRPV4 and signaling via receptor for advanced glycation end products (RAGE). RAGE inhibitors suppress cytokines induction, while TRPV4 inhibition attenuates both inflammation and viral burden, in infected chips with breathing motions. Therefore, TRPV4 and RAGE may serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.
Collapse
Affiliation(s)
- Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Longlong Si
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66023, Italy
| | - Crystal Yuri Oh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Melissa Rodas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Aditya Patil
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Atiq Nurani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rani K Powers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Dekkers BG, Saad SI, van Spelde LJ, Burgess JK. Basement membranes in obstructive pulmonary diseases. Matrix Biol Plus 2021; 12:100092. [PMID: 34877523 PMCID: PMC8632995 DOI: 10.1016/j.mbplus.2021.100092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022] Open
Abstract
Basement membrane composition is changed in the airways of patients with obstructive airway diseases. Basement membrane changes are linked to disease characteristics in patients. Mechanisms behind the altered BM composition remain to be elucidated. Laminin and collagen IV affect key pathological processes in obstructive airway diseases.
Increased and changed deposition of extracellular matrix proteins is a key feature of airway wall remodeling in obstructive pulmonary diseases, including asthma and chronic obstructive pulmonary disease. Studies have highlighted that the deposition of various basement membrane proteins in the lung tissue is altered and that these changes reflect tissue compartment specificity. Inflammatory responses in both diseases may result in the deregulation of production and degradation of these proteins. In addition to their role in tissue development and integrity, emerging evidence indicates that basement membrane proteins also actively modulate cellular processes in obstructive airway diseases, contributing to disease development, progression and maintenance. In this review, we summarize the changes in basement membrane composition in airway remodeling in obstructive airway diseases and explore their potential application as innovative targets for treatment development.
Collapse
Key Words
- ADAM9, a metalloproteinase domain 9
- ASM, airway smooth muscle
- Airway inflammation
- Airway remodeling
- Asthma
- BM, basement membrane
- COPD, chronic obstructive pulmonary disease
- Chronic obstructive pulmonary disease
- Col IV, collagen IV
- Collagen IV
- ECM, extracellular matrix
- LN, laminin
- Laminin
- MMP, matrix metalloproteinase
- TIMP, tissue inhibitors of metalloproteinase
- Th2, T helper 2
- VSM, vascular smooth muscle
Collapse
Affiliation(s)
- Bart G.J. Dekkers
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Corresponding author at: Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Shehab I. Saad
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Leah J. van Spelde
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| |
Collapse
|
7
|
Papanicolaou M, He P, Rutting S, Ammit A, Xenaki D, van Reyk D, Oliver BG. Extracellular Matrix Oxidised by the Granulocyte Oxidants Hypochlorous and Hypobromous Acid Reduces Lung Fibroblast Adhesion and Proliferation In Vitro. Cells 2021; 10:3351. [PMID: 34943857 PMCID: PMC8699380 DOI: 10.3390/cells10123351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic airway inflammation and oxidative stress play crucial roles in the pathogenesis of chronic inflammatory lung diseases, with airway inflammation being a key driving mechanism of oxidative stress in the lungs. Inflammatory responses in the lungs activate neutrophils and/or eosinophils, leading to the generation of hypohalous acids (HOX). These HOX oxidants can damage the extracellular matrix (ECM) structure and may influence cell-ECM interactions. The ECM of the lung provides structural, mechanical, and biochemical support for cells and determines the airway structure. One of the critical cells in chronic respiratory disease is the fibroblast. Thus, we hypothesised that primary human lung fibroblasts (PHLF) exposed to an oxidised cell-derived ECM will result in functional changes to the PHLF. Here, we show that PHLF adhesion, proliferation, and inflammatory cytokine secretion is affected by exposure to HOX-induced oxidisation of the cell-derived ECM. Furthermore, we investigated the impact on fibroblast function from the presence of haloamines in the ECM. Haloamines are chemical by-products of HOX and, like the HOX, haloamines can also modify the ECM. In conclusion, this study revealed that oxidising the cell-derived ECM might contribute to functional changes in PHLF, a key mechanism behind the pathogenesis of inflammatory lung diseases.
Collapse
Affiliation(s)
- Michael Papanicolaou
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Patrick He
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Sandra Rutting
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - Alaina Ammit
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Dikaia Xenaki
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - David van Reyk
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - Brian G. Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| |
Collapse
|
8
|
Deng L, Yan J, Xu H, Huang C, Lv Y, Wu Q, Xu Y, Chen X. Prediction of exacerbation frequency of AECOPD based on next-generation sequencing and its relationship with imbalance of lung and gut microbiota: a protocol of a prospective cohort study. BMJ Open 2021; 11:e047202. [PMID: 34475159 PMCID: PMC8413946 DOI: 10.1136/bmjopen-2020-047202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Patients with frequent acute exacerbation phenotype chronic obstructive pulmonary disease (AECOPD) have a higher hospitalisation rate than infrequent exacerbation, the disease progresses quickly and treatment is more difficult. At present, it is impossible to predict patients with COPD with frequent acute exacerbation phenotypes. The composition of the lower respiratory tract flora and the intestinal flora is closely related to AECOPD, but the specific association mechanism between them is not very clear. This study used metagenomic next-generation sequencing (mNGS) technology to explore the microbial characteristics of the intestinal tract and airways of patients with COPD, and analyse the correlation between the sequencing results and inflammatory factors, immune factors and nutritional factors. METHODS AND ANALYSIS This will be a prospective cohort study. We intend to recruit 152 patients with stable COPD. In the baseline, we will detect the participants' induced sputum and faecal flora through mNGS, and changes in blood immune levels, and the patient's condition is evaluated. Every 2 months, we will check the number of acute exacerbation through the phone range. After 12 months, we will check again the changes in the blood immune level, evaluate the patient's condition and count the number of episodes. ETHICS AND DISSEMINATION This study has been approved by the ethics committee of Guangdong Provincial Hospital of Traditional Chinese Medicine (approval number ZF2019-219-03). The results of the study will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (ChiCTR2000032870).
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiali Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunzhen Huang
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiwen Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qianxin Wu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yinji Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
- Department of Respiratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Abstract
Inhaled therapy remains the cornerstone of chronic obstructive pulmonary disease pharmacologic care, but some systemic treatments can be of help when the burden of the disease remains high. Azithromycin, phosphodiesterase-4 inhibitors, and mucoactive agents can be used in such situations. The major difficulty remains in the identification of the optimal target populations. Another difficulty is to determine how these treatments should be positioned in the global treatment algorithm. For instance, should they be prescribed in addition to other antiinflammatory agents or should they replace them in some cases? Research is ongoing to identify new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Roche
- Respiratory Medicine, Pneumologie et Soins Intensifs Respiratoires, APHP Centre, Cochin Hospital, Université de Paris (Descartes), Institut Cochin (UMR 1016), 27, rue du Fbg St Jacques, Paris 75014, France.
| |
Collapse
|
10
|
Lehtonen S, Nurmos NI, Karvonen HM, Lappi-Blanco E, Harju T, Sköld M, Kaarteenaho R. Smoking effect on the ultrastructural properties of cultured lung myofibroblasts. Ultrastruct Pathol 2020; 45:37-48. [PMID: 33377815 DOI: 10.1080/01913123.2020.1858214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study aimed at an ultrastructural characterization of myofibroblasts cultured from different compartments of lung from never-smokers and smokers with or without COPD. In addition, we evaluated the expression of alpha smooth muscle actin (α-SMA), a marker for myofibroblasts, and contractile properties. Stromal cells cultured from central and corresponding peripheral or only from peripheral lung of never-smokers, smokers without COPD and COPD patients were analyzed by transmission electron microscopy (TEM), immunoelectron microscopy (IEM), Western analysis and/or by collagen gel contraction assay. TEM revealed that myofibroblasts cultured from smokers and COPD had less prominent intracellular actin filaments. We also examined fibronexus (FNX), which is a typical ultrastructural feature of myofibroblasts, and observed that patients with COPD more frequently had tandem-like FNX as compared to other samples. Western analysis showed that the samples derived from the central lung of never-smokers expressed higher levels of α-SMA than those of smokers and COPD patients. Cells from central lung were less contractile than those from peripheral lung. We conclude that myofibroblasts have variable ultrastructural and functional properties based on their localization in the lung and, moreover, these properties are affected by both smoking history and COPD.
Collapse
Affiliation(s)
- Siri Lehtonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ninni-Ingrid Nurmos
- Research Unit of Internal Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Henna M Karvonen
- Research Unit of Internal Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Elisa Lappi-Blanco
- Department of Pathology, Cancer and Translational Medicine Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Terttu Harju
- Research Unit of Internal Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet and Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Abstract
Inhaled therapy remains the cornerstone of chronic obstructive pulmonary disease pharmacologic care, but some systemic treatments can be of help when the burden of the disease remains high. Azithromycin, phosphodiesterase-4 inhibitors, and mucoactive agents can be used in such situations. The major difficulty remains in the identification of the optimal target populations. Another difficulty is to determine how these treatments should be positioned in the global treatment algorithm. For instance, should they be prescribed in addition to other antiinflammatory agents or should they replace them in some cases? Research is ongoing to identify new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Roche
- Respiratory Medicine, Pneumologie et Soins Intensifs Respiratoires, APHP Centre, Cochin Hospital, Université de Paris (Descartes), Institut Cochin (UMR 1016), 27, rue du Fbg St Jacques, Paris 75014, France.
| |
Collapse
|
12
|
Paudel KR, Dharwal V, Patel VK, Galvao I, Wadhwa R, Malyla V, Shen SS, Budden KF, Hansbro NG, Vaughan A, Yang IA, Kohonen-Corish MRJ, Bebawy M, Dua K, Hansbro PM. Role of Lung Microbiome in Innate Immune Response Associated With Chronic Lung Diseases. Front Med (Lausanne) 2020; 7:554. [PMID: 33043031 PMCID: PMC7530186 DOI: 10.3389/fmed.2020.00554] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung fibrosis, and lung cancer, pose a huge socio-economic burden on society and are one of the leading causes of death worldwide. In the past, culture-dependent techniques could not detect bacteria in the lungs, therefore the lungs were considered a sterile environment. However, the development of culture-independent techniques, particularly 16S rRNA sequencing, allowed for the detection of commensal microbes in the lung and with further investigation, their roles in disease have since emerged. In healthy individuals, the predominant commensal microbes are of phylum Firmicutes and Bacteroidetes, including those of the genera Veillonella and Prevotella. In contrast, pathogenic microbes (Haemophilus, Streptococcus, Klebsiella, Pseudomonas) are often associated with lung diseases. There is growing evidence that microbial metabolites, structural components, and toxins from pathogenic and opportunistic bacteria have the capacity to stimulate both innate and adaptive immune responses, and therefore can contribute to the pathogenesis of lung diseases. Here we review the multiple mechanisms that are altered by pathogenic microbiomes in asthma, COPD, lung cancer, and lung fibrosis. Furthermore, we focus on the recent exciting advancements in therapies that can be used to restore altered microbiomes in the lungs.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vyoma K Patel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Sj Sijie Shen
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Annalicia Vaughan
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Ian A Yang
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Maija R J Kohonen-Corish
- Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
13
|
Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells. Nat Commun 2019; 10:3841. [PMID: 31451696 PMCID: PMC6710242 DOI: 10.1038/s41467-019-11632-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Human lung tissue-resident NK cells (trNK cells) are likely to play an important role in host responses towards viral infections, inflammatory conditions and cancer. However, detailed insights into these cells are still largely lacking. Here we show, using RNA sequencing and flow cytometry-based analyses, that subsets of human lung CD69+CD16− NK cells display hallmarks of tissue-residency, including high expression of CD49a, CD103, and ZNF683, and reduced expression of SELL, S1PR5, and KLF2/3. CD49a+CD16− NK cells are functionally competent, and produce IFN-γ, TNF, MIP-1β, and GM-CSF. After stimulation with IL-15, they upregulate perforin, granzyme B, and Ki67 to a similar degree as CD49a−CD16− NK cells. Comparing datasets from trNK cells in human lung and bone marrow with tissue-resident memory CD8+ T cells identifies core genes co-regulated either by tissue-residency, cell-type or location. Together, our data indicate that human lung trNK cells have distinct features, likely regulating their function in barrier immunity. Detailed characterizations of human lung tissue-resident natural killer (trNK) cells, which potentially regulate local immune responses, is still lacking. Here the authors show that lung CD69+ CD16– NK cells express tissue-residency markers, produce effector cytokines, and are distinct, feature-wise, from lung CD8+ memory T cells or trNK in other tissues.
Collapse
|
14
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Meiners S, Lloyd C, Chambers RC. Cell-matrix interactions in lung disease and regeneration: ERS Lung Science Conference 2018 report. Eur Respir Rev 2018; 27:27/148/180040. [PMID: 29950307 PMCID: PMC9489055 DOI: 10.1183/16000617.0040-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/05/2018] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is essential for the maintenance of tissue architecture, anchoring cells and sustaining normal tissue function. Cells sense and functionally respond to their physical three-dimensional (3D) environment by translating ECM interactions, as well as mechanical forces and deformations, into subsequent cell signalling events. Imbalances in these reciprocal interactions between cells and their ECM perturb normal cellular function and contribute to a diverse range of respiratory diseases, including those associated with abnormal lung development, acute lung injury, pulmonary fibrosis, airway remodelling and cancer [1]. The aim of the European Respiratory Society (ERS) Lung Science Conference (LSC) 2018 was to provide a state-of-the-art review of current understanding of the role of the perturbations of cell–matrix interactions as determinants of cell fate and function across the spectrum of respiratory diseases and lung regeneration. The conference took place on March 8–11, 2018 in Estoril, Portugal, and was regarded as an outstanding forum for the discussion of novel scientific concepts on cell–matrix interactions as well as their dysregulation in lung disease. Imbalances in cell–matrix interactions perturb normal cell function and contribute to a range of respiratory diseases, including those associated with abnormal lung development, acute lung injury, pulmonary fibrosis, airway remodelling and cancerhttp://ow.ly/AVXi30k3QPT
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Clare Lloyd
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| |
Collapse
|