1
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Wang X, Zhang T, Qu L, Zhang Y, Gao G. Auriculasin induces mitochondrial oxidative stress and drives ferroptosis by inhibiting PI3K/Akt pathway in non-small cell lung cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:967-977. [PMID: 39093464 DOI: 10.1007/s00210-024-03328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Non-small cell lung cancer (NSCLC) accounts for the majority of cases of lung cancer with poor outcomes. Auriculasin is a prenylated isoflavone abundant in the root of F. philippinensis with multiple pharmacological effects, including anticancer role. However, its roles in NSCLC remain largely unknown. NSCLC A549 cells were treated with auriculasin in vitro, and used to induce xenograft models. Cell viability was detected via CCK-8 assay. Mitochondrial oxidative stress was analyzed by JC-1 staining, ROS staining, and levels of MDA, SOD and GSH. Ferroptosis was assessed via iron content, and levels of ACSL4, PTGS2, FSP1 and GPX4. The phosphorylation levels of PI3K and Akt were measured by western blot. Auriculasin reduced NSCLC cell viability. Auriculasin promoted mitochondrial oxidative stress by reducing mitochondrial membrane potential, SOD and GSH levels, and enhancing ROS and MDA contents. In addition, auriculasin induced ferroptosis via increasing iron, ACSL4 and PTGS3 levels, and decreasing FSP1 and GPX4 levels. Furthermore, the potential targets of auriculasin in NSCLC were enriched in PI3K/Akt signaling. Auriculasin blunted PI3K/Akt pathway activation by blocking the phosphorylation. Activated PI3K/Akt signaling by activator 740Y-P reversed the effects of auriculasin on mitochondrial oxidative stress and ferroptosis. Finally, auriculasin reduced NSCLC cell growth in xenograft models. Auriculasin facilitates mitochondrial oxidative stress and induces ferroptosis through inhibiting PI3K/Akt pathway in NSCLC.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Tao Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Lin Qu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Yifan Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Guizhou Gao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Zhang X, Yu D, Tang P, Chen F. Insights into the role of mitophagy in lung cancer: current evidence and perspectives. Front Pharmacol 2024; 15:1420643. [PMID: 38962310 PMCID: PMC11220236 DOI: 10.3389/fphar.2024.1420643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Lung cancer, recognized globally as a leading cause of malignancy-associated morbidity and mortality, is marked by its high prevalence and lethality, garnering extensive attention within the medical community. Mitophagy is a critical cellular process that plays a crucial role in regulating metabolism and ensuring quality control within cells. Its relevance to lung cancer has garnered significant attention among researchers and scientists. Mitophagy's involvement in lung cancer encompasses its initiation, progression, metastatic dissemination and treatment. The regulatory landscape of mitophagy is complex, involving numerous signaling proteins and pathways that may exhibit aberrant alterations or mutations within the tumor environment. In the field of treatment, the regulation of mitophagy is considered key to determining cancer chemotherapy, radiation therapy, other treatment options, and drug resistance. Contemporary investigations are directed towards harnessing mitophagy modulators, both inhibitors and activators, in therapeutic strategies, with an emphasis on achieving specificity to minimize collateral damage to healthy cellular populations. Furthermore, molecular constituents and pathways affiliated with mitophagy, serving as potential biomarkers, offer promising avenues for enhancing diagnostic accuracy, prognostic assessment, and prediction of therapeutic responses in lung cancer. Future endeavors will also involve investigating the impact of mitophagy on the composition and function of immune cells within the tumor microenvironment, aiming to enhance our understanding of how mitophagy modulates the immune response to lung cancer. This review aims to comprehensively overview recent advancements about the role of mitophagy in the tumor genesis, progenesis and metastasis, and the impact of mitophagy on the treatment of lung cancer. We also discussed the future research direction of mitophagy in the field of lung cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongzhi Yu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peng Tang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
6
|
Liu S, Tan X, Liu S. The role of extracellular vesicles in COPD and potential clinical value. Respir Res 2024; 25:84. [PMID: 38331841 PMCID: PMC10854156 DOI: 10.1186/s12931-024-02719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung disease and a major health burden worldwide. Extracellular vesicles (EVs) are nanosized vesicles which possess a lipid bilayer structure that are secreted by various cells. They contain a variety of bioactive substances, which can regulate various physiological and pathological processes and are closely related to the development of diseases. Recently, EVs have emerged as a novel tool for intercellular crosstalk, which plays an essential role in COPD development. This paper reviews the role of EVs in the development of COPD and their potential clinical value, in order to provide a reference for further research on COPD.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaowu Tan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Sahu P, Donovan C, Paudel KR, Pickles S, Chimankar V, Kim RY, Horvart JC, Dua K, Ieni A, Nucera F, Bielefeldt-Ohmann H, Mazilli S, Caramori G, Lyons JG, Hansbro PM. Pre-clinical lung squamous cell carcinoma mouse models to identify novel biomarkers and therapeutic interventions. Front Oncol 2023; 13:1260411. [PMID: 37817767 PMCID: PMC10560855 DOI: 10.3389/fonc.2023.1260411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Primary lung carcinoma or lung cancer (LC) is classified into small-cell or non-small-cell (NSCLC) lung carcinoma. Lung squamous cell carcinoma (LSCC) is the second most common subtype of NSCLC responsible for 30% of all LCs, and its survival remains low with only 24% of patients living for five years or longer post-diagnosis primarily due to the advanced stage of tumors at the time of diagnosis. The pathogenesis of LSCC is still poorly understood and has hampered the development of effective diagnostics and therapies. This review highlights the known risk factors, genetic and epigenetic alterations, miRNA biomarkers linked to the development and diagnosis of LSCC and the lack of therapeutic strategies to target specifically LSCC. We will also discuss existing animal models of LSCC including carcinogen induced, transgenic and xenograft mouse models, and their advantages and limitations along with the chemopreventive studies and molecular studies conducted using them. The importance of developing new and improved mouse models will also be discussed that will provide further insights into the initiation and progression of LSCC, and enable the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Priyanka Sahu
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Richard Y. Kim
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Jay C. Horvart
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sarah Mazilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - J. Guy Lyons
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia, and Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Philip M. Hansbro
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| |
Collapse
|
8
|
Liu SF, Chang HC, Chang YP, Kuo HC, Tsai YC. IL13 Promoter (-1055) Polymorphism Associated with Leukocyte Mitochondria DNA Copy Number in Chronic Obstructive Pulmonary Disease. Cells 2022; 11:cells11233787. [PMID: 36497047 PMCID: PMC9736668 DOI: 10.3390/cells11233787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
IL13 polymorphism is associated with chronic obstructive pulmonary disease (COPD). Patients with COPD have smaller numbers of mitochondria deoxyribonucleic acid copies (mtDNA-CN) than people without COPD do. However, whether IL13 polymorphism affects the mutation and recombination of mitochondria remains unclear. Data for patients with COPD and non-COPD were collected from Kaohsiung Chang Gung Memorial Hospital to enable a comparison of their leukocyte mtDNA-CN and the association of this information with IL-13 promoter (−1055) polymorphism. This study included 99 patients with COPD and 117 individuals without COPD. The non-COPD individuals included 77 healthy individuals that never smoked and 40 healthy smokers. The patients with COPD exhibited significantly lower mtDNA-CN than non-COPD did (250.34 vs. 440.03; p < 0.001); mtDNA-CN was particularly pronounced in individuals with the IL13 CC and CT genotypes compared with individuals with the TT genotype. When only individuals without COPD were considered and when all participants were considered, the differences in the mtDNA-CNs in individuals with the CC and CT genotypes were more significant than those in individuals with the TT genotype (448.4 and 533.6 vs. 282.8; p < 0.05 in non-COPD group); (368.8 and 362.6 vs. 249.6, p < 0.05 in all participants). The increase mtDNA-CN in the CC and CT genotypes was also more than that in the TT genotype in COPD patients, but showed no significance (260.1 and 230.5 vs. 149.9; p = 0.343). The finding shows that COPD is a mitochondria regulatory disorder and IL-13 promoter (−1055) polymorphism is associated with leukocyte mtDNA-CN. Developing COPD control methods based on mitochondrial regulation will be possible.
Collapse
Affiliation(s)
- Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Medical Department, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8199)
| | - Hui-Chuan Chang
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Ping Chang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Medical Department, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ho-Chang Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Medical Department, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yuh-Chyn Tsai
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
9
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
10
|
Sui JSY, Martin P, Keogh A, Murchan P, Ryan L, Nicholson S, Cuffe S, Broin PÓ, Finn SP, Fitzmaurice GJ, Ryan R, Young V, Gray SG. Altered expression of ACOX2 in non-small cell lung cancer. BMC Pulm Med 2022; 22:321. [PMID: 35999530 PMCID: PMC9396774 DOI: 10.1186/s12890-022-02115-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Peroxisomes are organelles that play essential roles in many metabolic processes, but also play roles in innate immunity, signal transduction, aging and cancer. One of the main functions of peroxisomes is the processing of very-long chain fatty acids into metabolites that can be directed to the mitochondria. One key family of enzymes in this process are the peroxisomal acyl-CoA oxidases (ACOX1, ACOX2 and ACOX3), the expression of which has been shown to be dysregulated in some cancers. Very little is however known about the expression of this family of oxidases in non-small cell lung cancer (NSCLC). ACOX2 has however been suggested to be elevated at the mRNA level in over 10% of NSCLC, and in the present study using both standard and bioinformatics approaches we show that expression of ACOX2 is significantly altered in NSCLC. ACOX2 mRNA expression is linked to a number of mutated genes, and associations between ACOX2 expression and tumour mutational burden and immune cell infiltration were explored. Links between ACOX2 expression and candidate therapies for oncogenic driver mutations such as KRAS were also identified. Furthermore, levels of acyl-CoA oxidases and other associated peroxisomal genes were explored to identify further links between the peroxisomal pathway and NSCLC. The results of this biomarker driven study suggest that ACOX2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Midland Regional Hospital Tullamore, Tullamore, Ireland
| | - Anna Keogh
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
- School of Mathematics, Statistics, and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Sinead Cuffe
- HOPE Directorate, St James's Hospital, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics, and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Gerard J Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biological Sciences, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Aghali A, Koloko Ngassie ML, Pabelick CM, Prakash YS. Cellular Senescence in Aging Lungs and Diseases. Cells 2022; 11:cells11111781. [PMID: 35681476 PMCID: PMC9179897 DOI: 10.3390/cells11111781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Cellular senescence represents a state of irreversible cell cycle arrest occurring naturally or in response to exogenous stressors. Following the initial arrest, progressive phenotypic changes define conditions of cellular senescence. Understanding molecular mechanisms that drive senescence can help to recognize the importance of such pathways in lung health and disease. There is increasing interest in the role of cellular senescence in conditions such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) in the context of understanding pathophysiology and identification of novel therapies. Herein, we discuss the current knowledge of molecular mechanisms and mitochondrial dysfunction regulating different aspects of cellular senescence-related to chronic lung diseases to develop rational strategies for modulating the senescent cell phenotype in the lung for therapeutic benefit.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (C.M.P.)
| | - Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (C.M.P.)
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (C.M.P.)
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
12
|
Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci 2021; 284:119876. [PMID: 34389405 DOI: 10.1016/j.lfs.2021.119876] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are biosynthetic, bioenergetic, and signaling organelles which are critical for physiological adaptations and cellular stress responses to the environment. Various endogenous and environmental stress affects critical processes in mitochondrial homeostasis such as oxidative phosphorylation, biogenesis, mitochondrial redox system which leads to the formation of reactive oxygen species (ROS) and free radicals. The state of function of the mitochondrion is particularly dependent on the dynamic balance between mitochondrial biogenesis, fusion and fission, and degradation of damaged mitochondria by mitophagy. Increasing evidence has suggested a prominent role of mitochondrial dysfunction in the onset and progression of various lung pathologies, ranging from acute to chronic disorders. In this comprehensive review, we discuss the emerging findings of multifaceted regulations of mitochondrial dynamics and mitophagy in normal lung homeostasis as well as the prominence of mitochondrial dysfunction as a determining factor in different lung disorders such as lung cancer, COPD, IPF, ALI/ARDS, BPD, and asthma. The review will contribute to the existing understanding of critical molecular machinery regulating mitochondrial dynamic state during these pathological states. Furthermore, we have also highlighted various molecular checkpoints involved in mitochondrial dynamics, which may serve as hopeful therapeutic targets for the development of potential therapies for these lung disorders.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
13
|
Chen YC, Sung HC, Chuang TY, Lai TC, Lee TL, Lee CW, Lee IT, Chen YL. Vitamin D 3 decreases TNF-α-induced inflammation in lung epithelial cells through a reduction in mitochondrial fission and mitophagy. Cell Biol Toxicol 2021; 38:427-450. [PMID: 34255241 PMCID: PMC8275919 DOI: 10.1007/s10565-021-09629-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023]
Abstract
Previous work has shown an association between vitamin D3 deficiency and an increased risk for acquiring various inflammatory diseases. Vitamin D3 can reduce morbidity and mortality in these patients via different mechanisms. Lung inflammation is an important event in the initiation and development of respiratory disorders. However, the anti-inflammatory effects of vitamin D3 and the underlying mechanisms remained to be determined. The purpose of this study was to examine the effects and mechanisms of action of vitamin D3 (Vit. D) on the expression of intercellular adhesion molecule-1 (ICAM-1) in vitro and in vivo with or without tumor necrosis factor α (TNF-α) treatment. Pretreatment with Vit. D reduced the expression of ICAM-1 and leukocyte adhesion in TNF-α-treated A549 cells. TNF-α increased the accumulation of mitochondrial reactive oxygen species (mtROS), while Vit. D reduced this effect. Pretreatment with Vit. D attenuated TNF-α-induced mitochondrial fission, as shown by the increased expression of mitochondrial fission factor (Mff), phosphorylated dynamin-related protein 1 (p-DRP1), and mitophagy-related proteins (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3, Bnip3) in A549 cells. Inhibition of DRP1 or Mff significantly decreased ICAM-1 expression. In addition, we found that Vit. D decreased TNF-α-induced ICAM-1 expression, mitochondrial fission, and mitophagy via the AKT and NF-κB pathways. Moreover, ICAM-1 expression, mitochondrial fission, and mitophagy were increased in the lung tissues of TNF-α-treated mice, while Vit. D supplementation reduced these effects. In this study, we elucidated the mechanisms by which Vit. D reduces the expression of adhesion molecules in models of airway inflammation. Vit. D might be served as a novel therapeutic agent for the targeting of epithelial activation in lung inflammation.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan. .,Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| | - Tzu-Yi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Min-Sheng General Hospital, No. 168 Jin-Kuo Road, Taoyuan City, Taiwan. .,Department of Internal Medicine, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Ren-Ai Road, Taipei, Taiwan.
| |
Collapse
|
14
|
Cigarette smoke extract reduces FOXO3a promoting tumor progression and cell migration in lung cancer. Toxicology 2021; 454:152751. [PMID: 33737139 DOI: 10.1016/j.tox.2021.152751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and the carcinogens in tobacco smoke play a role in its progression and metastasis. The related molecular events are largely unknown. FOXO3a is a transcription factor considered a tumor suppressor. Its inhibition leads to cell transformation, tumor progression and metastasis. The aim of this study was to investigate, in different types of lung cancer cell lines (A549, COLO 699 N, SK-MES-1), the effects of cigarette smoke on mitochondrial status and cell metabolism and on key pathways involved in tumor progression and cell migration, looking at the role of FOXO3a in these mechanisms. The different lung cancer cells were exposed to cigarette smoke extract (CSE) and TGF-β1. Reactive oxygen species (ROS), mitochondrial superoxide, intracellular ATP, extracellular lactate, FOXO3a, p21, survivin, epithelial-to-mesenchymal transition (EMT) markers (E-cadherin, SNAIL1), MMP-9 and cellular migration were assessed by flow-cytometry, fluorimetry, western blot analysis, Real-Time PCR and scratch test. Our results showed that exposure to CSE: (i) increased ROS, mitochondrial superoxide, lactate release while reducing intracellular ATP; (ii) decreased FOXO3a and increased survivin and p21 in the cytoplasm; (iii) decreased E-cadherin, increased SNAIL1 and MMP-9 and promoted cell migration like TGF-β1 did. These effects could be partly explained by downregulation of FOXO3a, as demonstrated by silencing experiments. These data suggest that cigarette smoke induces oxidative stress and mitochondrial damage leading to metabolic reprogramming associated with increased glycolytic flux. This is accompanied with a downregulation of FOXO3a contributing to EMT processes and cell migration therefore promoting tumor progression.
Collapse
|
15
|
Cui Y, Pan M, Ma J, Song X, Cao W, Zhang P. Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem 2021; 476:493-506. [PMID: 33000352 DOI: 10.1007/s11010-020-03926-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China
| | - Jing Ma
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xinhua Song
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
16
|
Shen Z, Xuan W, Wang H, Sun F, Zhang C, Gong Q, Ge S. miR-200b regulates cellular senescence and inflammatory responses by targeting ZEB2 in pulmonary emphysema. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:656-663. [PMID: 32070140 DOI: 10.1080/21691401.2020.1725029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smoking is an important factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), which is commonly characterised by cellular senescence and inflammation. Recently, miR-200b has emerged as an important target to cure lung disease; however, the function of miR-200b in reducing cellular senescence and inflammatory responses has not been reported. In this study, we found that miR-200b was downregulated in the lungs of COPD model mice, and its expression is correlated with cellular senescence and inflammatory responses. We hypothesised that miR-200b may be a potential novel therapy for treating COPD. We performed senescence-Associated-β-galactosidase (SA-β-GAL) staining, western blot, qRT-PCR and ELISA; our data suggested that miR-200b is an anti-aging factor in the lungs that is involved in inflammatory responses. We also confirmed that ZEB2 (Zinc finger E-box binding homeobox 2) is a target gene of miR-200b using luciferase reporter assay. In addition, we verified the function of ZEB2 in cellular senescence and inflammatory responses through transfection experiments. Moreover, we found that the protective effects of miR-200b are inhibited when cells overexpress the ZEB2 protein. In conclusion, our results suggest that miR-200b may attenuate cellular senescence and inflammatory responses by targeting ZEB2 in pulmonary emphysema.
Collapse
Affiliation(s)
- Zhiming Shen
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenting Xuan
- Department of Anesthesiology, Drum Tower Hospital, Medical College of Nanjing University, Nanjing, China
| | - Huanhuan Wang
- Department of Radiation Oncology, First Hospital of Jilin University, Changchun, China
| | - Fei Sun
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiac Intensive Care Unit, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29:29/157/200165. [PMID: 33060165 DOI: 10.1183/16000617.0165-2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA.,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
18
|
Chung C, Seo W, Silwal P, Jo EK. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol 2020; 13:100. [PMID: 32703253 PMCID: PMC7376907 DOI: 10.1186/s13045-020-00936-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Both inflammasomes and autophagy have important roles in the intracellular homeostasis, inflammation, and pathology; the dysregulation of these processes is often associated with the pathogenesis of numerous cancers. In addition, they can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses, including cancer. Multiple molecular mechanisms connect the autophagy pathway to inflammasome activation and, through this, may influence the outcome of pro-tumor or anti-tumor responses depending on the cancer types, microenvironment, and the disease stage. In this review, we highlight the rapidly growing literature on the various mechanisms by which autophagy interacts with the inflammasome pathway, to encourage additional applications in the context of tumors. In addition, we provide insight into the mechanisms by which pathogen modulates the autophagy-inflammasome pathway to favor the infection-induced carcinogenesis. We also explore the challenges and opportunities of using multiple small molecules/agents to target the autophagy/inflammasome axis and their effects upon cancer treatment. Finally, we discuss the emerging clinical efforts assessing the potential usefulness of targeting approaches for either autophagy or inflammasome as anti-cancer strategies, although it remains underexplored in terms of their crosstalks.
Collapse
Affiliation(s)
- Chaeuk Chung
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
19
|
Dong Y, Cao H, Cao R, Baranova A. TNFRSF12A and CD38 Contribute to a Vicious Circle for Chronic Obstructive Pulmonary Disease by Engaging Senescence Pathways. Front Cell Dev Biol 2020; 8:330. [PMID: 32537452 PMCID: PMC7268922 DOI: 10.3389/fcell.2020.00330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenesis of chronic obstructive pulmonary disease (COPD) is dependent on chronic inflammation and is hypothesized to represent organ-specific senescence phenotype. Identification of senescence-associated gene drivers for the development of COPD is warranted. By employing automated pipeline, we have compiled lists of the genes implicated in COPD (N = 918) and of the genes changing their activity along with cell senescence (N = 262), with a significant (p < 7.06e-60) overlap between these datasets (N = 89). A mega-analysis and a partial mega-analysis were conducted for gene sets linked to senescence but not yet to COPD, in nine independent mRNA expression datasets comprised of tissue samples of COPD cases (N = 171) and controls (N = 256). Mega-analysis of expression has identified CD38 and TNFRSF12A (p < 2.12e-8) as genes not yet explored in a context of senescence-COPD connection. Functional pathway enrichment analysis allowed to generate a model, which explains accelerated aging phenotypes previously observed in COPD patients. Presented results call for investigation of the role of TNFRSF12A/CD38 balance in establishing a vicious cycle of unresolvable tissue remodeling in COPD lungs.
Collapse
Affiliation(s)
- Yan Dong
- Lianyungang Second People's Hospital, Lianyungang, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Rongyuan Cao
- Lianyungang Second People's Hospital, Lianyungang, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Centre for Medical Genetics, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
20
|
Huang D, Peng Y, Li Z, Chen S, Deng X, Shao Z, Ma K. Compression-induced senescence of nucleus pulposus cells by promoting mitophagy activation via the PINK1/PARKIN pathway. J Cell Mol Med 2020; 24:5850-5864. [PMID: 32281308 PMCID: PMC7214186 DOI: 10.1111/jcmm.15256] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
The current research aimed to explore the possible relationship between PINK1/PARKIN-mediated mitophagy and the compression-induced senescence of nucleus pulposus cells (NPCs). Therefore, the stages of senescence in NPCs were measured under compression lasting 0, 24 and 48 hours. The mitophagy-related markers, autophagosomes and mitochondrial membrane potential were tested to determine the levels of PINK1/PARKIN-mediated mitophagy under compression. The PINK1 and PARKIN levels were also measured by immunohistochemistry of human and rat intervertebral disc (IVD) tissues taken at different degenerative stages. A specific mitophagy inhibitor, cyclosporine A (CSA) and a constructed PINK1-shRNA were used to explore the relationship between mitophagy and senescence by down-regulating the PINK1/PARKIN-mediated mitophagy levels. Our results indicated that compression significantly enhanced the senescence of NPCs in a time-dependent manner. Also, PINK1/PARKIN-mediated mitophagy was found to be activated by the extended duration of compression on NPCs as well as the increased degenerative stages of IVD tissues. After inhibition of PINK1/PARKIN-mediated mitophagy by CSA and PINK1-shRNA, the senescence of NPCs induced by compression was strongly rescued. Hence, the excessive degradation of mitochondria in NPCs by mitophagy under continuous compression may accelerate the senescence of NPCs. Regulating PINK1/PARKIN-mediated mitophagy might be a potential therapeutic treatment for IVD degeneration.
Collapse
Affiliation(s)
- Donghua Huang
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of OrthopedicsMusculoskeletal Tumor CenterThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yizhong Peng
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhiliang Li
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sheng Chen
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangyu Deng
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zengwu Shao
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kaige Ma
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Malyla V, Paudel KR, Shukla SD, Donovan C, Wadhwa R, Pickles S, Chimankar V, Sahu P, Bielefeldt-Ohmann H, Bebawy M, Hansbro PM, Dua K. Recent advances in experimental animal models of lung cancer. Future Med Chem 2020; 12:567-570. [PMID: 32175774 DOI: 10.4155/fmc-2019-0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023] Open
Affiliation(s)
- Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs & Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
- Priority Research Centre for Healthy Lungs & Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- Priority Research Centre for Healthy Lungs & Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- Priority Research Centre for Healthy Lungs & Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Priyanka Sahu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- Priority Research Centre for Healthy Lungs & Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
- Priority Research Centre for Healthy Lungs & Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- Priority Research Centre for Healthy Lungs & Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2305, Australia
| |
Collapse
|
22
|
Ghadiri M, Yung AE, Haghi M. Role of Oxidative Stress in Complexity of Respiratory Diseases. ROLE OF OXIDATIVE STRESS IN PATHOPHYSIOLOGY OF DISEASES 2020:67-92. [DOI: 10.1007/978-981-15-1568-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Thun GA, Derdak S, Castro-Giner F, Apunte-Ramos K, Águeda L, Wjst M, Boland A, Deleuze JF, Kolsum U, Heiss-Neumann MS, Nowinski A, Gorecka D, Hohlfeld JM, Welte T, Brightling CE, Parr DG, Prasse A, Müller-Quernheim J, Greulich T, Stendardo M, Boschetto P, Barta I, Döme B, Gut M, Singh D, Ziegler-Heitbrock L, Gut IG. High degree of polyclonality hinders somatic mutation calling in lung brush samples of COPD cases and controls. Sci Rep 2019; 9:20158. [PMID: 31882973 PMCID: PMC6934450 DOI: 10.1038/s41598-019-56618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is induced by cigarette smoking and characterized by inflammation of airway tissue. Since smokers with COPD have a higher risk of developing lung cancer than those without, we hypothesized that they carry more mutations in affected tissue. We called somatic mutations in airway brush samples from medium-coverage whole genome sequencing data from healthy never and ex-smokers (n = 8), as well as from ex-smokers with variable degrees of COPD (n = 4). Owing to the limited concordance of resulting calls between the applied tools we built a consensus, a strategy that was validated with high accuracy for cancer data. However, consensus calls showed little promise of representing true positives due to low mappability of corresponding sequence reads and high overlap with positions harbouring known genetic polymorphisms. A targeted re-sequencing approach suggested that only few mutations would survive stringent verification testing and that our data did not allow the inference of any difference in the mutational load of bronchial brush samples between former smoking COPD cases and controls. High polyclonality in airway brush samples renders medium-depth sequencing insufficient to provide the resolution to detect somatic mutations. Deep sequencing data of airway biopsies are needed to tackle the question.
Collapse
Affiliation(s)
- Gian-Andri Thun
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesc Castro-Giner
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Katherine Apunte-Ramos
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lidia Águeda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Matthias Wjst
- Helmholtz-Zentrum München, National Research Centre for Environmental Health, Institute of Lung Biology and Disease, Neuherberg, Germany
- Institute of Medical Statistics, Epidemiology and Medical Informatics, Technical University Munich, Munich, Germany
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Umme Kolsum
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Adam Nowinski
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Dorota Gorecka
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center of Lung Research, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Christopher E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - David G Parr
- Department of Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | | | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Marburg, Germany
| | - Mariarita Stendardo
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Piera Boschetto
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Imre Barta
- Department of Pathophysiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Balázs Döme
- Department of Tumorbiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Dave Singh
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
24
|
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 2019; 10:365-381. [PMID: 31832112 PMCID: PMC6882964 DOI: 10.1007/s13167-019-00194-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
A strong relationship exists between tumor and inflammation, which is the hot point in cancer research. Inflammation can promote the occurrence and development of cancer by promoting blood vessel growth, cancer cell proliferation, and tumor invasiveness, negatively regulating immune response, and changing the efficacy of certain anti-tumor drugs. It has been demonstrated that there are a large number of inflammatory factors and inflammatory cells in the tumor microenvironment, and tumor-promoting immunity and anti-tumor immunity exist simultaneously in the tumor microenvironment. The typical relationship between chronic inflammation and tumor has been presented by the relationships between Helicobacter pylori, chronic gastritis, and gastric cancer; between smoking, development of chronic pneumonia, and lung cancer; and between hepatitis virus (mainly hepatitis virus B and C), development of chronic hepatitis, and liver cancer. The prevention of chronic inflammation is a factor that can prevent cancer, so it effectively inhibits or blocks the occurrence, development, and progression of the chronic inflammation process playing important roles in the prevention of cancer. Monitoring of the causes and inflammatory factors in chronic inflammation processes is a useful way to predict cancer and assess the efficiency of cancer prevention. Chronic inflammation-based biomarkers are useful tools to predict and prevent cancer.
Collapse
Affiliation(s)
- Shehua Qian
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Olga Golubnitschaja
- 4Radiological Clinic, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
- 5Breast Cancer Research Centre, UKB, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- 6Centre for Integrated Oncology, Cologne-Bonn, Excellence Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Xianquan Zhan
- 1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 2Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 3State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
- 7Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
- 8National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
25
|
Shukla SD, Walters EH, Simpson JL, Keely S, Wark PA, O'Toole RF, Hansbro PM. Hypoxia‐inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology 2019; 25:53-63. [DOI: 10.1111/resp.13722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shakti D. Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - E. Haydn Walters
- School of Medicine, College of Health and MedicineUniversity of Tasmania Hobart TAS Australia
| | - Jodie L. Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Ronan F. O'Toole
- School of Molecular Sciences, College of Science, Health and EngineeringLa Trobe University Melbourne VIC Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Centenary Institute and School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
26
|
Nader CP, Cidem A, Verrills NM, Ammit AJ. Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respir Res 2019; 20:222. [PMID: 31623614 PMCID: PMC6798356 DOI: 10.1186/s12931-019-1192-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer (LC) has the highest relative risk of development as a comorbidity of chronic obstructive pulmonary disease (COPD). The molecular mechanisms that mediate chronic inflammation and lung function impairment in COPD have been identified in LC. This suggests the two diseases are more linked than once thought. Emerging data in relation to a key phosphatase, protein phosphatase 2A (PP2A), and its regulatory role in inflammatory and tumour suppression in both disease settings suggests that it may be critical in the progression of COPD to LC. In this review, we uncover the importance of the functional and active PP2A holoenzyme in the context of both diseases. We describe PP2A inactivation via direct and indirect means and explore the actions of two key PP2A endogenous inhibitors, cancerous inhibitor of PP2A (CIP2A) and inhibitor 2 of PP2A (SET), and the role they play in COPD and LC. We explain how dysregulation of PP2A in COPD creates a favourable inflammatory micro-environment and promotes the initiation and progression of tumour pathogenesis. Finally, we highlight PP2A as a druggable target in the treatment of COPD and LC and demonstrate the potential of PP2A re-activation as a strategy to halt COPD disease progression to LC. Although further studies are required to elucidate if PP2A activity in COPD is a causal link for LC progression, studies focused on the potential of PP2A reactivating agents to reduce the risk of LC formation in COPD patients will be pivotal in improving clinical outcomes for both COPD and LC patients in the future.
Collapse
Affiliation(s)
- Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis 2019; 11:S2173-S2180. [PMID: 31737344 DOI: 10.21037/jtd.2019.10.40] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current management strategies for chronic obstructive pulmonary disease (COPD) incorporate a step-wise, multidisciplinary approach to effectively manage patient symptoms and prevent disease progression. However, there has been limited advancement in therapies to address the underlying cause of COPD pathogenesis. Recent research has established the link between the lungs and the gut-the gut-lung axis -and the gut microbiome is a major component. The gut microbiome is likely perturbed in COPD, contributing to chronic inflammation. Diet is a readily modifiable factor and the diet of COPD patients is often deficient in nutrients such as fibre. The metabolism of dietary fibre by gut microbiomes produces anti-inflammatory short chain fatty acid (SCFAs), which could protect against inflammation in the lungs. By addressing the 'fibre gap' in the diet of COPD patients, this targeted dietary intervention may reduce inflammation, both systemically and in the airways, and value-add to the paradigm shift in respiratory medicine, from reactive to personalised and participatory medicine.
Collapse
Affiliation(s)
- Annalicia Vaughan
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Chermside, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Zoe A Frazer
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Chermside, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, University of Technology Sydney, Faculty of Science, Camperdown, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Chermside, Brisbane, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
28
|
Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int J Mol Sci 2019; 20:E4472. [PMID: 31510091 PMCID: PMC6769561 DOI: 10.3390/ijms20184472] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that a chronic state of inflammation correlated with aging known as inflammaging, is implicated in multiple disease states commonly observed in the elderly population. Inflammaging is associated with over-abundance of reactive oxygen species in the cell, which can lead to oxidation and damage of cellular components, increased inflammation, and activation of cell death pathways. This review focuses on inflammaging and its contribution to various age-related diseases such as cardiovascular disease, cancer, neurodegenerative diseases, chronic obstructive pulmonary disease, diabetes, and rheumatoid arthritis. Recently published mechanistic details of the roles of reactive oxygen species in inflammaging and various diseases will also be discussed. Advancements in potential treatments to ameliorate inflammaging, oxidative stress, and consequently, reduce the morbidity of multiple disease states will be explored.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, University of Maine Presque Isle Campus, Presque Isle, ME 04769, USA.
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mykola Stetskiv
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - James R Meade
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Timotheus I Peace
- College of Arts and Sciences, University of Maine Presque Isle Campus, Presque Isle, ME 04769, USA
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Wu Q, Chong L, Shao Y, Chen S, Li C. Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway. Int Immunopharmacol 2019; 73:414-423. [PMID: 31152979 DOI: 10.1016/j.intimp.2019.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and is mainly caused by hyperoxia exposure and mechanical ventilation. Alveolar simplification, pulmonary vascular abnormalities and pulmonary inflammation are the main pathological changes in hyperoxic lung injury animals. Lipoxin A4 (LXA4) is an important endogenous lipid that can mediate the regression of inflammation and plays a role in acute lung injury and asthma. The purpose of this study was to evaluate the effects of LXA4 on inflammation and lung function in neonatal rats with hyperoxic lung injury and to explore the mechanism of the PINK1 pathway. After 85% oxygen exposure in newborn rats for 7 days, the BPD model was established. We found that LXA4 could significantly reduce cell and protein infiltration and oxidative stress in rat lungs, improve pulmonary function and alveolar simplification, and promote weight gain. LXA4 inhibited the expression of TNF-α, MCP-1 and IL-1β in serum and BALF from hyperoxic rats. Moreover, we found that LXA4 could reduce the expression of the PINK1 gene and down-regulate the expression of PINK1, Parkin, BNIP3L/Nix and the autophagic protein LC3B.These protective effects of LXA4 could be partially reversed by addition of BOC-2.Thus, we concluded that LXA4 can alleviate the airway inflammatory response, reduce the severity of lung injury and improve lung function in a hyperoxic rat model of BPD partly through the PINK1 signaling pathway.
Collapse
Affiliation(s)
- Qiuping Wu
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Chong
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youyou Shao
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Discipline of Neonatology Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changchong Li
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
30
|
Caramori G, Ruggeri P, Mumby S, Ieni A, Lo Bello F, Chimankar V, Donovan C, Andò F, Nucera F, Coppolino I, Tuccari G, Hansbro PM, Adcock IM. Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Targets 2019; 23:539-553. [DOI: 10.1080/14728222.2019.1615884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Federica Lo Bello
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Filippo Andò
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Nucera
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
- Faculty of Science, Ultimo, and Centenary Institute, Centre for Inflammation, University of Technology Sydney, Sydney, Australia
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
31
|
Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. BIOLOGY 2019; 8:biology8020032. [PMID: 31083551 PMCID: PMC6628177 DOI: 10.3390/biology8020032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function declines with age, leading to a variety of age-related diseases (metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle, kidney and central nervous system injury and, in rare cases, to death. Many of the most prescribed medications in the geriatric population carry mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial function, such as weight loss, exercise and nutrition.
Collapse
|
32
|
Heparin-binding epidermal growth factor (HB-EGF) drives EMT in patients with COPD: implications for disease pathogenesis and novel therapies. J Transl Med 2019; 99:150-157. [PMID: 30451982 DOI: 10.1038/s41374-018-0146-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/07/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and devastating chronic lung condition that has a significant global burden, both medically and financially. Currently there are no medications that can alter the course of disease. At best, the drugs in clinical practice provide symptomatic relief to suffering patients by alleviating acute exacerbations. Most of current clinical research activities are in late severe disease with lesser attention given to early disease manifestations. There is as yet, a lack of understanding of the underlying mechanisms of disease progression and the molecular switches that are involved in their manifestation. Small airway fibrosis and obliteration are known to cause fixed airflow obstruction in COPD, and the consequential damage to the lung has an early onset. So far, there is little evidence of the mechanisms that underlie this aspect of pathology. However, emerging research confirms that airway epithelial reprogramming or epithelial to mesenchymal transition (EMT) is a key mechanism that drives fibrotic remodelling changes in smokers and patients with COPD. A recent study by Lai et al. further highlights the importance of EMT in smoking-related COPD pathology. The authors identify HB-EGF, an EGFR ligand, as a key driver of EMT and a potential new therapeutic target for the amelioration of EMT and airway remodelling. There are also wider implications in lung cancer prophylaxis, which is another major comorbidity associated with COPD. We consider that improved molecular understanding of the intricate pathways associated with epithelial cell plasticity in smokers and patients with COPD will have major therapeutic implications.
Collapse
|
33
|
Zhu J, Lian L, Qin H, Wang WJ, Ren R, Xu MD, Chen K, Duan W, Gong FR, Tao M, Zhi Q, Wu MY, Li W. Prognostic evaluation of patients with resectable lung cancer using systemic inflammatory response parameters. Oncol Lett 2018; 17:2244-2256. [PMID: 30675290 PMCID: PMC6341870 DOI: 10.3892/ol.2018.9858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-associated mortality. C-reactive protein (CRP), albumin (ALB), globulin (GLB), lactate dehydrogenase (LDH), neutrophil-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have been identified as general parameters for systemic inflammatory response (SIR). Furthermore, these parameters are also associated with tumor development and metastasis. The present study aimed to investigate the predictive values of these SIR parameters in patients with resectable lung cancer. In total, 101 patients with resectable lung cancer were recruited in the present study. The patients were divided into two groups according to the median value of pre-treatment CRP, ALB, GLB, LDH, NLR or PLR values. The post-/pre-treatment ratios were defined as the ratio of pre-treatment blood parameter values and the corresponding values obtained following therapy. A ratio of ≤1.1 indicated that the values were not increased, while a ratio of >1.1 suggested that the values were increased following treatment. Patients with lower pre-treatment ALB levels had poorer overall survival (OS) rates, whereas GLB, LDH, CRP, NLR or PLR levels were not associated with outcomes. Whole course treatment (surgery combined with adjuvant chemotherapy) significantly increased the value of ALB, but decreased the value of NLR, whereas it had no effect on the values of LDH, CRP or PLR. Post-/pre-treatment LDH and PLR were associated with outcomes. Post-/pre-treatment ALB, GLB, CRP and NLR were not associated with outcomes. Multivariate analysis revealed that a low pre-treatment ALB level and increased post-/pre-treatment PLR were independent risk factors affecting OS. The receiver operating characteristic curve analysis demonstrated that an ALB value of 47.850 g/l was considered to be the optimal cut-off value for prognosis; the sensitivity was 28.8% and specificity was 95.9%. It was suggested that the pre-treatment ALB and post-/pre-treatment PLR may be potential prognostic factors in resectable lung cancer.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215000, P.R. China
| | - Hualong Qin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wen-Jie Wang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Rui Ren
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Meng-Dan Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, Jiangsu 215021, P.R. China
| | - Qiaoming Zhi
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, Jiangsu 215021, P.R. China.,Comprehensive Cancer Center, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
34
|
Adcock IM, Mumby S, Caramori G. Breaking news: DNA damage and repair pathways in COPD and implications for pathogenesis and treatment. Eur Respir J 2018; 52:52/4/1801718. [PMID: 30287495 DOI: 10.1183/13993003.01718-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College, London, UK
| | - Sharon Mumby
- Airways Disease Section, National Heart & Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF) Università degli Studi di Messina, Messina, Italy
| |
Collapse
|