1
|
Dores H, Mendes M, Abreu A, Durazzo A, Rodrigues C, Vilela E, Cunha G, Gomes Pereira J, Bento L, Moreno L, Dinis P, Amorim S, Clemente S, Santos M. Cardiopulmonary exercise testing in clinical practice: Principles, applications, and basic interpretation. Rev Port Cardiol 2024; 43:525-536. [PMID: 38583860 DOI: 10.1016/j.repc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 04/09/2024] Open
Abstract
Cardiopulmonary exercise testing (CPET) provides a noninvasive and integrated assessment of the response of the respiratory, cardiovascular, and musculoskeletal systems to exercise. This information improves the diagnosis, risk stratification, and therapeutic management of several clinical conditions. Additionally, CPET is the gold standard test for cardiorespiratory fitness quantification and exercise prescription, both in patients with cardiopulmonary disease undergoing cardiac or pulmonary rehabilitation programs and in healthy individuals, such as high-level athletes. In this setting, the relevance of practical knowledge about this exam is useful and of interest to several medical specialties other than cardiology. However, despite its multiple established advantages, CPET remains underused. This article aims to increase awareness of the value of CPET in clinical practice and to inform clinicians about its main indications, applications, and basic interpretation.
Collapse
Affiliation(s)
- Hélder Dores
- Department of Cardiology, Hospital da Luz, Lisbon, Portugal; CHRC, NOVA Medical School, Lisbon, Portugal; NOVA Medical School, Lisbon, Portugal.
| | - Miguel Mendes
- Department of Cardiology, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Ana Abreu
- Cardiovascular Rehabilitation Center, Department of Cardiology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, CHULN/Faculdade de Medicina da Universidade de Lisboa, FMUL/CRECUL, Lisbon, Portugal; Ergometry Department, Department of Cardiology, Hospital de Santa Maria, CHULN, Lisbon, Portugal; Instituto de Saúde Ambiental, ISAMB, FMUL/Laboratório Associado Terra, Lisbon, Portugal; Instituto de Medicina Preventiva e Saúde Pública, IMPSP, FMUL, Lisbon, Portugal; Instituto de Medicina Nuclear, IMN, FMUL, Lisbon, Portugal; Cardiovascular Center, Universidade de Lisboa, CCUL, Centro Académico de Medicina da Universidade de Lisboa, CAML, Lisbon, Portugal
| | - Anaí Durazzo
- Department of Cardiology, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Cidália Rodrigues
- Department of Pulmonology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Eduardo Vilela
- Department of Cardiology, Unidade Local de Saúde Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Gonçalo Cunha
- Department of Cardiology, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - José Gomes Pereira
- Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal; Comité Olímpico de Portugal, Lisbon, Portugal; Desporsano - Sports Clinic, Lisbon, Portugal
| | | | - Luís Moreno
- Regimento de Comandos, Exército Português, Belas, Portugal; Hospital CUF Tejo, Lisbon, Portugal
| | - Paulo Dinis
- Department of Cardiology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Centro de Saúde Militar de Coimbra, Exército Português, Coimbra, Portugal
| | - Sandra Amorim
- Centro Hospitalar Universitário São João, Porto, Portugal; Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Susana Clemente
- Department of Pulmonology, Hospital da Luz, Lisbon, Portugal; Department of Pulmonology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Mário Santos
- Department of Cardiology, Pulmonary Vascular Disease Unit, Centro Hospitalar Universitário de Santo António, Porto, Portugal; CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal; Department of Immuno-Physiology and Pharmacology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
2
|
Neder JA. Cardiopulmonary exercise testing applied to respiratory medicine: Myths and facts. Respir Med 2023; 214:107249. [PMID: 37100256 DOI: 10.1016/j.rmed.2023.107249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Cardiopulmonary exercise testing (CPET) remains poorly understood and, consequently, largely underused in respiratory medicine. In addition to a widespread lack of knowledge of integrative physiology, several tenets of CPET interpretation have relevant controversies and limitations which should be appropriately recognized. With the intent to provide a roadmap for the pulmonologist to realistically calibrate their expectations towards CPET, a collection of deeply entrenched beliefs is critically discussed. They include a) the actual role of CPET in uncovering the cause(s) of dyspnoea of unknown origin, b) peak O2 uptake as the key metric of cardiorespiratory capacity, c) the value of low lactate ("anaerobic") threshold to differentiate cardiocirculatory from respiratory causes of exercise limitation, d) the challenges of interpreting heart rate-based indexes of cardiovascular performance, e) the meaning of peak breathing reserve in dyspnoeic patients, f) the merits and drawbacks of measuring operating lung volumes during exercise, g) how best interpret the metrics of gas exchange inefficiency such as the ventilation-CO2 output relationship, h) when (and why) measurements of arterial blood gases are required, and i) the advantages of recording submaximal dyspnoea "quantity" and "quality". Based on a conceptual framework that links exertional dyspnoea to "excessive" and/or "restrained" breathing, I outline the approaches to CPET performance and interpretation that proved clinically more helpful in each of these scenarios. CPET to answer clinically relevant questions in pulmonology is a largely uncharted research field: I, therefore, finalize by highlighting some lines of inquiry to improve its diagnostic and prognostic yield.
Collapse
Affiliation(s)
- J Alberto Neder
- Laboratory of Clinical Exercise Physiology and Respiratory Investigation Unit, Department of Medicine, Division of Respirology, Kingston Health Sciences Center, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Exercise Capacity Is Independent of Respiratory Muscle Strength in Patients with Chronic Heart Failure. J Clin Med 2022; 11:jcm11133875. [PMID: 35807159 PMCID: PMC9267540 DOI: 10.3390/jcm11133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Exercise intolerance in patients with chronic heart failure (CHF) is associated with a number of factors, including breathlessness and respiratory muscle weakness. However, many studies reported controversial results, and as yet there is no study on Arabic patients with CHF. This study aimed to examine the impact of breathlessness and respiratory muscle strength on exercise capacity in Arabic patients with CHF. Methods: This was a cross-sectional study, involving 42 stable adult male patients with CHF with a reduced ejection fraction and 42 controls who were free from cardiorespiratory and neuromuscular diseases. Patients with CHF and the controls underwent respiratory muscle strength tests and a six-minute walk test (6MWT), and the measurements were taken. Dyspnea was recorded using the modified Medical Research Council (mMRC) scale, along with the number of comorbidities. Results: Patients with CHF and controls were similar in age and sex. Patients with CHF had a greater number of comorbidities, a higher dyspnea score, a lower 6MWT score, and lower respiratory muscle strength (p < 0.001). Only 7% of patients with CHF had weak inspiratory muscle strength (<60% of that predicted) and 40% terminated the 6MWT due to dyspnea. The 6MWT was associated with mMRC (rs = −0.548, p < 0.001) but not with respiratory muscle strength (p > 0.05). Conclusions: Exercise intolerance in patients with CHF was associated with dyspnea and was independent of respiratory muscle strength.
Collapse
|
4
|
Laveneziana P, Di Paolo M, Palange P. The clinical value of cardiopulmonary exercise testing in the modern era. Eur Respir Rev 2021; 30:30/159/200187. [PMID: 33408087 DOI: 10.1183/16000617.0187-2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 11/05/2022] Open
Abstract
Cardiopulmonary exercise testing (CPET) has long been used as diagnostic tool for cardiac diseases. During recent years CPET has been proven to be additionally useful for 1) distinguishing between normal and abnormal responses to exercise; 2) determining peak oxygen uptake and level of disability; 3) identifying factors contributing to dyspnoea and exercise limitation; 4) differentiating between ventilatory (respiratory mechanics and pulmonary gas exchange), cardiovascular, metabolic and peripheral muscle causes of exercise intolerance; 5) identifying anomalies of ventilatory (respiratory mechanics and pulmonary gas exchange), cardiovascular and metabolic systems, as well as peripheral muscle and psychological disorders; 6) screening for coexistent ischaemic heart disease, peripheral vascular disease and arterial hypoxaemia; 7) assisting in planning individualised exercise training; 8) generating prognostic information; and 9) objectively evaluating the impact of therapeutic interventions. As such, CPET is an essential part of patients' clinical assessment. This article belongs to the special series on the "Ventilatory efficiency and its clinical prognostic value in cardiorespiratory disorders", addressed to clinicians, physiologists and researchers, and aims at encouraging them to get acquainted with CPET in order to help and orient the clinical decision concerning individual patients.
Collapse
Affiliation(s)
- Pierantonio Laveneziana
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France .,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), F-75013, Paris, France
| | - Marcello Di Paolo
- Dept of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Dept of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Louvaris Z, Vogiatzis I. Contrasting the physiological effects of heliox and oxygen during exercise in a patient with advanced COPD. Breathe (Sheff) 2019; 15:250-257. [PMID: 31508165 PMCID: PMC6717618 DOI: 10.1183/20734735.0197-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In COPD patients the ergogenic effect of heliox or oxygen breathing might be related both to improvements in ventilatory parameters (that lessen dyspnoea) and to enhanced oxygen delivery to respiratory and locomotor muscles http://bit.ly/2JlJBTc.
Collapse
Affiliation(s)
- Zafeiris Louvaris
- Faculty of Movement and Rehabilitation Sciences, Division of Respiratory Rehabilitation, Dept Rehabilitation Sciences KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Ioannis Vogiatzis
- Dept of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle, UK
| |
Collapse
|
6
|
Magnussen H, Canepa M, Zambito PE, Brusasco V, Meinertz T, Rosenkranz S. What can we learn from pulmonary function testing in heart failure? Eur J Heart Fail 2017; 19:1222-1229. [DOI: 10.1002/ejhf.946] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Helgo Magnussen
- Pulmonary Research Institute at Lung Clinic Grosshansdorf and Airway Research Center North; Member of the German Center for Lung Research; Grosshansdorf Germany
| | - Marco Canepa
- Department of Internal Medicine and Medical Specialties; University of Genoa, San Martino Hospital; Genoa Italy
| | | | - Vito Brusasco
- Department of Internal Medicine and Medical Specialties; University of Genoa, San Martino Hospital; Genoa Italy
| | | | - Stephan Rosenkranz
- Klinik III für Innere Medizin, Herzzentrum der Universität zu Köln, Cologne, and Cologne Cardiovascular Research Center (CCRC); Heart Center at the University of Cologne; Cologne Germany
| |
Collapse
|