1
|
Steinberg R, Mostacci N, Kieninger E, Frauchiger B, Casaulta C, Usemann J, Moeller A, Trachsel D, Rochat I, Blanchon S, Mueller-Suter D, Kern B, Zanolari M, Frey U, Ramsey KA, Hilty M, Latzin P, Korten I. Early nasal microbiota and subsequent respiratory tract infections in infants with cystic fibrosis. COMMUNICATIONS MEDICINE 2024; 4:246. [PMID: 39580540 PMCID: PMC11585651 DOI: 10.1038/s43856-024-00616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/18/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Respiratory tract infections (RTIs) drive lung function decline in children with cystic fibrosis (CF). While the respiratory microbiota is clearly associated with RTI pathogenesis in infants without CF, data on infants with CF is scarce. We compared nasal microbiota development between infants with CF and controls and assessed associations between early-life nasal microbiota, RTIs, and antibiotic treatment in infants with CF. METHODS We included 50 infants with CF and 30 controls from two prospective birth cohorts followed throughout the first year of life. We collected 1511 biweekly nasal swabs and analyzed the microbiota after amplifying the V3-V4 region of the 16S rRNA gene. We conducted structured weekly interviews to assess respiratory symptoms and antibiotic treatment. We calculated generalized additive mixed models and permutational analysis of variance. RESULTS Here, we show that the nasal microbiota is already altered before the first RTI or antibiotic treatment in infants with CF. Microbiota diversity differs between infants with CF and controls following RTIs and/or antibiotic treatment. CF infants with lower α-diversity have a higher number of subsequent RTIs. CONCLUSIONS Early nasal microbiota alterations may reflect predisposition or predispose to RTIs in infants with CF, and further change after RTIs and antibiotic treatment. This highlights the potential of targeting the nasal microbiota in CF-related RTI management, while also questioning current practices in the era of novel modulator therapies.
Collapse
Affiliation(s)
- Ruth Steinberg
- Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Paediatric Intensive Care and Pulmonology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bettina Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- Paediatric Intensive Care and Pulmonology, University Children's Hospital Basel (UKBB), Basel, Switzerland
- Department of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alexander Moeller
- Department of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Daniel Trachsel
- Paediatric Intensive Care and Pulmonology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Isabelle Rochat
- Pediatric Pulmonology and Cystic Fibrosis Unit, Division of Pediatrics, Department of Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sylvain Blanchon
- Pediatric Pulmonology and Cystic Fibrosis Unit, Division of Pediatrics, Department of Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Barbara Kern
- Division of Pediatric Pneumology, Kantonsspital Aarau, Aarau, Switzerland
| | - Maura Zanolari
- Division of Pediatrics, Hospital Bellinzona, Bellinzona, Switzerland
| | - Urs Frey
- Paediatric Intensive Care and Pulmonology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Kathryn A Ramsey
- Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Al Qahtani M, AlFulayyih SF, Al Baridi SS, Alomar SA, Alshammari AN, Albuaijan RJ, Uddin MS. Exploring the Impact of Antibiotics on Fever Recovery Time and Hospital Stays in Children with Viral Infections: Insights from Advanced Data Analysis. Antibiotics (Basel) 2024; 13:518. [PMID: 38927184 PMCID: PMC11200729 DOI: 10.3390/antibiotics13060518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Antibiotic overuse in pediatric patients with upper respiratory tract infections (UR-TIs) raises concerns about antimicrobial resistance. This study examines the impact of antibiotics on hospital stay duration and fever resolution in pediatric patients diagnosed with viral infections via a multiplex polymerase chain reaction (PCR) respiratory panel. Methods: In the pediatric ward of Imam Abdulrahman Bin Faisal Hospital, a retrospective cohort analysis was conducted on pediatric patients with viral infections confirmed by nasopharyngeal aspirates from October 2016 to December 2021. Cohorts receiving antibiotics versus those not receiving them were balanced using the gradient boosting machine (GBM) technique for propensity score matching. Results: Among 238 patients, human rhinovirus/enterovirus (HRV/EV) was most common (44.5%), followed by respiratory syncytial virus (RSV) (18.1%). Co-infections occurred in 8.4% of cases. Antibiotic administration increased hospital length of stay (LOS) by an average of 2.19 days (p-value: 0.00). Diarrhea reduced LOS by 2.26 days, and higher albumin levels reduced LOS by 0.40 days. Fever and CRP levels had no significant effect on LOS. Time to recovery from fever showed no significant difference between antibiotic-free (Abx0) and antibiotic-received (Abx1) groups (p-value: 0.391), with a hazard ratio of 0.84 (CI: 0.57-1.2). Conclusions: Antibiotics did not expedite recovery but were associated with longer hospital stays in pediatric patients with acute viral respiratory infections. Clinicians should exercise caution in prescribing antibiotics to pediatric patients with confirmed viral infections, especially when non-critical.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohammed Shahab Uddin
- Department of Pediatric, Ministry of National Guard Health Affairs, Dammam 31412, Saudi Arabia; (M.A.Q.); (S.F.A.); (S.S.A.B.); (S.A.A.); (A.N.A.); (R.J.A.)
| |
Collapse
|
3
|
Mostacci N, Wüthrich TM, Siegwald L, Kieser S, Steinberg R, Sakwinska O, Latzin P, Korten I, Hilty M. Informed interpretation of metagenomic data by StrainPhlAn enables strain retention analyses of the upper airway microbiome. mSystems 2023; 8:e0072423. [PMID: 37916972 PMCID: PMC10734448 DOI: 10.1128/msystems.00724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The usage of 16S rRNA gene sequencing has become the state-of-the-art method for the characterization of the microbiota in health and respiratory disease. The method is reliable for low biomass samples due to prior amplification of the 16S rRNA gene but has limitations as species and certainly strain identification is not possible. However, the usage of metagenomic tools for the analyses of microbiome data from low biomass samples is not straight forward, and careful optimization is needed. In this work, we show that by validating StrainPhlAn 3 results with the data from bacterial cultures, the strain-level tracking of the respiratory microbiome is feasible despite the high content of host DNA being present when parameters are carefully optimized to fit low biomass microbiomes. This work further proposes that strain retention analyses are feasible, at least for more abundant species. This will help to better understand the longitudinal dynamics of the upper respiratory microbiome during health and disease.
Collapse
Affiliation(s)
- Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Tsering Monika Wüthrich
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Léa Siegwald
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Silas Kieser
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Ruth Steinberg
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Olga Sakwinska
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Rüttimann C, Nissen-Kratzert A, Mostacci N, Künstle N, Marten A, Gisler A, Bacher K, Yammine S, Steinberg R, Schulzke S, Röösli M, Latzin P, Hilty M, Frey U, Gorlanova O. Antibiotics in pregnancy influence nasal microbiome and respiratory morbidity in infancy. ERJ Open Res 2023; 9:00225-2023. [PMID: 37650088 PMCID: PMC10463034 DOI: 10.1183/23120541.00225-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 09/01/2023] Open
Abstract
Background The effects of prenatal antibiotic exposure on respiratory morbidity in infancy and the involved mechanisms are still poorly understood. We aimed to examine whether prenatal antibiotic exposure in the third trimester is associated with nasal microbiome and respiratory morbidity in infancy and at school age, and whether this association with respiratory morbidity is mediated by the nasal microbiome. Methods We performed 16S ribosomal RNA gene sequencing (regions V3-V4) on nasal swabs obtained from 296 healthy term infants from the prospective Basel-Bern birth cohort (BILD) at age 4-6 weeks. Information about antibiotic exposure was derived from birth records and standardised interviews. Respiratory symptoms were assessed by weekly telephone interviews in the first year of life and a clinical visit at age 6 years. Structural equation modelling was used to test direct and indirect associations accounting for known risk factors. Results α-Diversity indices were lower in infants with antibiotic exposure compared to nonexposed infants (e.g. Shannon index p-value 0.006). Prenatal antibiotic exposure was also associated with a higher risk of any, as well as severe, respiratory symptoms in the first year of life (risk ratio 1.38, 95% CI 1.03-1.84; adjusted p-value (padj)=0.032 and risk ratio 1.75, 95% CI 1.02-2.97; padj=0.041, respectively), but not with wheeze or atopy in childhood. However, we found no indirect mediating effect of nasal microbiome explaining these clinical symptoms. Conclusion Prenatal antibiotic exposure was associated with lower diversity of nasal microbiome in infancy and, independently of microbiome, with respiratory morbidity in infancy, but not with symptoms later in life.
Collapse
Affiliation(s)
- Céline Rüttimann
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Annika Nissen-Kratzert
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Noëmi Künstle
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Marten
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amanda Gisler
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katharina Bacher
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ruth Steinberg
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sven Schulzke
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland and University of Basel, Basel, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Shared senior authorship
| | - Olga Gorlanova
- University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Shared senior authorship
| |
Collapse
|
5
|
Nasopharyngeal microbiota in hospitalized children with Bordetella pertussis and Rhinovirus infection. Sci Rep 2021; 11:22858. [PMID: 34819600 PMCID: PMC8613181 DOI: 10.1038/s41598-021-02322-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
Despite great advances in describing Bordetella pertussis infection, the role of the host microbiota in pertussis pathogenesis remains unexplored. Indeed, the microbiota plays important role in defending against bacterial and viral respiratory infections. We investigated the nasopharyngeal microbiota in infants infected by B. pertussis (Bp), Rhinovirus (Rv) and simultaneously by both infectious agents (Bp + Rv). We demonstrated a specific nasopharyngeal microbiome profiles for Bp group, compared to Rv and Bp + Rv groups, and a reduction of microbial richness during coinfection compared to the single infections. The comparison amongst the three groups showed the increase of Alcaligenaceae and Achromobacter in Bp and Moraxellaceae and Moraxella in Rv group. Furthermore, correlation analysis between patients’ features and nasopharyngeal microbiota profile highlighted a link between delivery and feeding modality, antibiotic administration and B. pertussis infection. A model classification demonstrated a microbiota fingerprinting specific of Bp and Rv infections. In conclusion, external factors since the first moments of life contribute to the alteration of nasopharyngeal microbiota, indeed increasing the susceptibility of the host to the pathogens' infections. When the infection is triggered, the presence of infectious agents modifies the microbiota favoring the overgrowth of commensal bacteria that turn in pathobionts, hence contributing to the disease severity.
Collapse
|
6
|
Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, Gorlanova O, Soti A, Hilty M, Latzin P, Usemann J. Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. ENVIRONMENTAL RESEARCH 2021; 202:111633. [PMID: 34256075 DOI: 10.1016/j.envres.2021.111633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Air pollution and greenness are associated with short- and long-term respiratory health in children but the underlying mechanisms are only scarcely investigated. The nasal microbiota during the first year of life has been shown to be associated with respiratory tract infections and asthma development. Thus, an interplay between greenness, air pollution and the early nasal microbiota may contribute to short- and long-term respiratory health. We aimed to examine associations between fine particulate matter (PM2.5), nitrogen dioxide (NO2) and greenness with the nasal microbiota of healthy infants during the first year of life in a European context with low-to-moderate air pollution levels. METHODS Microbiota characterization was performed using 16 S rRNA pyrosequencing of 846 nasal swabs collected fortnightly from 47 healthy infants of the prospective Basel-Bern Infant Lung Development (BILD) cohort. We investigated the association of satellite-based greenness and an 8-day-average exposure to air pollution (PM2.5, NO2) with the nasal microbiota during the first year of life. Exposures were individually estimated with novel spatial-temporal models incorporating satellite data. Generalized additive mixed models adjusted for known confounders and considering the autoregressive correlation structure of the data were used for analysis. RESULTS Mean (SD) PM2.5 level was 17.1 (3.8 μg/m3) and mean (SD) NO2 level was 19.7 (7.9 μg/m3). Increased PM2.5 and increased NO2 were associated with reduced within-subject Ružička dissimilarity (PM2.5: per 1 μg/m3 -0.004, 95% CI -0.008, -0.001; NO2: per 1 μg/m3 -0.004, 95% CI -0.007, -0.001). Whole microbial community comparison with nonmetric multidimensional scaling revealed distinct microbiota profiles for different PM2.5 exposure levels. Increased NO2 was additionally associated with reduced abundance of Corynebacteriaceae (per 1 μg/m3: -0.027, 95% CI -0.053, -0.001). No associations were found between greenness and the nasal microbiota. CONCLUSION Air pollution was associated with Ružička dissimilarity and relative abundance of Corynebacteriaceae. This suggests that even low-to-moderate exposure to air pollution may impact the nasal microbiota during the first year of life. Our results will be useful for future studies assessing the clinical relevance of air-pollution-induced alterations of the nasal microbiota with subsequent respiratory disease development.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andras Soti
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Division of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Xu L, Earl J, Pichichero ME. Nasopharyngeal microbiome composition associated with Streptococcus pneumoniae colonization suggests a protective role of Corynebacterium in young children. PLoS One 2021; 16:e0257207. [PMID: 34529731 PMCID: PMC8445455 DOI: 10.1371/journal.pone.0257207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a leading respiratory tract pathogen that colonizes the nasopharynx (NP) through adhesion to epithelial cells and immune evasion. Spn actively interacts with other microbiota in NP but the nature of these interactions are incompletely understood. Using 16S rRNA gene sequencing, we analyzed the microbiota composition in the NP of children with or without Spn colonization. 96 children were included in the study cohort. 74 NP samples were analyzed when children were 6 months old and 85 NP samples were analyzed when children were 12 months old. We found several genera that correlated negatively or positively with Spn colonization, and some of these correlations appeared to be influenced by daycare attendance or other confounding factors such as upper respiratory infection (URI) or Moraxella colonization. Among these genera, Corynebacterium showed a consistent inverse relationship with Spn colonization with little influence by daycare attendance or other factors. We isolated Corynebacterium propinquum and C. pseudodiphtheriticum and found that both inhibited the growth of Spn serotype 22F strain in vitro.
Collapse
Affiliation(s)
- Lei Xu
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, New York, United States of America
| | - Joshua Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
de Koff EM, Man WH, van Houten MA, Vlieger AM, Chu MLJN, Sanders EAM, Bogaert D. Microbial and clinical factors are related to recurrence of symptoms after childhood lower respiratory tract infection. ERJ Open Res 2021; 7:00939-2020. [PMID: 34195257 PMCID: PMC8236756 DOI: 10.1183/23120541.00939-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Childhood lower respiratory tract infections (LRTI) are associated with dysbiosis of the nasopharyngeal microbiota, and persistent dysbiosis following the LRTI may in turn be related to recurrent or chronic respiratory problems. Therefore, we aimed to investigate microbial and clinical predictors of early recurrence of respiratory symptoms as well as recovery of the microbial community following hospital admission for LRTI in children. To this end, we collected clinical data and characterised the nasopharyngeal microbiota of 154 children (4 weeks–5 years old) hospitalised for a LRTI (bronchiolitis, pneumonia, wheezing illness or mixed infection) at admission and 4–8 weeks later. Data were compared to 307 age-, sex- and time-matched healthy controls. During follow-up, 66% of cases experienced recurrence of (mild) respiratory symptoms. In cases with recurrence of symptoms during follow-up, we found distinct nasopharyngeal microbiota at hospital admission, with higher levels of Haemophilus influenzae/haemolyticus, Prevotella oris and other gram-negatives and lower levels of Corynebacterium pseudodiphtheriticum/propinquum and Dolosigranulum pigrum compared with healthy controls. Furthermore, in cases with recurrence of respiratory symptoms, recovery of the microbiota was also diminished. Especially in cases with wheezing illness, we observed a high rate of recurrence of respiratory symptoms, as well as diminished microbiota recovery at follow-up. Together, our results suggest a link between the nasopharyngeal microbiota composition during LRTI and early recurrence of respiratory symptoms, as well as diminished microbiota recovery after 4–8 weeks. Future studies should investigate whether (speed of) ecological recovery following childhood LRTI is associated with long-term respiratory problems. Composition of nasopharyngeal microbiota during LRTI in children is related to recurring respiratory symptoms in the following months, and to incomplete microbiota recovery. Future research may pinpoint host and microbial predictors of clinical outcomes.https://bit.ly/3aInAwN
Collapse
Affiliation(s)
- Emma M de Koff
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands.,Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wing Ho Man
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands.,Dept of Paediatrics, Willem-Alexander Children's Hospital and Leiden University Medical Centre, Leiden, The Netherlands
| | - Marlies A van Houten
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands.,Dept of Paediatrics, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands
| | - Arine M Vlieger
- Dept of Paediatrics, St Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Mei Ling J N Chu
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands.,Medical Research Council and University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early Life Microbiota and Respiratory Tract Infections. Cell Host Microbe 2021; 28:223-232. [PMID: 32791114 DOI: 10.1016/j.chom.2020.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
Over the last decade, it has become clear that respiratory and intestinal tract microbiota are related to pathogenesis of respiratory tract infections (RTIs). Host and environmental factors can drive respiratory microbiota maturation in early life, which in turn is related to consecutive susceptibility to RTIs. Moreover, during RTIs, including viral bronchiolitis, the local microbiome appears to play an immunomodulatory role through complex interactions, though causality has not yet been fully demonstrated. The microbiota is subsequently associated with recovery after RTIs and can be related to persistent or long-term sequelae. In this Review, we explore the epidemiological evidence supporting these associations and link to mechanistic insights. The long-term consequences of childhood RTIs and the comprehensive role of the microbiota at various stages in RTI pathogenesis call for early life preventative and therapeutic interventions to promote respiratory health.
Collapse
Affiliation(s)
- Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Justyna Binkowska
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
10
|
Xu L, Earl J, Bajorski P, Gonzalez E, Pichichero ME. Nasopharyngeal microbiome analyses in otitis-prone and otitis-free children. Int J Pediatr Otorhinolaryngol 2021; 143:110629. [PMID: 33516061 DOI: 10.1016/j.ijporl.2021.110629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES About 10-15% children develop frequent acute otitis media (AOM) confirmed by tympanocentesis. These children are designated sOP (stringently defined otitis-prone) because all AOM episodes have been microbiologically confirmed. The cause of otitis-proneness in sOP children is multi-factorial, including frequent otopathogen nasopharyngeal (NP) colonization and deficiency in innate and adaptive immune responses. A largely unexplored contributor to otitis proneness is NP microbiome composition. Since the microbiome modulates otopathogen NP colonization and immune responses, we hypothesized that the NP microbiome composition in sOP children might be dysregulated. METHODS We performed 16S rRNA sequencing to analyze microbiome composition in 157 NP samples from 28 sOP and 68 AOM-free children when they were 6 months or 12 months old and healthy. Bioinformatic approaches were employed to examine the composition difference between the two populations and its correlation with changes in levels of inflammatory cytokines. RESULTS A different global microbiome profile and reduced alpha diversity was observed in the NP microbiome of sOP children when 6 months old, compared with that from AOM-free children of the same age. This difference was resolved when groups were compared at 12 months old. We found 4 bacterial genera-Bacillus, Veillonella, Gemella, and Prevotella-correlated with higher levels of pro-inflammatory cytokines in the NP. Those 4 bacterial genera were in lower abundance in sOP compared to AOM-free children. CONCLUSION Dysbiosis occurs in the NP microbiome of sOP children at an early age even when they were healthy. This dysbiosis correlates with a lower inflammatory state in the NP of these children.
Collapse
Affiliation(s)
- Lei Xu
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Josh Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Peter Bajorski
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Eduardo Gonzalez
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA.
| |
Collapse
|
11
|
Abstract
The clinical course of SARS-CoV-2 infection in young infants is not well understood. In this prospective cohort study, we compared the presence and duration of symptoms in febrile infants ≤60 days with (n = 7) and without (n = 16) SARS-CoV-2 infection. Overall, we observed overlapping symptoms and duration of illness, with longer length of cough and nasal congestion among the SARS-CoV-2-positive infants.
Collapse
|