1
|
Yasuda I, Saludar NRD, Sayo AR, Suzuki S, Yokoyama A, Ozeki Y, Kobayashi H, Nishiyama A, Matsumoto S, Cox SE, Tanaka T, Yamashita Y. Evaluation of cytokine profiles related to Mycobacterium tuberculosis latent antigens using a whole-blood assay in the Philippines. Front Immunol 2024; 15:1330796. [PMID: 38665909 PMCID: PMC11044679 DOI: 10.3389/fimmu.2024.1330796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.
Collapse
Affiliation(s)
- Ikkoh Yasuda
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of General Internal Medicine and Clinical Infectious Diseases, Fukushima Medical University, Fukushima, Japan
- Department of General Internal Medicine and Infectious Diseases, Kita-Fukushima Medical Center, Fukushima, Japan
| | | | | | - Shuichi Suzuki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Haruka Kobayashi
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Department of Medical Microbiology, Universitas Airlangga, Faculty of Medicine, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Japan
| | - Sharon E. Cox
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Takeshi Tanaka
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshiro Yamashita
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Shunkaikai Inoue Hospital, Nagasaki, Japan
| |
Collapse
|
2
|
Borgström EW, Fröberg G, Correia-Neves M, Atterfelt FB, Bellbrant J, Szulkin R, Chryssanthou E, Ängeby K, Tecleab T, Ruhwald M, Andersen P, Källenius G, Bruchfeld J. CD4 + T cell proliferative responses to PPD and CFP-10 associate with recent M. tuberculosis infection. Tuberculosis (Edinb) 2020; 123:101959. [PMID: 32741535 DOI: 10.1016/j.tube.2020.101959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Interferon-γ release assays cannot differentiate latent from active tuberculosis (TB), nor identify the recently infected with increased risk of active disease. The objective of this study was to identify biomarkers of recent infection following exposure to tuberculosis, to increase the positive predictive value for incipient TB. Contacts to patients with pulmonary TB were tested repeatedly with interferon-γ release assays and flow-cytometry. Proliferative CD4+ T cell responses to purified protein derivative (PPD) and 11 M. tuberculosis antigens were analysed. The individual probability of recent and remote infection was estimated using clinical data in a novel mathematical model and compared with CD4+ responses in a prediction model. The most specific prediction of recent infection was high CD4+ proliferative responses to CFP-10 and PPD and a low CD4+ response to ESAT-6. CD4+ proliferative responses to Rec85a, Rec85b and Rv1284 were also observed in recent infection, but did not reach significance in the prediction model. CONCLUSIONS: High CD4+ proliferative responses to CFP-10 and PPD and a low response to ESAT-6 may be used as biomarkers to improve positive predictive values for recent LTBI and thus, increased risk of incipient TB. Rec85a, Rec85b and Rv1284 are also of interest to study further in this context.
Collapse
Affiliation(s)
- Emilie Wahren Borgström
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Gabrielle Fröberg
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Margarida Correia-Neves
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | | | - Jan Bellbrant
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Robert Szulkin
- Division of Family Medicine, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden; Scandinavian Development Services, Danderyd, Sweden.
| | - Erja Chryssanthou
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Kristian Ängeby
- Department of Clinical Science and Education, Emergency Medicine, Stockholm South General Hospital, Karolinska Institute, Stockholm, Sweden.
| | - Teghesti Tecleab
- Public Health Agency of Sweden, Nobel's väg 18, Solna, Stockholm, Sweden.
| | - Morten Ruhwald
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|