1
|
Graf LM, Radtke D, Voehringer D. Regulation of eosinophil recruitment and heterogeneity during allergic airway inflammation. FRONTIERS IN ALLERGY 2025; 6:1585142. [PMID: 40276331 PMCID: PMC12018390 DOI: 10.3389/falgy.2025.1585142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Eosinophils represent a granulocyte cell type that is strongly associated with type 2 inflammatory conditions. During steady state conditions few eosinophils are found in lung tissue, though they may contribute to homeostasis. In allergic airway inflammation, eosinophils are strongly increased and associated to disease severity. The underlying type 2 immune response tightly regulates eosinophil development, recruitment, survival, and heterogeneity. Inflammatory eosinophils in the lung are unfavourable, as they can cause tissue damage, amplify type 2 immunity and induce bronchial obstruction by expelling granular proteins and cytokines. In this review we provide an overview about mechanisms regulating development of eosinophils in the bone marrow and their extravasation into the lung including recent findings on induction and diversity of eosinophilia in allergic airway inflammation.
Collapse
Affiliation(s)
| | | | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Liew F, Efstathiou C, Fontanella S, Richardson M, Saunders R, Swieboda D, Sidhu JK, Ascough S, Moore SC, Mohamed N, Nunag J, King C, Leavy OC, Elneima O, McAuley HJC, Shikotra A, Singapuri A, Sereno M, Harris VC, Houchen-Wolloff L, Greening NJ, Lone NI, Thorpe M, Thompson AAR, Rowland-Jones SL, Docherty AB, Chalmers JD, Ho LP, Horsley A, Raman B, Poinasamy K, Marks M, Kon OM, Howard LS, Wootton DG, Quint JK, de Silva TI, Ho A, Chiu C, Harrison EM, Greenhalf W, Baillie JK, Semple MG, Turtle L, Evans RA, Wain LV, Brightling C, Thwaites RS, Openshaw PJM. Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease. Nat Immunol 2024; 25:607-621. [PMID: 38589621 PMCID: PMC11003868 DOI: 10.1038/s41590-024-01778-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/06/2024] [Indexed: 04/10/2024]
Abstract
One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain-gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials.
Collapse
Affiliation(s)
- Felicity Liew
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Matthew Richardson
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ruth Saunders
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Dawid Swieboda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasmin K Sidhu
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephanie Ascough
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Noura Mohamed
- The Imperial Clinical Respiratory Research Unit, Imperial College NHS Trust, London, UK
| | - Jose Nunag
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - Clara King
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - Olivia C Leavy
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Omer Elneima
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Hamish J C McAuley
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Aarti Shikotra
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Amisha Singapuri
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Marco Sereno
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Victoria C Harris
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Linzy Houchen-Wolloff
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, University of Leicester, Leicester, UK
| | - Neil J Greening
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Nazir I Lone
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Matthew Thorpe
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sarah L Rowland-Jones
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Annemarie B Docherty
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Michael Marks
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
- Hospital for Tropical Diseases, University College London Hospital, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel G Wootton
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jennifer K Quint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Antonia Ho
- MRC Centre for Virus Research, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Christopher Chiu
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ewen M Harrison
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - William Greenhalf
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - J Kenneth Baillie
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Pandemic Science Hub, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, University of Liverpool, Liverpool, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, University of Liverpool, Liverpool, UK
| | - Rachael A Evans
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Louise V Wain
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
3
|
Higham A, Beech A, Dean J, Singh D. Exhaled nitric oxide, eosinophils and current smoking in COPD patients. ERJ Open Res 2023; 9:00686-2023. [PMID: 38020571 PMCID: PMC10680026 DOI: 10.1183/23120541.00686-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
High FENO can occur despite low blood eosinophil counts in ex-smokers, while a minority of current smokers have elevated FENO that is not related to eosinophil counts. FENO levels may be related to noneosinophilic mechanisms in a subgroup of COPD. https://bit.ly/3PSWvM2.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
- Medicines Evaluation Unit, The Langley Building, Manchester, UK
| | - James Dean
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
- Medicines Evaluation Unit, The Langley Building, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
- Medicines Evaluation Unit, The Langley Building, Manchester, UK
| |
Collapse
|
4
|
Abstract
The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin. However, the architecture and function of the skin differ significantly from vital organs where highly specialized microenvironments carry out critical functions. Therefore, the detrimental extent this perturbation may have on organ function remains unclear. In this review, we examine organ-specific swarming within the skin, liver, and lungs, with a detailed focus on swarming within microvascular environments. In addition, we examine potential "swarmulants" that initiate both transient and persistent swarms that have been implicated in disease.
Collapse
Affiliation(s)
- Luke Brown
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Bouissane L, Khouili M, Coudert G, Pujol MD, Guillaumet G. New and promising type of leukotriene B4 (LTB4) antagonists based on the 1,4-benzodioxine structure. Eur J Med Chem 2023; 254:115332. [PMID: 37043995 DOI: 10.1016/j.ejmech.2023.115332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
New leukotriene B4 (LTB4) antagonists have been synthesized that can be considered as potential anti-inflammatory drugs. Structures containing the dioxygenated nucleus of 1,4-benzodioxine constitute a potential group of leukotriene B4 (LTB4) antagonists. The objective of this study was to access efficient and selective LTB4 antagonists as a way to elucidate the role of LTB4 in inflammatory processes and therefore allow the development of new types of structures based on 1,4-benzodioxine. Forty-one new 1,4-benzodioxine molecules substituted at different positions of the heterocyclic nucleus were synthesized to determine the minimum structural requirements by studying structure-activity relationships. Eighteen of them were tested in vitro and in vivo for their anti-inflammatory activity related to the antagonist character of LTB4. Pharmacological tests have shown satisfactory in vitro activity for compounds 24b, 24c and 24e with IC50's of 288, 439, 477 nM respectively. The results of the in vivo tests, carried out with the compound that presented greater activity in the in vitro tests 24b, have shown significant anti-inflammatory properties.
Collapse
|
6
|
An TJ, Kim JH, Hur J, Park CK, Lim JU, Kim S, Rhee CK, Yoon HK. Tiotropium Bromide Improves Neutrophilic Asthma by Recovering Histone Deacetylase 2 Activity. J Korean Med Sci 2023; 38:e91. [PMID: 36974400 PMCID: PMC10042725 DOI: 10.3346/jkms.2023.38.e91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND The value of tiotropium bromide (TIO) in neutrophilic asthma was meaningful in previous study. We hypothesized that TIO's mechanism of action is associated with histone deacetylase 2 (HDAC2) activity, which is key for controlling the transcription of inflammatory cytokines and usually downregulated in neutrophilic asthma. METHODS The effects of TIO and dexamethasone (DEX) on HDAC2 activity, nuclear factor kappa B (NF-κB), and C-X-C motif chemokine ligand 1 (CXCL1) were evaluated in neutrophilic asthma mouse model (C57BL, 6-week-old). An in-vitro study was conducted using primary human bronchial/tracheal epithelial (HBE) cells from asthma patients. Western blot analyses were performed for phospho-phospholipase Cγ-1 (PLCγ-1) and inositol trisphosphate (IP3) receptors (IP3R) with treating lipopolysaccharide (LPS) and TIO. RESULTS Ovalbumin was used to induce eosinophilic inflammation in this study. After neutrophilic asthma was induced by LPS (O+L group), HDAC2 activity was diminished with increased NF-κB activity and CXCL1 compared to the control group. TIO significantly improved NF-κB activity, CXCL1, and HDAC2 activity compared with the O+L group in in-vivo study (P < 0.05, each). Western blot analyses showed that LPS treated HBE cells from asthma patients increased PLCγ-1 and diminished IP3 receptor levels. After TIO treatment, recovery of IP3R and improved PLCγ-1 levels were observed. CONCLUSION These results support the hypothesis that TIO modulates inflammation by recovering HDAC2 activity from the acetylcholine-stimulated inflammation cascade in neutrophilic asthma. The detailed inflammation cascade of recovering HDAC2 activity by TIO might be associated with PLCγ-1-IP3-IP3R mediated intracellular calcium ion pathway.
Collapse
Affiliation(s)
- Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hye Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seohyun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Chen M, Xu K, He Y, Jin J, Mao R, Gao L, Zhang Y, Wang G, Gao P, Xie M, Liu C, Chen Z. CC16 as an Inflammatory Biomarker in Induced Sputum Reflects Chronic Obstructive Pulmonary Disease (COPD) Severity. Int J Chron Obstruct Pulmon Dis 2023; 18:705-717. [PMID: 37139166 PMCID: PMC10150740 DOI: 10.2147/copd.s400999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose The progression of an abnormal inflammatory response plays a crucial role in the lung function decline of chronic obstructive pulmonary disease (COPD) patients. Compared to serum biomarkers, inflammatory biomarkers in induced sputum would be a more reliable reflection of inflammatory processes in the airways. Patients and Methods A total of 102 COPD participants were divided into a mild-to-moderate group (FEV1%pred≥ 50%, n=57) and a severe-to-very-severe group (FEV1%pred<50%, n=45). We measured a series of inflammatory biomarkers in induced sputum and analyzed their association with lung function and SGRQ in COPD patients. To evaluate the relationship between inflammatory biomarkers and the inflammatory phenotype, we also analyzed the correlation between biomarkers and airway eosinophilic phenotype. Results We found increased mRNA levels of MMP9, LTB4R, and A1AR and decreased levels of CC16 mRNA in induced sputum in the severe-to-very-severe group. After adjustment for age, sex and other biomarkers, CC16 mRNA expression was positively associated with FEV1%pred (r=0.516, p=0.004) and negatively correlated with SGRQ scores (r=-0.3538, p=0.043). As previously known, decreased CC16 was related to the migration and aggregation of eosinophils in airway. It was also found that CC16 had a moderate negative correlation with the eosinophilic inflammation in airway (r=-0.363, p=0.045) in our COPD patients. Conclusion Low CC16 mRNA expression levels in induced sputum were associated with low FEV1%pred and a high SGRQ score in COPD patients. Sputum CC16 as a potential biomarker for predicting COPD severity in clinical practice might attribute to the involvement of CC16 in airway eosinophilic inflammation.
Collapse
Affiliation(s)
- Mengjie Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Kan Xu
- Geriatric Department of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Yuting He
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Jianjun Jin
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Lei Gao
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Yi Zhang
- Air Liquide Holding Co., Ltd, Shanghai, People’s Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, People’s Republic of China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical 10 College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Chunfang Liu, Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wlmq Road, Shanghai, People’s Republic of China, Email
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Zhihong Chen, Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, No. 180 Fenglin Road, Shanghai, People’s Republic of China, Tel +86-21-64041990-2445, Fax +86-21-64187165, Email
| |
Collapse
|
8
|
Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, Wang L, Zheng W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022; 11:cells11193001. [PMID: 36230963 PMCID: PMC9562180 DOI: 10.3390/cells11193001] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of obesity has reached alarming levels, which is considered a major risk factor for several metabolic diseases, including type 2 diabetes (T2D), non-alcoholic fatty liver, atherosclerosis, and ischemic cardiovascular disease. Obesity-induced chronic, low-grade inflammation may lead to insulin resistance, and it is well-recognized that macrophages play a major role in such inflammation. In the current review, the molecular mechanisms underlying macrophages, low-grade tissue inflammation, insulin resistance, and T2D are described. Also, the role of macrophages in obesity-induced insulin resistance is presented, and therapeutic drugs and recent advances targeting macrophages for the treatment of T2D are introduced.
Collapse
Affiliation(s)
- He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya Meng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuwang He
- Shandong DYNE Marine Biopharmaceutical Co., Ltd., Rongcheng 264300, China
| | - Xiaochuan Tan
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiuli Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| | - Wensheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| |
Collapse
|
9
|
Mulvanny A, Pattwell C, Beech A, Southworth T, Singh D. Validation of Sputum Biomarker Immunoassays and Cytokine Expression Profiles in COPD. Biomedicines 2022; 10:biomedicines10081949. [PMID: 36009496 PMCID: PMC9405928 DOI: 10.3390/biomedicines10081949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Immunoassays are commonly used to assess airway inflammation in sputum samples from chronic obstructive pulmonary disease (COPD) patients. However, assay performance and validation in this complex matrix is inconsistently reported. The aim of this study was to assess the suitability of various immunoassays for use with sputum samples, followed by use of validated immunoassays to evaluate biomarker levels in COPD patients. Assays were assessed for recombinant reference standard suitability, optimal sample dilution, standard recovery in the biological matrix and reproducibility. Validated assays were used to assess sputum supernatants in Cohort A (n = 30 COPD, n = 10 smokers, n = 10 healthy) and Cohort B (n = 81 COPD, n = 15 smokers, n = 26 healthy). Paired baseline and exacerbation samples from 14 COPD patients were assessed in cohort A, and associations with sputum cell counts and bacterial colonisation investigated in cohort B. 25/32 assays passed validation; the primary reason for validation failure was recombinant reference standard suitability and sample dilution effects. Interleukin (IL-)6 and IL-8 were significantly increased in COPD patients compared to healthy subjects and smokers for both cohorts. Tumour necrosis factor (TNF)α and IL-1β were higher in COPD compared to smokers using one immunoassay but not another, partly explained by different absolute recovery rates. IL-1β, IL-2, IL-4, IL-8, IL-17A, Granulocyte colony stimulating factor (G-CSF), Interferon (IFN-)γ, Interferon gamma induced protein (IP-)10, Macrophage inflammatory protein (MIP)-1α, MIP-1β and TNF-α levels correlated with sputum neutrophil percentage in COPD patients. IL-1β, IL-4, IL-8, G-CSF and IFN-γ levels were associated with Haemophilus influenzae colonisation in COPD patients. Current smokers had lower levels of IL-1β, IL-4, IL-8, G-CSF, IFN-γ, IP-10, Monocyte chemoattractant protein (MCP)-1, MIP-1α, MIP-1β and TNF-α. Validated immunoassays applied to sputum supernatants demonstrated differences between COPD patients and controls, the effects of current smoking and associations between Haemophilus influenzae colonisation and higher levels of selected cytokines. Immunoassay validation enabled inflammatory mediators associated with different COPD characteristics to be determined.
Collapse
Affiliation(s)
- Alex Mulvanny
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK
- Correspondence: ; Tel.: +44-0161-946-4050
| | - Caroline Pattwell
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
| | - Thomas Southworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK
| |
Collapse
|
10
|
Zhao Y, Zhang X, Han C, Cai Y, Li S, Hu X, Wu C, Guan X, Lu C, Nie X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:1068. [PMID: 35887565 PMCID: PMC9316609 DOI: 10.3390/jpm12071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenetics research on leukotriene modifiers (LTMs) for asthma has been developing rapidly, although pharmacogenetic testing for LTMs is not yet used in clinical practice. We performed a systematic review and meta-analysis on the impact of pharmacogenomics on LTMs response. Studies published until May 2022 were searched using PubMed, EMBASE, and Cochrane databases. Pharmacogenomics/genetics studies of patients with asthma using LTMs with or without other anti-asthmatic drugs were included. Statistical tests of the meta-analysis were performed with Review Manager (Revman, version 5.4, The Cochrane Collaboration, Copenhagen, Denmark) and R language and environment for statistical computing (version 4.1.0 for Windows, R Core Team, Vienna, Austria) software. In total, 31 studies with 8084 participants were included in the systematic review and five studies were also used to perform the meta-analysis. Two included studies were genome-wide association studies (GWAS), which showed different results. Furthermore, none of the SNPs investigated in candidate gene studies were identified in GWAS. In candidate gene studies, the most widely studied SNPs were ALOX5 (tandem repeats of the Sp1-binding domain and rs2115819), LTC4S-444A/C (rs730012), and SLCO2B1 (rs12422149), with relatively inconsistent conclusions. LTC4S-444A/C polymorphism did not show a significant effect in our meta-analysis (AA vs. AC (or AC + CC): −0.06, 95%CI: −0.16 to 0.05, p = 0.31). AA homozygotes had smaller improvements in parameters pertaining to lung functions (−0.14, 95%CI: −0.23 to −0.05, p = 0.002) in a subgroup of patients with non-selective CysLT receptor antagonists and patients without inhaled corticosteroids (ICS) (−0.11, 95%CI: −0.14 to −0.08, p < 0.00001), but not in other subgroups. Variability exists in the pharmacogenomics of LTMs treatment response. Our meta-analysis and systematic review found that LTC4S-444A/C may influence the treatment response of patients taking non-selective CysLT receptor antagonists for asthma, and patients taking LTMs not in combination with ICS for asthma. Future studies are needed to validate the pharmacogenomic influence on LTMs response.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xinyi Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Congxiao Han
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Yuchun Cai
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Sicong Li
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaowen Hu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Caiying Wu
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Xiaodong Guan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| | - Christine Lu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA;
| | - Xiaoyan Nie
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (X.Z.); (C.H.); (Y.C.); (S.L.); (X.H.); (C.W.); (X.G.)
| |
Collapse
|
11
|
Southworth T, Jackson N, Singh D. Airway immune responses to COVID-19 vaccination in COPD patients and healthy subjects. Eur Respir J 2022; 60:13993003.00497-2022. [PMID: 35728975 PMCID: PMC9403393 DOI: 10.1183/13993003.00497-2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
COPD patients have a higher risk of developing severe illness and mortality following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [1]. Vaccination protects against coronavirus disease 2019 (COVID-19) through the development of systemic and airway immune responses. Patients with COPD display altered humoral immunity, with reduced antibody responses compared to healthy controls [2, 3]. We studied SARS-CoV-2 vaccine-specific immune responses in COPD patients versus healthy controls, using systemic, nasal and sputum samples. Airway and blood immune responses to COVID-19 vaccination were examined in COPD patients and healthy subjects. Anti-spike IgG, but not IgA, levels were higher in airways post-vaccination, with similar responses in COPD patients and healthy subjects. https://bit.ly/3zt6D6v
Collapse
Affiliation(s)
- Thomas Southworth
- University of Manchester, Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK .,Medicines Evaluation Unit, Manchester, UK
| | | | - Dave Singh
- University of Manchester, Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
12
|
Kim J, Im YN, Chung Y, Youm J, Im SY, Han MK, Lee HK. Glutamine deficiency shifts the asthmatic state toward neutrophilic airway inflammation. Allergy 2022; 77:1180-1191. [PMID: 34601745 PMCID: PMC9293426 DOI: 10.1111/all.15121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
Background The administration of L‐glutamine (Gln) suppresses allergic airway inflammation via the rapid upregulation of MAPK phosphatase (MKP)‐1, which functions as a negative regulator of inflammation by deactivating p38 and JNK mitogen‐activated protein kinases (MAPKs). However, the role of endogenous Gln remains to be elucidated. Therefore, we investigated the mechanism by which endogenous Gln regulates MKP‐1 induction and allergic airway inflammation in an ovalbumin‐based murine asthma model. Methods We depleted endogenous Gln levels using L‐γ‐glutamyl‐p‐nitroanilide (GPNA), an inhibitor of the Gln transporter ASCT2 and glutamine synthetase small interfering siRNA. Lentivirus expressing MKP‐1 was injected to achieve overexpression of MKP‐1. Asthmatic phenotypes were assessed using our previously developed ovalbumin‐based murine model, which is suitable for examining sequential asthmatic events, including neutrophil infiltration. Gln levels were analyzed using a Gln assay kit. Results GPNA or glutamine synthetase siRNA successfully depleted endogenous Gln levels. Importantly, homeostatic MKP‐1 induction did not occur at all, which resulted in prolonged p38 MAPK and cytosolic phospholipase A2 (cPLA2) phosphorylation in Gln‐deficient mice. Gln deficiency augmented all examined asthmatic reactions, but it exhibited a strong bias toward increasing the neutrophil count, which was not observed in MKP‐1‐overexpressing lungs. This neutrophilia was inhibited by a cPLA2 inhibitor and a leukotriene B4 inhibitor but not by dexamethasone. Conclusion Gln deficiency leads to the impairment of MKP‐1 induction and activation of p38 MAPK and cPLA2, resulting in the augmentation of neutrophilic, more so than eosinophilic, airway inflammation.
Collapse
Affiliation(s)
- June‐Mo Kim
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Yoo Na Im
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Yun‐Jo Chung
- Center for University‐wide Research Facilities Jeonbuk National University Medical School Jeonju South Korea
| | - Jung‐ho Youm
- Department of Preventive Medicine Jeonbuk National University Medical School Jeonju South Korea
| | - Suhn Young Im
- Department of Biological Sciences College of Natural Sciences Chonnam National University Gwangju South Korea
| | - Myung Kwan Han
- Department of Microbiology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| | - Hern Ku Lee
- Department of Immunology and Institute for Medical Science Jeonbuk National University Medical School Jeonju South Korea
| |
Collapse
|
13
|
Higham A, Beech A, Jackson N, Lea S, Singh D. Sputum cell counts in COPD patients who use electronic cigarettes. Eur Respir J 2022; 59:13993003.03016-2021. [PMID: 35210322 DOI: 10.1183/13993003.03016-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Andrew Higham
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Augusta Beech
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Natalie Jackson
- Medicines Evaluation Unit, , Manchester University NHS Foundation Trust, Manchester, UK
| | - Simon Lea
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Dave Singh
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, , Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
14
|
Dysregulation of the CD163-Haptoglobin Axis in the Airways of COPD Patients. Cells 2021; 11:cells11010002. [PMID: 35011566 PMCID: PMC8750523 DOI: 10.3390/cells11010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023] Open
Abstract
Pulmonary iron levels are increased in chronic obstructive pulmonary disease (COPD) patients. Iron causes oxidative stress and is a nutrient for pathogenic bacteria. Iron may therefore play an important role in the pathophysiology of COPD. The CD163-haptglobin axis plays a central role in the regulation of iron bioavailability. The aim of this study was to examine dysregulation of the CD163-haptglobin axis in COPD. We measured soluble CD163 (sCD163) and haptoglobin levels in sputum supernatants by enzyme-linked immunosorbent assay (ELISA) and sputum macrophage CD163 and haptoglobin expression by flow cytometry in COPD patients and controls. SCD163 levels were lower in COPD patients compared to controls (p = 0.02), with a significant correlation to forced expiratory volume in 1 s (FEV1)% predicted (rho = 0.5, p = 0.0007). Sputum macrophage CD163 expression was similar between COPD patients and controls. SCD163 levels and macrophage CD163 expression were lower in COPD current smokers compared to COPD ex-smokers. Haptoglobin levels were not altered in COPD patients but were regulated by genotype. Macrophage CD163 and haptolgobin expression were significantly correlated, supporting the role of CD163 in the cellular uptake of haptoglobin. Our data implicates a dysfunctional CD163-haptoglobin axis in COPD, which may contribute to disease pathophysiology, presumably due to reduced clearance of extracellular iron.
Collapse
|
15
|
Kim YM, Kim H, Lee S, Kim S, Lee JU, Choi Y, Park HW, You G, Kang H, Lee S, Park JS, Park Y, Park HS, Park CS, Lee SW. Airway G-CSF identifies neutrophilic inflammation and contributes to asthma progression. Eur Respir J 2020; 55:13993003.00827-2019. [PMID: 31744834 DOI: 10.1183/13993003.00827-2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
Stratification of asthmatic patients based on relevant biomarkers enables the prediction of responsiveness against immune-targeted therapies in patients with asthma. Individualised therapy in patients with eosinophilic asthma has yielded improved clinical outcomes; similar approaches in patients with neutrophilic asthma have yet to be developed. We determined whether colony-stimulating factors (CSFs) in the airway reflect the inflammatory phenotypes of asthma and contribute to disease progression of neutrophilic asthma.We analysed three different mouse models of asthma and assessed cytokine profiles in sputum from human patients with asthma stratified according to inflammatory phenotype. In addition, we evaluated the therapeutic efficacy of various cytokine blockades in a mouse model of neutrophilic asthma.Among the CSFs, airway granulocyte CSF (G-CSF) contributes to airway neutrophilia by promoting neutrophil development in bone marrow and thereby distinguishes neutrophilic inflammation from eosinophilic inflammation in mouse models of asthma. G-CSF is produced by concurrent stimulation of the lung epithelium with interleukin (IL)-17A and tumour necrosis factor (TNF)-α; therefore, dual blockade of upstream stimuli using monoclonal antibodies or genetic deficiency of the cytokines in IL-17A×TNF-α double-knockout mice reduced the serum level of G-CSF, leading to alleviation of neutrophilic inflammation in the airway. In humans, the sputum level of G-CSF can be used to stratify patients with asthma with neutrophil-dominated inflammation.Our results indicated that myelopoiesis-promoting G-CSF and cytokines as the upstream inducing factors are potential diagnostic and therapeutic targets in patients with neutrophilic asthma.
Collapse
Affiliation(s)
- Young-Min Kim
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyekang Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,These authors contributed equally to this work
| | - Seungwon Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,These authors contributed equally to this work
| | - Sora Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong-Uk Lee
- Dept of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea
| | - Youngwoo Choi
- Dept of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Han Wook Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Gihoon You
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hansol Kang
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seyoung Lee
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Disease, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hae-Sim Park
- Dept of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Disease, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seung-Woo Lee
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
16
|
Pal K, Feng X, Steinke JW, Burdick MD, Shim YM, Sung SS, Teague WG, Borish L. Leukotriene A4 Hydrolase Activation and Leukotriene B4 Production by Eosinophils in Severe Asthma. Am J Respir Cell Mol Biol 2019; 60:413-419. [PMID: 30352167 DOI: 10.1165/rcmb.2018-0175oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asthma is associated with the overproduction of leukotrienes (LTs), including LTB4. Patients with severe asthma can be highly responsive to 5-lipoxygenase (5-LO) inhibition, which blocks production of both the cysteinyl LTs and LTB4. Production of LTB4 has traditionally been ascribed to neutrophils, mononuclear phagocytes, and epithelial cells, and acts as a chemoattractant for inflammatory cells associated with asthma. The source of LTB4 is unclear, especially in eosinophilic asthma. We speculated that the benefit of 5-LO inhibition could be mediated in part by inhibition of eosinophil-derived LTB4. LTB4 concentrations were assayed in BAL fluid from patients with severe asthma characterized by isolated neutrophilic, eosinophilic, and paucigranulocytic inflammation. Expression of LTA4 hydrolase (LTA4H) by airway eosinophils was determined by immunohistochemistry (IHC). Subsequently, peripheral blood eosinophils were activated and secreted LTB4 was quantified by enzyme immunoassay. Blood eosinophil LTA4H expression was determined by flow cytometry, qPCR, and IHC. LTB4 concentrations were elevated in BAL fluid from patients with severe asthma, including those with isolated eosinophilic inflammation, and these eosinophils displayed LTA4H via IHC. LTA4H expression by blood eosinophils was confirmed by flow cytometry, IHC, and qPCR. Robust LTB4 production by blood eosinophils was observed in response to some, but not all, stimuli. We demonstrated that eosinophils express LTA4H transcripts and protein, and can be stimulated to secrete LTB4. We speculate that in many patients with asthma, eosinophil-derived LTB4 is increased, and this may contribute to the efficacy of 5-LO inhibition.
Collapse
Affiliation(s)
- Kavita Pal
- 1 Division of Pulmonary and Critical Care Medicine
| | - Xin Feng
- 2 Department of Otorhinolaryngology, QiLu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | - Yun M Shim
- 1 Division of Pulmonary and Critical Care Medicine
| | | | | | - Larry Borish
- 3 Division of Asthma Allergy and Immunology, and.,6 Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
17
|
Kandhare AD, Liu Z, Mukherjee AA, Bodhankar SL. Therapeutic Potential of Morin in Ovalbumin-induced Allergic Asthma Via Modulation of SUMF2/IL-13 and BLT2/NF-kB Signaling Pathway. Curr Mol Pharmacol 2019; 12:122-138. [PMID: 30605067 DOI: 10.2174/1874467212666190102105052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Allergic asthma is a chronic immune-inflammatory disorder, characterized by airway inflammation and airway hyperresponsiveness (AHR). Morin is a natural flavonoid reported to exhibit inhibitory action against IgE-mediated allergic response. AIM To determine the efficacy of murine model of ovalbumin (OVA)-induced AHR inhibition by morin and decipher the molecular mechanism involved. MATERIALS AND METHODS Sprague-Dawley rats were sensitized and challenged with OVA to induce AHR. Rats received treatment with morin (10, 30 and 100 mg/kg, p.o.) for the next 28 days. RESULTS Morin (30 and 100 mg/kg) significantly and dose-dependently attenuated (p < 0.01 and p < 0.001) OVA-induced alterations in pulse oxy and lung function test, increased bronchoalveolar lavage fluid cell counts, elevated total protein and albumin levels in serum, BALF, and lungs, increased serum total and OVA-specific IgE levels and, elevated oxidative stress levels in the lung. RT-PCR analysis revealed that morin treatment (30 and 100 mg/kg) significantly (p < 0.001) up-regulated SUMF2 mRNA expression in lungs whereas mRNA expressions of BLT2, NF-κB, and Th2-cytokine (TNF-α, IL-1β, IL-4, IL-6, and IL-13) were down-regulated significantly and dose-dependently (p < 0.01 and p < 0.001). Also, histologic and ultrastructural studies showed that morin significantly inhibited (p < 0.001) OVAinduced perivascular and peribranchial inflammatory infiltration and interstitial fibrosis. CONCLUSION Morin exhibited inhibitory effect against OVA-induced allergic asthma by activation of SUMF2 which impeded IL-13 expression and in turn attenuated Th2-cytokines, BLT2, NF-κB, and IgE levels to ameliorate AHR. Thus, our findings suggested that morin could be considered as a potential alternative therapeutic agent for the management of allergic asthma.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Zihao Liu
- Jiangxi Medical College, Nanchang University, Jiangxi 330006, China
| | - Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| |
Collapse
|
18
|
Helfrich S, Mindt BC, Fritz JH, Duerr CU. Group 2 Innate Lymphoid Cells in Respiratory Allergic Inflammation. Front Immunol 2019; 10:930. [PMID: 31231357 PMCID: PMC6566538 DOI: 10.3389/fimmu.2019.00930] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Millions of people worldwide are suffering from allergic inflammatory airway disorders. These conditions are regarded as a consequence of multiple imbalanced immune events resulting in an inadequate response with the exact underlying mechanisms still being a subject of ongoing research. Several cell populations have been proposed to be involved but it is becoming increasingly evident that group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and orchestration of respiratory allergic inflammation. ILC2s are important mediators of inflammation but also tissue remodeling by secreting large amounts of signature cytokines within a short time period. Thereby, ILC2s instruct innate but also adaptive immune responses. Here, we will discuss the recent literature on allergic inflammation of the respiratory tract with a focus on ILC2 biology. Furthermore, we will highlight different therapeutic strategies to treat pulmonary allergic inflammation and their potential influence on ILC2 function as well as discuss the perspective of using human ILC2s for diagnostic purposes.
Collapse
Affiliation(s)
- Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara C Mindt
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, QC, Canada
| | - Jörg H Fritz
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, QC, Canada.,Department of Physiology, McGill University, Montréal, QC, Canada
| | - Claudia U Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
How Glucocorticoids Affect the Neutrophil Life. Int J Mol Sci 2018; 19:ijms19124090. [PMID: 30563002 PMCID: PMC6321245 DOI: 10.3390/ijms19124090] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.
Collapse
|
21
|
Berenguer PH, Camacho IC, Câmara R, Oliveira S, Câmara JS. Determination of potential childhood asthma biomarkers using a powerful methodology based on microextraction by packed sorbent combined with ultra-high pressure liquid chromatography. Eicosanoids as case study. J Chromatogr A 2018; 1584:42-56. [PMID: 30482430 DOI: 10.1016/j.chroma.2018.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022]
Abstract
Leukotrienes and prostaglandins are arachidonic acid bioactive derived eicosanoids and key mediators of bronchial inflammation and response modulation in the airways contributing to the pathophysiology of asthma. An easy-to-use ultra-high pressure liquid chromatography (UHPLC)-based strategy was developed to characterize biomarkers of lipid peroxidation: leukotrienes E (LTE4) and B4 (LTB4) and 11β-prostaglandin F2α (11βPGF2α), present in urine of asthmatic patients (N = 27) and healthy individuals (N = 17). A semi-automatic eVol®-microextraction by packed sorbent (MEPS) was used to isolate the target analytes. Several experimental parameters with influence on the extraction efficiency and on the chromatographic resolution, were evaluated and optimized. The method was fully validated under optimal extraction (R-AX sorbent, 3 conditioning-equilibration cycles with 250 μL of ACN-water at 0.1% FA, 10 extract-discard cycles of 250 μL of sample at a pH of 5.1, elution with 2 times 50 μL of MeOH and concentration of the eluate until half of its volume) and chromatographic conditions (14-min analysis at a flow rate of 300 μL min-1 in an UHPLC-PDA equipped with a BEH C18 column), according to IUPAC guidelines. The findings indicated good recoveries (>95%) in addition to excellent extraction efficiency (>95%) at three concentration levels (low mid and high) with precision (RSDs) less than 11%. The lack-of-fit test, goodness-of-fit test and Mandel's fitting test, revealed good linearity within the concentration range. Good selectivity and sensitivity were achieved with a limits of detection ranging from 0.04 μg L-1 for LTB4 to 1.12 μg L-1 for 11βPGF2α, and limits of quantification from 0.10 μg L-1 for the LTB4 to 2.11 μg L-1 for 11βPGF2α. The successful application of the fully validated method shows that, on average, the asthmatic patients had significantly higher concentrations of 11βPGF2α (112.96 μg L-1vs 62.56 μg L-1 in normal controls), LTE4 (1.27 μg L-1vs 0.89 μg L-1 in normal controls), and LTB4 (1.39 μg L-1vs 0.76 μg L-1 in normal controls). The results suggest the potential of the target eicosanoids on asthma diagnosis, however, a larger and more extensive study will be necessary to confirm the data obtained and to guarantee a greater robustness to the approach.
Collapse
Affiliation(s)
- Pedro H Berenguer
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Irene C Camacho
- Faculdade de Ciências da Vida, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| | - Rita Câmara
- Unidade de Imunoalergologia, Hospital Dr. Nélio Mendonça, SESARAM, E.P.E., 9004-514 Funchal, Portugal
| | - Susana Oliveira
- Unidade de Imunoalergologia, Hospital Dr. Nélio Mendonça, SESARAM, E.P.E., 9004-514 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal.
| |
Collapse
|
22
|
Hough KP, Wilson LS, Trevor JL, Strenkowski JG, Maina N, Kim YI, Spell ML, Wang Y, Chanda D, Dager JR, Sharma NS, Curtiss M, Antony VB, Dransfield MT, Chaplin DD, Steele C, Barnes S, Duncan SR, Prasain JK, Thannickal VJ, Deshane JS. Unique Lipid Signatures of Extracellular Vesicles from the Airways of Asthmatics. Sci Rep 2018; 8:10340. [PMID: 29985427 PMCID: PMC6037776 DOI: 10.1038/s41598-018-28655-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
Asthma is a chronic inflammatory disease process involving the conductive airways of the human lung. The dysregulated inflammatory response in this disease process may involve multiple cell-cell interactions mediated by signaling molecules, including lipid mediators. Extracellular vesicles (EVs) are lipid membrane particles that are now recognized as critical mediators of cell-cell communication. Here, we compared the lipid composition and presence of specific lipid mediators in airway EVs purified from the bronchoalveolar lavage (BAL) fluid of healthy controls and asthmatic subjects with and without second-hand smoke (SHS) exposure. Airway exosome concentrations were increased in asthmatics, and correlated with blood eosinophilia and serum IgE levels. Frequencies of HLA-DR+ and CD54+ exosomes were also significantly higher in asthmatics. Lipidomics analysis revealed that phosphatidylglycerol, ceramide-phosphates, and ceramides were significantly reduced in exosomes from asthmatics compared to the non-exposed control groups. Sphingomyelin 34:1 was more abundant in exosomes of SHS-exposed asthmatics compared to healthy controls. Our results suggest that chronic airway inflammation may be driven by alterations in the composition of lipid mediators within airway EVs of human subjects with asthma.
Collapse
Affiliation(s)
- Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Landon S Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Trevor
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John G Strenkowski
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Njeri Maina
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young-Il Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marion L Spell
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diptiman Chanda
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose Rodriguez Dager
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nirmal S Sharma
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Miranda Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark T Dransfield
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David D Chaplin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R Duncan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Mulvanny A, Jackson N, Pattwell C, Wolosianka S, Southworth T, Singh D. The dose response of inhaled LPS challenge in healthy subjects. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218784820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lipopolysaccharide (LPS) inhalation causes neutrophilic airway inflammation. We used LPS produced to Good Manufacturing Practice (GMP) standards to characterise the dose response. A total of 15 healthy non-smoking subjects inhaled 5-, 15- and 50-µg LPS. Whole blood cell counts and serum C-reactive protein (CRP) were measured at baseline and up to 24 h post challenge. Sputum was induced at baseline and 6 h post challenge for cell counts and quantification of myeloperoxidase (MPO), interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor α (TNF-α) in supernatants. LPS inhalation was well tolerated. Blood neutrophil counts increased at 6 h post LPS with all doses. Serum CRP significantly increased with 15- and 50-µg LPS. All LPS doses significantly increased sputum neutrophil percentage ( P < 0.001). IL-1β, IL-6 and TNF-α were significantly increased in sputum supernatant following challenge with 50-µg LPS, there was no change in MPO or IL-8. The 50-µg LPS was well tolerated and produced a robust inflammatory response. This study supports the use of 50-µg GMP-grade LPS as a suitable challenge agent in clinical trials.
Collapse
Affiliation(s)
- Alex Mulvanny
- The Medicines Evaluation Unit, Manchester, UK
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | | | | | - Thomas Southworth
- The Medicines Evaluation Unit, Manchester, UK
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Dave Singh
- The Medicines Evaluation Unit, Manchester, UK
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
24
|
Draijer C, Peters-Golden M. Alveolar Macrophages in Allergic Asthma: the Forgotten Cell Awakes. Curr Allergy Asthma Rep 2017; 17:12. [PMID: 28233154 DOI: 10.1007/s11882-017-0681-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The role of alveolar macrophages in innate immune responses has long been appreciated. Here, we review recent studies evaluating the participation of these cells in allergic inflammation. RECENT FINDINGS Immediately after allergen exposure, monocytes are rapidly recruited from the bloodstream and serve to promote acute inflammation. By contrast, resident alveolar macrophages play a predominantly suppressive role in an effort to restore homeostasis. As inflammation becomes established after repeated exposures, alveolar macrophages can polarize across a continuum of activation phenotypes, losing their suppressive functions and gaining pathogenic functions. Future research should focus on the diverse roles of monocytes/macrophages during various types and phases of allergic inflammation. These properties could lead us to new therapeutic opportunities.
Collapse
Affiliation(s)
- Christina Draijer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|