1
|
Ringshausen FC, Baumann I, de Roux A, Dettmer S, Diel R, Eichinger M, Ewig S, Flick H, Hanitsch L, Hillmann T, Koczulla R, Köhler M, Koitschev A, Kugler C, Nüßlein T, Ott SR, Pink I, Pletz M, Rohde G, Sedlacek L, Slevogt H, Sommerwerck U, Sutharsan S, von Weihe S, Welte T, Wilken M, Rademacher J, Mertsch P. [Management of adult bronchiectasis - Consensus-based Guidelines for the German Respiratory Society (DGP) e. V. (AWMF registration number 020-030)]. Pneumologie 2024; 78:833-899. [PMID: 39515342 DOI: 10.1055/a-2311-9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bronchiectasis is an etiologically heterogeneous, chronic, and often progressive respiratory disease characterized by irreversible bronchial dilation. It is frequently associated with significant symptom burden, multiple complications, and reduced quality of life. For several years, there has been a marked global increase in the prevalence of bronchiectasis, which is linked to a substantial economic burden on healthcare systems. This consensus-based guideline is the first German-language guideline addressing the management of bronchiectasis in adults. The guideline emphasizes the importance of thoracic imaging using CT for diagnosis and differentiation of bronchiectasis and highlights the significance of etiology in determining treatment approaches. Both non-drug and drug treatments are comprehensively covered. Non-pharmacological measures include smoking cessation, physiotherapy, physical training, rehabilitation, non-invasive ventilation, thoracic surgery, and lung transplantation. Pharmacological treatments focus on the long-term use of mucolytics, bronchodilators, anti-inflammatory medications, and antibiotics. Additionally, the guideline covers the challenges and strategies for managing upper airway involvement, comorbidities, and exacerbations, as well as socio-medical aspects and disability rights. The importance of patient education and self-management is also emphasized. Finally, the guideline addresses special life stages such as transition, family planning, pregnancy and parenthood, and palliative care. The aim is to ensure comprehensive, consensus-based, and patient-centered care, taking into account individual risks and needs.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Ingo Baumann
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Andrés de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Deutschland
| | - Sabine Dettmer
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Roland Diel
- Institut für Epidemiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland; LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Grosshansdorf, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum, Bochum, Deutschland
| | - Holger Flick
- Klinische Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, LKH-Univ. Klinikum Graz, Medizinische Universität Graz, Graz, Österreich
| | - Leif Hanitsch
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Thomas Hillmann
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Essen, Deutschland
| | - Rembert Koczulla
- Abteilung für Pneumologische Rehabilitation, Philipps Universität Marburg, Marburg, Deutschland
| | | | - Assen Koitschev
- Klinik für Hals-, Nasen-, Ohrenkrankheiten, Klinikum Stuttgart - Olgahospital, Stuttgart, Deutschland
| | - Christian Kugler
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Thomas Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein gGmbH, Koblenz, Deutschland
| | - Sebastian R Ott
- Pneumologie/Thoraxchirurgie, St. Claraspital AG, Basel; Universitätsklinik für Pneumologie, Allergologie und klinische Immunologie, Inselspital, Universitätsspital und Universität Bern, Bern, Schweiz
| | - Isabell Pink
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Mathias Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Gernot Rohde
- Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Deutschland
| | - Ludwig Sedlacek
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Hortense Slevogt
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Center for Individualised Infection Medicine, Hannover, Deutschland
| | - Urte Sommerwerck
- Klinik für Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin, Cellitinnen-Severinsklösterchen Krankenhaus der Augustinerinnen, Köln, Deutschland
| | | | - Sönke von Weihe
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Tobias Welte
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | | | - Jessica Rademacher
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München (LMU), Comprehensive Pneumology Center (CPC), Deutsches Zentrum für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
2
|
Weimann A, Dinan AM, Ruis C, Bernut A, Pont S, Brown K, Ryan J, Santos L, Ellison L, Ukor E, Pandurangan AP, Krokowski S, Blundell TL, Welch M, Blane B, Judge K, Bousfield R, Brown N, Bryant JM, Kukavica-Ibrulj I, Rampioni G, Leoni L, Harrison PT, Peacock SJ, Thomson NR, Gauthier J, Fothergill JL, Levesque RC, Parkhill J, Floto RA. Evolution and host-specific adaptation of Pseudomonas aeruginosa. Science 2024; 385:eadi0908. [PMID: 38963857 DOI: 10.1126/science.adi0908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
The major human bacterial pathogen Pseudomonas aeruginosa causes multidrug-resistant infections in people with underlying immunodeficiencies or structural lung diseases such as cystic fibrosis (CF). We show that a few environmental isolates, driven by horizontal gene acquisition, have become dominant epidemic clones that have sequentially emerged and spread through global transmission networks over the past 200 years. These clones demonstrate varying intrinsic propensities for infecting CF or non-CF individuals (linked to specific transcriptional changes enabling survival within macrophages); have undergone multiple rounds of convergent, host-specific adaptation; and have eventually lost their ability to transmit between different patient groups. Our findings thus explain the pathogenic evolution of P. aeruginosa and highlight the importance of global surveillance and cross-infection prevention in averting the emergence of future epidemic clones.
Collapse
Affiliation(s)
- Aaron Weimann
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Adam M Dinan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Ruis
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Audrey Bernut
- Laboratory of Pathogens and Host Immunity (LPHI), UMR5235, CNRS/Université de Montpellier, Montpellier, France
| | - Stéphane Pont
- Laboratory of Pathogens and Host Immunity (LPHI), UMR5235, CNRS/Université de Montpellier, Montpellier, France
| | - Karen Brown
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Judy Ryan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lúcia Santos
- Department of Physiology, Bioscience Institute, University College Cork, Cork, Ireland
| | - Louise Ellison
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Emem Ukor
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Arun P Pandurangan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sina Krokowski
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tom L Blundell
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kim Judge
- Wellcome Sanger Institute, Hinxton, UK
| | - Rachel Bousfield
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| | | | | | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Patrick T Harrison
- Department of Physiology, Bioscience Institute, University College Cork, Cork, Ireland
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jeff Gauthier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Jo L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| |
Collapse
|
3
|
Rosenboom I, Thavarasa A, Richardson H, Long MB, Wiehlmann L, Davenport CF, Shoemark A, Chalmers JD, Tümmler B. Sputum metagenomics of people with bronchiectasis. ERJ Open Res 2024; 10:01008-2023. [PMID: 38444657 PMCID: PMC10910388 DOI: 10.1183/23120541.01008-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024] Open
Abstract
Background The microbiota in the sputum of people with bronchiectasis has repeatedly been investigated in cohorts of different geographic origin, but so far has not been studied to the species level in comparison to control populations including healthy adults and smokers without lung disease. Methods The microbial metagenome from sputa of 101 European Bronchiectasis Registry (EMBARC) study participants was examined by using whole-genome shotgun sequencing. Results Our analysis of the metagenome of people with bronchiectasis revealed four clusters characterised by a predominance of Haemophilus influenzae, Pseudomonas aeruginosa or polymicrobial communities with varying compositions of nonpathogenic commensals and opportunistic pathogens. The metagenomes of the severely affected patients showed individual profiles characterised by low alpha diversity. Importantly, nearly 50% of patients with severe disease were grouped in a cluster characterised by commensals. Comparisons with the sputum metagenomes of healthy smokers and healthy nonsmokers revealed a gradient of depletion of taxa in bronchiectasis, most often Neisseria subflava, Fusobacterium periodonticum and Eubacterium sulci. Conclusion The gradient of depletion of commensal taxa found in healthy airways is a key feature of bronchiectasis associated with disease severity.
Collapse
Affiliation(s)
- Ilona Rosenboom
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ajith Thavarasa
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Merete B. Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | | | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Burkhard Tümmler
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Centre for Lung Research, Hannover, Germany
| |
Collapse
|
4
|
Amjad Z, Abaza A, Vasavada AM, Sadhu A, Valencia C, Fatima H, Nwankwo I, Anam M, Maharjan S, Penumetcha SS. Inhaled Antibiotics in Non-cystic Fibrosis Bronchiectasis (NCFB): A Systematic Review of Efficacy and Limitations in Adult Patients. Cureus 2022; 14:e30660. [PMID: 36439573 PMCID: PMC9685586 DOI: 10.7759/cureus.30660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022] Open
Abstract
Non-cystic fibrosis bronchiectasis has recently been under the spotlight due to a better detection rate with advanced imaging techniques. Recurrent infections in such patients are the main cause of their deterioration. This invariably leads to a catastrophic wheel of decline in lung function, reinfection, and repeated hospital consultations. The main goal of their management is based on the principles of prevention and vigorous treatment of recurrent infections. This review aimed to gather recent therapeutic options for inhaled antibacterial use in such patients and compare them for their properties of safety and efficacy. Studies done in the last 10 years on adult patients were gathered using the Medical Subject Headings (MeSH) strategy and later sorted using the inclusion/exclusion criteria. Research engines used include Google Scholar, PubMed, and the Saudi Digital Library. Out of the 31,739 articles identified initially, 1362 were screened. The final eight selected papers were assessed for quality by using the quality assessment checklist, the Cochrane bias assessment tool, the Scale for the Assessment of Narrative Review Articles (SANRA) tools and cross-examined by co-authors. We concluded that the use of inhaled antibiotics as an adjuvant and follow-up treatment option is associated with better short and long-term prognoses in patients. They lead to lesser systemic side effects than the oral and intravenous varieties available on the market. However, the establishment of a hierarchy among the subgroups remains a grey area that needs further research.
Collapse
Affiliation(s)
- Zainab Amjad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, King Faisal University, Al Ahsa, SAU
| | - Abdelrahman Abaza
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Advait M Vasavada
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Akhil Sadhu
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Carla Valencia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hameeda Fatima
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ijeoma Nwankwo
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mahvish Anam
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shrinkhala Maharjan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Sri Penumetcha
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
5
|
Staphylococcus aureus in Non-Cystic Fibrosis Bronchiectasis: Prevalence and Genomic Basis of High Inoculum Beta-Lactam Resistance. Ann Am Thorac Soc 2022; 19:1285-1293. [PMID: 35213810 DOI: 10.1513/annalsats.202108-965oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale The pathobiology of Staphylococcus aureus in non-cystic fibrosis bronchiectasis (nCFB) is poorly defined. When present at high density or "inoculum", some methicillin-sensitive S. aureus (MSSA) can inefficiently degrade anti-Staphylococcal beta-lactam antibiotics via BlaZ penicillinases (termed, the inoculum effect). Given the high burden of organisms in bronchiectatic airways, this is particularly relevant. Objectives Drawing from a prospectively-collected biobank, we sought to understand the prevalence, natural history, potential for transmission, and antibiotic resistance profiles amongst nCFB-derived MSSA isolates. Methods All individuals attending a regional consultancy nCFB clinic with sputum collected between 1981-2017 were considered, and those with ≥1 S. aureus-positive culture comprised the cohort. Each individual's most recent biobank isolate was subjected to whole genome sequencing (including the blaZ gene), antibacterial susceptibility testing, and comparative beta-lactam testing at standard (5 x 105CFU/mL) and high (5 x 107CFU/mL) inoculum to assess for the inoculum, and pronounced inoculum effect (IE and pIE, respectively). Results Seventy-four of 209 (35.4%) individuals had ≥1 sputum sample(s) with S. aureus (68 MSSA, 6 MRSA). Those with S. aureus infection were more likely to be female. Amongst 60/74 MSSA isolates subjected to WGS, no evidence of transmission was identified, although specific MLST types were prevalent including ST-1, ST-15, ST-30, and ST-45. Antibiotic resistance was uncommon except for macrolides (~20%). Amongst the 60 MSSA, prevalence of IE and pIE, respectively, were observed to be drug specific; meropenem (0%, 0%), cefepime (3%, 5%), ceftazidime (8%, 0%), cloxacillin (12%, 0%), cefazolin (23%, 0%) and piperacillin-tazobactam (37%, 17%). The cefazolin IE associated with blaZ type A (p<0.01) and ST-30 (p<0.01), whereas the piperacillin-tazobactam IE associated with type C blaZ (p<0.001) and ST-15 (p<0.05). Conclusions S. aureus infection was common, although no evidence of transmission was apparent in our nCFB cohort. While routine susceptibility testing did not identify significant resistance, inoculum-related resistance was found to be relevant for commonly used nCFB antibiotics including cefazolin and piperacillin-tazobactam. Given previous associations between IEs and negative patient outcomes, further work is warranted to understand how this phenotype impacts nCFB disease progression.
Collapse
|
6
|
Endres A, Hügel C, Boland H, Hogardt M, Schubert R, Jonigk D, Braubach P, Rohde G, Bellinghausen C. Pseudomonas aeruginosa Affects Airway Epithelial Response and Barrier Function During Rhinovirus Infection. Front Cell Infect Microbiol 2022; 12:846828. [PMID: 35265536 PMCID: PMC8899922 DOI: 10.3389/fcimb.2022.846828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is aggravated by recurrent and ultimately chronic bacterial infections. One of the key pathogens in adult CF lung disease is P. aeruginosa (PA). In addition to bacteria, respiratory viral infections are suggested to trigger pulmonary exacerbations in CF. To date, little is known on how chronic infections with PA influence susceptibility and response to viral infection. We investigated the interactions between PA, human rhinovirus (HRV) and the airway epithelium in a model of chronic PA infection using differentiated primary bronchial epithelial cells (pBECs) and clinical PA isolates obtained from the respiratory sample of a CF patient. Cells were repeatedly infected with either a mucoid or a non-mucoid PA isolate for 16 days to simulate chronic infection, and subsequently co-infected with HRV. Key cytokines and viral RNA were quantified by cytometric bead array, ELISA and qPCR. Proteolytic degradation of IL-6 was analyzed by Western Blots. Barrier function was assessed by permeability tests and transepithelial electric resistance measurements. Virus infection stimulated the production of inflammatory and antiviral mediators, including interleukin (IL)-6, CXCL-8, tumor necrosis factor (TNF)-α, and type I/III interferons. Co-infection with a non-mucoid PA isolate increased IL-1β protein concentrations (28.88 pg/ml vs. 6.10 pg/ml), but in contrast drastically diminished levels of IL-6 protein (53.17 pg/ml vs. 2301.33 pg/ml) compared to virus infection alone. Conditioned medium obtained from co-infections with a non-mucoid PA isolate and HRV was able to rapidly degrade recombinant IL-6 in a serine protease-dependent manner, whereas medium from individual infections or co-infections with a mucoid isolate had no such effect. After co-infection with HRV and the non-mucoid PA isolate, we detected lower mRNA levels of Forkhead box J1 (FOXJ1) and Cilia Apical Structure Protein (SNTN), markers of epithelial cell differentiation to ciliated cells. Moreover, epithelial permeability was increased and barrier function compromised compared to single infections. These data show that PA infection can influence the response of bronchial epithelial cells to viral infection. Altered innate immune responses and compromised epithelial barrier function may contribute to an aggravated course of viral infection in PA-infected airways.
Collapse
Affiliation(s)
- Adrian Endres
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christian Hügel
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Helena Boland
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael Hogardt
- Consiliary Laboratory on Cystic Fibrosis Bacteriology, Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Carla Bellinghausen
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Carla Bellinghausen,
| |
Collapse
|
7
|
The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021; 81:2117-2131. [PMID: 34743315 PMCID: PMC8572145 DOI: 10.1007/s40265-021-01635-6] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterial pathogen that is a common cause of nosocomial infections, particularly pneumonia, infection in immunocompromised hosts, and in those with structural lung disease such as cystic fibrosis. Epidemiological studies have
identified increasing trends of antimicrobial resistance, including multi-drug resistant (MDR) isolates in recent years. P. aeruginosa has several virulence mechanisms that increase its ability to cause severe infections, such as secreted toxins, quorum sensing and biofilm formation. Management of P. aeruginosa infections focuses on prevention when possible, obtaining cultures, and prompt initiation of antimicrobial therapy, occasionally with combination therapy depending on the clinical scenario to ensure activity against P. aeruginosa. Newer anti-pseudomonal antibiotics are available and are increasingly being used in the management of MDR P. aeruginosa.
Collapse
|
8
|
Perea L, Cantó E, Suarez-Cuartin G, Aliberti S, Chalmers JD, Sibila O, Vidal S. A Cluster Analysis of Bronchiectasis Patients Based on the Airway Immune Profile. Chest 2021; 159:1758-1767. [PMID: 33217421 DOI: 10.1016/j.chest.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clinical heterogeneity in bronchiectasis remains a challenge for improving the appropriate targeting of therapies and patient management. Antimicrobial peptides (AMPs) have been linked to disease severity and phenotype. RESEARCH QUESTION Can we identify clusters of patients based on the levels of AMPs, airway inflammation, tissue remodeling, and tissue damage to establish their relationship with disease severity and clinical outcomes? STUDY DESIGN AND METHODS A prospective cohort of 128 stable patients with bronchiectasis were recruited across three centers in three different countries (Spain, Scotland, and Italy). A two-step cluster strategy was used to stratify patients according to levels of lactoferrin, lysozyme, LL-37, and secretory leukocyte protease inhibitor in sputum. Measurements of inflammation (IL-8, tumor growth factor β, and IL-6), tissue remodeling and damage (glycosaminoglycan, matrix metallopeptidase 9, neutrophil elastase, and total and bacterial DNA), and neutrophil chemotaxis were assessed. RESULTS Three clusters of patients were defined according to distinct airway profiles of AMPs. They represented groups of patients with gradually distinct airway infection and disease severity. Each cluster was associated with an airway profile of inflammation, tissue remodeling, and tissue damage. The relationships between soluble mediators also were distinct between clusters. This analysis allowed the identification of the cluster with the most deregulated local innate immune response. During follow-up, each cluster showed different risk of three or more exacerbations occurring (P = .03) and different times to first exacerbations (P = .03). INTERPRETATION Bronchiectasis patients can be stratified in different clusters according to profiles of airway AMPs, inflammation, tissue remodeling, and tissue damage. The combination of these immunologic variables shows a relationship with disease severity and future risk of exacerbations.
Collapse
Affiliation(s)
- Lídia Perea
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elisabet Cantó
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Guillermo Suarez-Cuartin
- Respiratory Department, Hospital Universitari de Bellvitge, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - James D Chalmers
- Tayside Respiratory Research Group, University of Dundee, Dundee, Scotland
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
| | - Silvia Vidal
- Department of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
| |
Collapse
|
9
|
Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021; 15:649-662. [PMID: 33736539 DOI: 10.1080/17476348.2021.1906225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Bronchiectasis is a chronic endobronchial suppurative disease characterized by irreversibly dilated bronchi damaged by repeated polymicrobial infections and predominantly, neutrophilic airway inflammation. Some consider bronchiectasis a syndromic consequence of several different causes whilst others view it as an individual disease entity. In most patients, identifying an underlying cause remains challenging. The acquisition and colonization of affected airways by Pseudomonas aeruginosa represent a critical and adverse clinical consequence for its progression and management.Areas covered: In this review, we outline clinical and pre-clinical peer-reviewed research published in the last 5 years, focusing on the pathogenesis of bronchiectasis and the role of P. aeruginosa and its virulence in shaping host inflammatory and immune responses in the airway. We further detail its role in airway infection, the lung microbiome, and address therapeutic options in bronchiectasis.Expert opinion: P. aeruginosa represents a key pulmonary pathogen in bronchiectasis that causes acute and/or chronic airway infection. Eradication can prevent adverse clinical consequence and/or disease progression. Novel therapeutic strategies are emerging and include combination-based approaches. Addressing airway infection caused by P. aeruginosa in bronchiectasis is necessary to prevent airway damage, loss of lung function and exacerbations, all of which contribute to adverse clinical outcome.
Collapse
Affiliation(s)
- Celine Vidaillac
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
10
|
Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Retain Activity against Multidrug-Resistant Pseudomonas aeruginosa In Vitro and In Vivo. mBio 2021; 12:mBio.02411-20. [PMID: 33436433 PMCID: PMC7844538 DOI: 10.1128/mbio.02411-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous Gram-negative bacteria are becoming increasingly resistant to multiple, if not all, classes of existing antibiotics. Multidrug-resistant Pseudomonas aeruginosa bacteria are a major cause of health care-associated infections in a variety of clinical settings, endangering patients who are immunocompromised or those who suffer from chronic infections, such as people with cystic fibrosis (CF). Most antimicrobials currently in the clinical pipeline are modifications of existing classes of antibiotics and are considered short-term solutions due to the emergence of resistance. Pseudomonas aeruginosa represents a major challenge for new antimicrobial drug discovery due to its versatile lifestyle, ability to develop resistance to most antibiotic classes, and capacity to form robust biofilms on surfaces and in certain hosts such as those living with cystic fibrosis (CF). A precision antibiotic approach to treating Pseudomonas could be achieved with an antisense method, specifically by using peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs). Here, we demonstrate that PPMOs targeting acpP (acyl carrier protein), lpxC (UDP-(3-O-acyl)-N-acetylglucosamine deacetylase), and rpsJ (30S ribosomal protein S10) inhibited the in vitro growth of several multidrug-resistant clinical P. aeruginosa isolates at levels equivalent to those that were effective against sensitive strains. Lead PPMOs reduced established pseudomonal biofilms alone or in combination with tobramycin or piperacillin-tazobactam. Lead PPMO dosing alone or combined with tobramycin in an acute pneumonia model reduced lung bacterial burden in treated mice at 24 h and reduced morbidity up to 5 days postinfection. PPMOs reduced bacterial burden of extensively drug-resistant P. aeruginosa in the same model and resulted in superior survival compared to conventional antibiotics. These data suggest that lead PPMOs alone or in combination with clinically relevant antibiotics represent a promising therapeutic approach for combating P. aeruginosa infections.
Collapse
|
11
|
Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J Clin Med 2020; 9:jcm9123800. [PMID: 33255354 PMCID: PMC7760986 DOI: 10.3390/jcm9123800] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous and opportunistic microorganism and is considered one of the most significant pathogens that produce chronic colonization and infection of the lower respiratory tract, especially in people with chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and bronchiectasis. From a microbiological viewpoint, the presence and persistence of P. aeruginosa over time are characterized by adaptation within the host that precludes any rapid, devastating injury to the host. Moreover, this microorganism usually develops antibiotic resistance, which is accelerated in chronic infections especially in those situations where the frequent use of antimicrobials facilitates the selection of “hypermutator P. aeruginosa strain”. This phenomenon has been observed in people with bronchiectasis, CF, and the “exacerbator” COPD phenotype. From a clinical point of view, a chronic bronchial infection of P. aeruginosa has been related to more severity and poor prognosis in people with CF, bronchiectasis, and probably in COPD, but little is known on the effect of this microorganism infection in people with asthma. The relationship between the impact and treatment of P. aeruginosa infection in people with airway diseases emerges as an important future challenge and it is the most important objective of this review.
Collapse
Affiliation(s)
- Marta Garcia-Clemente
- Pneumology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - David de la Rosa
- Pneumology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Luis Máiz
- Servicio de Neumología, Unidad de Fibrosis Quística, Bronquiectasias e Infección Bronquial Crónica, Hospital Ramón y Cajal, 28034 Madrid, Spain;
| | - Rosa Girón
- Pneumology Department, Hospital Univesitario la Princesa, 28006 Madrid, Spain;
| | - Marina Blanco
- Servicio de Neumología, Hospital Universitario A Coruña, 15006 A Coruña, Spain;
| | - Casilda Olveira
- Servicio de Neumología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain;
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Miguel Angel Martinez-García
- Pneumology Department, Universitary and Polytechnic La Fe Hospital, 46012 Valencia, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-609865934
| |
Collapse
|
12
|
Somayaji R, Goss CH. Duration of antibiotic therapy in non-cystic fibrosis bronchiectasis. CURRENT PULMONOLOGY REPORTS 2019; 8:160-165. [PMID: 31875166 PMCID: PMC6929711 DOI: 10.1007/s13665-019-00235-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW a)We conducted a review of the current evidence relating to antibiotic duration in the short and long-term management of non-cystic fibrosis bronchiectasis. RECENT FINDINGS b)In non-cystic fibrosis pulmonary exacerbations, evidence is primarily based on expert consensus and recent guidelines recommend antibiotic durations of approximately 14 days. Chronic antibiotics (oral or inhaled) are recommended in patients with frequent exacerbations or with chronic Pseudomonas aeruginosa airways infection. Macrolides are the best studied therapies for long-term use with evidence for effect limited to a 12 month duration. Encouragingly, there are increased efforts to develop registries and conduct larger population level studies to improve patient care. SUMMARY c)There is a paucity of evidence for optimal antibiotic strategies in exacerbations and chronic maintenance in persons with non-cystic fibrosis bronchiectasis. Rationally designed studies which utilize a registry and population-based approach will be critical to build evidence-based strategies to optimize management of non-cystic fibrosis bronchiectasis.
Collapse
Affiliation(s)
- R Somayaji
- Departments of Medicine and Microbiology, Immunology & Infectious Disease, University of Calgary, Calgary, Alberta CA
| | - C H Goss
- Departments of Medicine and Pediatrics, University of Washington School of Medicine, Seattle WA
- CFF Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle WA
| |
Collapse
|
13
|
Culver DA, Behr J, Belperio JA, Corte TJ, de Andrade JA, Flaherty KR, Gulati M, Huie TJ, Lancaster LH, Roman J, Ryerson CJ, Kim HJ. Patient Registries in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:160-167. [PMID: 31034241 PMCID: PMC6635784 DOI: 10.1164/rccm.201902-0431ci] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, several large registries of patients with idiopathic pulmonary fibrosis (IPF) have been established. These registries are collecting a wealth of longitudinal data on thousands of patients with this rare disease. The data collected in these registries will be complementary to data collected in clinical trials because the patient populations studied in registries have a broader spectrum of disease severity and comorbidities and can be followed for a longer period of time. Maintaining the quality and completeness of registry databases presents administrative and resourcing challenges, but it is important to ensuring the robustness of the analyses. Data from patient registries have already helped improve understanding of the clinical characteristics of patients with IPF, the impact that the disease has on their quality of life and survival, and current practices in diagnosis and management. In the future, analyses of biospecimens linked to detailed patient profiles will provide the opportunity to identify biomarkers linked to disease progression, facilitating the development of precision medicine approaches for prognosis and therapy in patients with IPF.
Collapse
Affiliation(s)
| | - Jürgen Behr
- Department of Internal Medicine V, Ludwig-Maximilians University of Munich, Munich, Germany
- Asklepios Clinic Gauting, Member of the German Center for Lung Research, Gauting, Germany
| | - John A. Belperio
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Tamera J. Corte
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | | | - Kevin R. Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mridu Gulati
- Yale University School of Medicine, New Haven, Connecticut
| | | | | | - Jesse Roman
- Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Hyun J. Kim
- University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
14
|
Stockwell RE, Chin M, Johnson GR, Wood ME, Sherrard LJ, Ballard E, O'Rourke P, Ramsay KA, Kidd TJ, Jabbour N, Thomson RM, Knibbs LD, Morawska L, Bell SC. Transmission of bacteria in bronchiectasis and chronic obstructive pulmonary disease: Low burden of cough aerosols. Respirology 2019; 24:980-987. [PMID: 30919511 DOI: 10.1111/resp.13544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Aerosol transmission of Pseudomonas aeruginosa has been suggested as a possible mode of respiratory infection spread in patients with cystic fibrosis (CF); however, whether this occurs in other suppurative lung diseases is unknown. Therefore, we aimed to determine if (i) patients with bronchiectasis (unrelated to CF) or chronic obstructive pulmonary disease (COPD) can aerosolize P. aeruginosa during coughing and (ii) if genetically indistinguishable (shared) P. aeruginosa strains are present in these disease cohorts. METHODS People with bronchiectasis or COPD and P. aeruginosa respiratory infection were recruited for two studies. Aerosol study: Participants (n = 20) underwent cough testing using validated cough rigs to determine the survival of P. aeruginosa aerosols in the air over distance and duration. Genotyping study: P. aeruginosa sputum isolates (n = 95) were genotyped using the iPLEX20SNP platform, with a subset subjected to the enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) assay to ascertain their genetic relatedness. RESULTS Aerosol study: Overall, 7 of 20 (35%) participants released P. aeruginosa cough aerosols during at least one of the cough aerosol tests. These cough aerosols remained viable for 4 m from the source and for 15 min after coughing. The mean total aerosol count of P. aeruginosa at 2 m was two colony-forming units. Typing study: No shared P. aeruginosa strains were identified. CONCLUSION Low viable count of P. aeruginosa cough aerosols and a lack of shared P. aeruginosa strains observed suggest that aerosol transmission of P. aeruginosa is an unlikely mode of respiratory infection spread in patients with bronchiectasis and COPD.
Collapse
Affiliation(s)
- Rebecca E Stockwell
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melanie Chin
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Division of Respirology, The University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Graham R Johnson
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michelle E Wood
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | | | - Emma Ballard
- Statistical Support Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter O'Rourke
- Statistical Support Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kay A Ramsay
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Timothy J Kidd
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nassib Jabbour
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rachel M Thomson
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Gallipoli Medical Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Scott C Bell
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018; 31:e00019-18. [PMID: 30158299 PMCID: PMC6148191 DOI: 10.1128/cmr.00019-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lower airway infection with Pseudomonas aeruginosa is a major contributor to morbidity and mortality in individuals suffering from the genetic disease cystic fibrosis (CF). Whereas it was long presumed that each patient independently acquired unique strains of P. aeruginosa present in their living environment, multiple studies have since demonstrated that shared strains of P. aeruginosa exist among individuals with CF. Many of these shared strains, often referred to as clonal or epidemic strains, can be transmitted from one CF individual to another, potentially reaching epidemic status. Numerous epidemic P. aeruginosa strains have been described from different parts of the world and are often associated with an antibiotic-resistant phenotype. Importantly, infection with these strains often portends a worse prognosis than for infection with nonclonal strains, including an increased pulmonary exacerbation rate, exaggerated lung function decline, and progression to end-stage lung disease. This review describes the global epidemiology of clonal P. aeruginosa strains in CF and summarizes the current literature regarding the underlying biology and clinical impact of globally important CF clones. Mechanisms associated with patient-to-patient transmission are discussed, and best-evidence practices to prevent infections are highlighted. Preventing new infections with epidemic P. aeruginosa strains is of paramount importance in mitigating CF disease progression.
Collapse
Affiliation(s)
- Michael D Parkins
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Valerie J Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|