1
|
Roe T, Silveira S, Luo Z, Osborne EL, Senthil Murugan G, Grocott MPW, Postle AD, Dushianthan A. Particles in Exhaled Air (PExA): Clinical Uses and Future Implications. Diagnostics (Basel) 2024; 14:972. [PMID: 38786270 PMCID: PMC11119244 DOI: 10.3390/diagnostics14100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Access to distal airway samples to assess respiratory diseases is not straightforward and requires invasive procedures such as bronchoscopy and bronchoalveolar lavage. The particles in exhaled air (PExA) device provides a non-invasive means of assessing small airways; it captures distal airway particles (PEx) sized around 0.5-7 μm and contains particles of respiratory tract lining fluid (RTLF) that originate during airway closure and opening. The PExA device can count particles and measure particle mass according to their size. The PEx particles can be analysed for metabolites on various analytical platforms to quantitatively measure targeted and untargeted lung specific markers of inflammation. As such, the measurement of distal airway components may help to evaluate acute and chronic inflammatory conditions such as asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and more recently, acute viral infections such as COVID-19. PExA may provide an alternative to traditional methods of airway sampling, such as induced sputum, tracheal aspirate, or bronchoalveolar lavage. The measurement of specific biomarkers of airway inflammation obtained directly from the RTLF by PExA enables a more accurate and comprehensive understanding of pathophysiological changes at the molecular level in patients with acute and chronic lung diseases.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Siona Silveira
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Zixing Luo
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Eleanor L Osborne
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D Postle
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Zwitserloot AM, Verhoog FA, van den Berge M, Gappa M, Oosterom HW, Willemse BWM, Koppelman GH. Comparison of particles in exhaled air and multiple breath washout for assessment of small airway function in children with cystic fibrosis. Pediatr Pulmonol 2024. [PMID: 38179886 DOI: 10.1002/ppul.26847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The introduction of modulator therapy for cystic fibrosis (CF) has led to an increased interest in the detection of small airway disease (SAD) as sensitive marker of treatment response. The particles in exhaled air (PExA) method, which records exhaled particle mass (PEx ng/L) and number (PExNR), detects SAD in adult patients. Our primary aim was to investigate if PExA outcomes in children with CF are different when compared to controls and associated with more severe disease. Secondary aims were to assess feasibility and repeatability of PExA in children with CF and to correlate PExA to multiple breath nitrogen washout (MBNW) as an established marker of SAD. METHODS Thirteen healthy children (HC), 17 children with CF with normal lung function (CF-N) (FEV1 z-score ≥ -1.64) and six with airway obstruction (CF-AO) (FEV1 z-score < -1.64) between 8 and 18 years performed MBNW followed by PExA and spirometry. Children with CF repeated the measurements after 3 months. RESULTS PEx ng/L and PExNR/L per liter of exhaled breath were similar between the three groups. The lung clearance index (LCI) was significantly higher in both CF-N and CF-AO compared to HC. All participants, except one, were able to perform PExA. Coefficient of variation for PEx ng/l was (median) 0.38, range 0-1.25 and PExNR/l 0.38, 0-1.09. Correlation between LCI and PEx ng/l was low, rs 0.32 (p = .07). CONCLUSION PExA is feasible in children. In contrast to LCI, PExA did not differentiate healthy children from children with CF suggesting it to be a less sensitive tool to detect SAD.
Collapse
Affiliation(s)
- Annelies M Zwitserloot
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergy, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Frank A Verhoog
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergy, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Monika Gappa
- Evangelisches Krankenhaus Düsseldorf, Children's Hospital, Düsseldorf, Germany
| | - Helma W Oosterom
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergy, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Brigitte W M Willemse
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergy, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergy, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|