1
|
Wang T, Shuai P, Wang Q, Guo C, Huang S, Li Y, Wu W, Yi L. α‑1 Antitrypsin is a potential target of inflammation and immunomodulation (Review). Mol Med Rep 2025; 31:107. [PMID: 40017119 PMCID: PMC11881679 DOI: 10.3892/mmr.2025.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
α‑1 Antitrypsin (AAT) is an acute phase protein encoded by the serine protease inhibitor family A member 1 gene. This multifunctional protein serves several roles, including anti‑inflammatory, antibacterial, antiapoptotic and immune regulatory functions. The primary role of AAT is to protect tissues and organs from protease‑induced damage due to its function as a serine protease inhibitor. AAT is associated with the development of lung inflammation, liver inflammation and immune‑mediated inflammatory diseases, which are influenced by environmental and genetic factors. For instance, AAT acts as an anti‑inflammatory protein to prevent and reverse type I diabetes. The present study briefly reviewed the molecular properties and mechanisms of AAT, as well as advances in the study of lung, liver and inflammatory diseases associated with AAT. The potential of AAT as a diagnostic and therapeutic target for inflammatory and immune‑mediated inflammatory diseases was reviewed. In addition, the damaging and protective effects of AAT, and its effects on organ function were discussed.
Collapse
Affiliation(s)
- Tiantian Wang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Peimeng Shuai
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qingyu Wang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Caimao Guo
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuqi Huang
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuanyuan Li
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wenyu Wu
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Hengyang Key Laboratory of Cellular Stress Biology, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
2
|
Turner AM, Ficker JH, Vianello A, Clarenbach CF, Janciauskiene S, Chorostowska-Wynimko J, Stolk J, McElvaney NG. Advancing the understanding and treatment of lung pathologies associated with alpha 1 antitrypsin deficiency. Ther Adv Respir Dis 2025; 19:17534666251318841. [PMID: 39980299 PMCID: PMC11843710 DOI: 10.1177/17534666251318841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Alpha 1 antitrypsin deficiency (AATD) is a genetic disorder that alters the functionality and/or serum levels of alpha 1 antitrypsin (AAT). Dysfunctional forms of AAT, or low levels of serum AAT, predispose affected individuals to pulmonary complications. When AATD-associated lung disease develops, the most common pulmonary pathology is emphysema. The development of emphysema and decline in lung function varies by AATD genotype and is accelerated by risk factors, such as smoking. To improve the understanding and treatment of AATD, emerging knowledge and unresolved questions need to be discussed. Here we focus on developments in the areas of disease pathogenesis, biomarkers, and clinical endpoints for trials in AATD, as well as barriers to treatment. The clinical impact of AATD on lung function is highly variable and highlights the complexity of AATD pathogenesis, in which multiple underlying processes are involved. Reduced levels of functional AAT disrupt the protease-antiprotease homeostasis, leading to a loss of neutrophil elastase inhibition and the breakdown of elastin within the lung interstitium. Inflammatory processes also play a critical role in the development of AATD-associated lung disease, which is not yet fully understood. Biomarkers associated with the disease and its complications may have an important role in helping to address AATD underdiagnosis and evaluating response to treatment. To improve access to treatment, the problem of underdiagnosis needs to be addressed and the provision of therapeutic options needs to become uniform. Patients should also be empowered to play a key role in the self-management of the disease. Advancing our understanding of the disease will ultimately improve the life expectancy and quality of life for patients affected by AATD.
Collapse
Affiliation(s)
- Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Joachim H. Ficker
- Department of Respiratory Medicine, Allergology and Sleep Medicine, General Hospital Nuernberg and Paracelsus Medical University, Nuernberg, Germany
| | - Andrea Vianello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Christian F. Clarenbach
- Department of Pulmonology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Noel Gerard McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Irish Centre for Genetic Lung Disease, Dublin, Ireland
| |
Collapse
|
3
|
Chalmers JD, Mall MA, Chotirmall SH, O'Donnell AE, Flume PA, Hasegawa N, Ringshausen FC, Watz H, Xu JF, Shteinberg M, McShane PJ. Targeting neutrophil serine proteases in bronchiectasis. Eur Respir J 2025; 65:2401050. [PMID: 39467608 DOI: 10.1183/13993003.01050-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Persistent neutrophilic inflammation is a central feature in both the pathogenesis and progression of bronchiectasis. Neutrophils release neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), cathepsin G and proteinase 3. When chronically high levels of free NSP activity exceed those of protective antiproteases, structural lung destruction, mucosal-related defects, further susceptibility to infection and worsening of clinical outcomes can occur. Despite the defined role of prolonged, high levels of NSPs in bronchiectasis, no drug that controls neutrophilic inflammation is licensed for the treatment of bronchiectasis. Previous methods of suppressing neutrophilic inflammation (such as direct inhibition of NE) have not been successful; however, an emerging therapy designed to address neutrophil-mediated pathology, inhibition of the cysteine protease cathepsin C (CatC, also known as dipeptidyl peptidase 1), is a promising approach to ameliorate neutrophilic inflammation, since this may reduce the activity of all NSPs implicated in bronchiectasis pathogenesis, and not just NE. Current data suggest that CatC inhibition may effectively restore the protease-antiprotease balance in bronchiectasis and improve disease outcomes as a result. Clinical trials for CatC inhibitors in bronchiectasis have reported positive phase III results. In this narrative review, we discuss the role of high NSP activity in bronchiectasis, and how this feature drives the associated morbidity and mortality seen in bronchiectasis. This review discusses therapeutic approaches aimed at treating neutrophilic inflammation in the bronchiectasis lung, summarising clinical trial outcomes and highlighting the need for more treatment strategies that effectively address chronic neutrophilic inflammation in bronchiectasis.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Dundee, UK
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Henrik Watz
- Velocity Clinical Research Grosshansdorf, formerly Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research Grosshansdorf (DZL), Grosshansdorf, Germany
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Michal Shteinberg
- Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
- M. Shteinberg and P.J. McShane are joint senior authors
| | - Pamela J McShane
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
- M. Shteinberg and P.J. McShane are joint senior authors
| |
Collapse
|
4
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
5
|
Badorrek P, Diefenbach C, Kögler H, Eleftheraki A, Seitz F, Hohlfeld JM. Novel cathepsin C inhibitor, BI 1291583, intended for treatment of bronchiectasis: Phase I characterization in healthy volunteers. Clin Transl Sci 2024; 17:e13891. [PMID: 39175217 PMCID: PMC11341832 DOI: 10.1111/cts.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Novel treatments are needed to reduce inflammation, improve symptoms, address exacerbations, and slow disease progression in bronchiectasis. Cathepsin C (CatC) inhibition promises to achieve this through reduction of neutrophil-derived serine protease (including neutrophil elastase [NE] and proteinase 3 [PR3]) activation. Here, we present the phase I characterization of the novel CatC inhibitor, BI 1291583. Five phase I trials of BI 1291583 in healthy subjects are presented: a single-rising-dose study (NCT03414008) and two multiple-rising-dose studies (NCT03868540 and NCT04866160) assessing the safety, tolerability, pharmacodynamics, and pharmacokinetics of BI 1291583; a food effect study (NCT03837964); and a drug-drug interaction study (NCT03890887) of BI 1291583 and itraconazole. BI 1291583 was safe and well tolerated across the doses tested in these trials. Most adverse events (AEs) were mild or moderate in intensity, with no serious AEs, AEs of special interest or deaths reported in any trial. Drug-related skin exfoliation was not reported more frequently in subjects treated with BI 1291583 compared with placebo. BI 1291583 was readily absorbed, and pharmacokinetics were supra-proportional over the dose ranges assessed. Additionally, BI 1291583 inhibited CatC in a dose-dependent manner, inhibited downstream NE activity, and decreased PR3 levels. No food effect was observed. Co-administration of multiple doses of itraconazole increased BI 1291583 exposure approximately twofold. Due to these promising phase I results, a multinational phase II program of BI 1291583 in adults with bronchiectasis is ongoing (Airleaf™ [NCT05238675], Clairafly™ [NCT05865886], and Clairleaf™ [NCT05846230]).
Collapse
Affiliation(s)
- Philipp Badorrek
- Department of Clinical Airway ResearchFraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
| | | | - Harald Kögler
- Boehringer Ingelheim International GmbHIngelheimGermany
| | | | | | - Jens M. Hohlfeld
- Department of Clinical Airway ResearchFraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
- Department of Respiratory MedicineHannover Medical SchoolHannoverGermany
- German Centre for Lung Research (DZL)HannoverGermany
| |
Collapse
|
6
|
Mall MA, Davies JC, Donaldson SH, Jain R, Chalmers JD, Shteinberg M. Neutrophil serine proteases in cystic fibrosis: role in disease pathogenesis and rationale as a therapeutic target. Eur Respir Rev 2024; 33:240001. [PMID: 39293854 PMCID: PMC11409056 DOI: 10.1183/16000617.0001-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic airway inflammation is a central feature in the pathogenesis of bronchiectasis (BE), which can be caused by cystic fibrosis (CFBE; hereafter referred to as CF lung disease) and non-CF-related conditions (NCFBE). Inflammation in both CF lung disease and NCFBE is predominantly driven by neutrophils, which release proinflammatory cytokines and granule proteins, including neutrophil serine proteases (NSPs). NSPs include neutrophil elastase, proteinase 3 and cathepsin G. An imbalance between NSPs and their antiproteases has been observed in people with CF lung disease and people with NCFBE. While the role of the protease/antiprotease imbalance is well established in both CF lung disease and NCFBE, effective therapies targeting NSPs are lacking. In recent years, the introduction of CF transmembrane conductance regulator (CFTR) modulator therapy has immensely improved outcomes in many people with CF (pwCF). Despite this, evidence suggests that airway inflammation persists, even in pwCF treated with CFTR modulator therapy. In this review, we summarise current data on neutrophilic inflammation in CF lung disease to assess whether neutrophilic inflammation and high, uncontrolled NSP levels play similar roles in CF lung disease and in NCFBE. We discuss similarities between the neutrophilic inflammatory profiles of people with CF lung disease and NCFBE, potentially supporting a similar therapeutic approach. Additionally, we present evidence suggesting that neutrophilic inflammation persists in pwCF treated with CFTR modulator therapy, at levels similar to those in people with NCFBE. Collectively, these findings highlight the ongoing need for new treatment strategies targeting neutrophilic inflammation in CF lung disease.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Scott H Donaldson
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Michal Shteinberg
- Lady Davis Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Perea L, Faner R, Chalmers JD, Sibila O. Pathophysiology and genomics of bronchiectasis. Eur Respir Rev 2024; 33:240055. [PMID: 38960613 PMCID: PMC11220622 DOI: 10.1183/16000617.0055-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a complex and heterogeneous inflammatory chronic respiratory disease with an unknown cause in around 30-40% of patients. The presence of airway infection together with chronic inflammation, airway mucociliary dysfunction and lung damage are key components of the vicious vortex model that better describes its pathophysiology. Although bronchiectasis research has significantly increased over the past years and different endotypes have been identified, there are still major gaps in the understanding of the pathophysiology. Genomic approaches may help to identify new endotypes, as has been shown in other chronic airway diseases, such as COPD.Different studies have started to work in this direction, and significant contributions to the understanding of the microbiome and proteome diversity have been made in bronchiectasis in recent years. However, the systematic application of omics approaches to identify new molecular insights into the pathophysiology of bronchiectasis (endotypes) is still limited compared with other respiratory diseases.Given the complexity and diversity of these technologies, this review describes the key components of the pathophysiology of bronchiectasis and how genomics can be applied to increase our knowledge, including the study of new techniques such as proteomics, metabolomics and epigenomics. Furthermore, we propose that the novel concept of trained innate immunity, which is driven by microbiome exposures leading to epigenetic modifications, can complement our current understanding of the vicious vortex. Finally, we discuss the challenges, opportunities and implications of genomics application in clinical practice for better patient stratification into new therapies.
Collapse
Affiliation(s)
- Lidia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Johnson E, Long MB, Chalmers JD. Biomarkers in bronchiectasis. Eur Respir Rev 2024; 33:230234. [PMID: 38960612 PMCID: PMC11220624 DOI: 10.1183/16000617.0234-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a heterogeneous disease with multiple aetiologies and diverse clinical features. There is a general consensus that optimal treatment requires precision medicine approaches focused on specific treatable disease characteristics, known as treatable traits. Identifying subtypes of conditions with distinct underlying biology (endotypes) depends on the identification of biomarkers that are associated with disease features, prognosis or treatment response and which can be applied in clinical practice. Bronchiectasis is a disease characterised by inflammation, infection, structural lung damage and impaired mucociliary clearance. Increasingly there are available methods to measure each of these components of the disease, revealing heterogeneous inflammatory profiles, microbiota, radiology and mucus and epithelial biology in patients with bronchiectasis. Using emerging biomarkers and omics technologies to guide treatment in bronchiectasis is a promising field of research. Here we review the most recent data on biomarkers in bronchiectasis.
Collapse
Affiliation(s)
- Emma Johnson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
9
|
Fähndrich S, Bals R. [Alpha 1-antitrypsin deficiency]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:533-537. [PMID: 38789803 DOI: 10.1007/s00108-024-01722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Alpha 1‑antitrypsin (AAT) deficiency represents a complex genetic disorder and necessitates an interdisciplinary approach in the clinical practice. This article provides an overview of the epidemiology, genetics, symptoms, diagnostics and treatment of AAT deficiency. Knowledge and an in-depth understanding of AAT deficiency are indispensable to improve the early recognition of AAT, to optimize the quality of life of those affected and to enable targeted treatment interventions.
Collapse
Affiliation(s)
- Sebastian Fähndrich
- Klinik für Pneumologie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität, Killianstraße 5, 79106, Freiburg, Deutschland.
| | - Robert Bals
- Klinik für Innere Medizin V, Universitätsklinikum des Saarlandes, Universität des Saarlandes, Kirrbergerstr. 100, 66421, Homburg, Deutschland.
| |
Collapse
|
10
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
11
|
Kreideweiss S, Schänzle G, Schnapp G, Vintonyak V, Grundl MA. BI 1291583: a novel selective inhibitor of cathepsin C with superior in vivo profile for the treatment of bronchiectasis. Inflamm Res 2023; 72:1709-1717. [PMID: 37542002 PMCID: PMC10499737 DOI: 10.1007/s00011-023-01774-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Airway inflammation in chronic inflammatory lung diseases (e.g. bronchiectasis) is partly mediated by neutrophil-derived serine protease (NSP)/antiprotease imbalance. NSPs are activated during neutrophil myelopoiesis in bone marrow by cathepsin C (CatC; DPP1). CatC is therefore an attractive target to reduce NSP activity in the lungs of patients with bronchiectasis, restoring the protease/antiprotease balance. We report results from the preclinical pharmacological assessment of the novel CatC inhibitor BI 1291583. METHODS Binding kinetics of BI 1291583 to human CatC were determined by surface plasmon resonance. In vitro inhibition of human CatC activity was determined by CatC-specific fluorescent assay, and selectivity was assessed against related cathepsins and unrelated proteases. Inhibition of NSP neutrophil elastase (NE) production was assessed in a human neutrophil progenitor cell line. In vivo inhibition of NE and NSP proteinase 3 (PR3) in bronchoalveolar lavage fluid (BALF) neutrophils after lipopolysaccharide (LPS) challenge and distribution of BI 1291583 was determined in a mouse model. RESULTS BI 1291583 bound human CatC in a covalent, reversible manner, selectively and fully inhibiting CatC enzymatic activity. This inhibition translated to concentration-dependent inhibition of NE activation in U937 cells and dose-dependent, almost-complete inhibition of NE and PR3 activity in BALF neutrophils in an in vivo LPS-challenge model in mice. BI 1291583 exhibited up to 100 times the exposure in the target tissue bone marrow compared with plasma. CONCLUSION BI 1291583-mediated inhibition of CatC is expected to restore the protease-antiprotease balance in the lungs of patients with chronic airway inflammatory diseases such as bronchiectasis.
Collapse
Affiliation(s)
| | | | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Marc A Grundl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
12
|
Chalmers JD, Gupta A, Chotirmall SH, Armstrong A, Eickholz P, Hasegawa N, McShane PJ, O'Donnell AE, Shteinberg M, Watz H, Eleftheraki A, Diefenbach C, Sauter W. A Phase 2 randomised study to establish efficacy, safety and dosing of a novel oral cathepsin C inhibitor, BI 1291583, in adults with bronchiectasis: Airleaf. ERJ Open Res 2023; 9:00633-2022. [PMID: 37465817 PMCID: PMC10351677 DOI: 10.1183/23120541.00633-2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/28/2023] [Indexed: 07/20/2023] Open
Abstract
New therapies are needed to prevent exacerbations, improve quality of life and slow disease progression in bronchiectasis. Inhibition of cathepsin C (CatC) activity has the potential to decrease activation of neutrophil-derived serine proteases in patients with bronchiectasis, thereby reducing airway inflammation, improving symptoms, reducing exacerbations and preventing further airway damage. Here we present the design of a phase 2 trial (Airleaf™; NCT05238675) assessing the efficacy and safety of a novel CatC inhibitor, BI 1291583, in adult patients with bronchiectasis. This multinational, randomised, double-blind, placebo-controlled, parallel-group, dose-finding study has a screening period of at least 6 weeks, a treatment period of 24-48 weeks and a follow-up period of 4 weeks. ∼240 adults with bronchiectasis of multiple aetiologies will be randomised to placebo once daily, or BI 1291583 1 mg once daily, 2.5 mg once daily or 5 mg once daily in a 2:1:1:2 ratio, stratified by Pseudomonas aeruginosa infection and maintenance use of macrolides. The primary efficacy objective is to evaluate the dose-response relationship for the three oral doses of BI 1291583 versus placebo on time to first pulmonary exacerbation up to Week 48 (the primary end-point). Efficacy will be assessed using exacerbations, patient-reported outcomes, measures of symptoms, sputum neutrophil elastase activity and pulmonary function testing. Safety assessment will include adverse event reporting, physical examination, monitoring of vital signs, safety laboratory parameters, 12-lead electrocardiogram, and periodontal and dermatological assessments. If efficacy and safety are demonstrated, results will support further investigation of BI 1291583 in phase 3 trials.
Collapse
Affiliation(s)
- James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Abhya Gupta
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Peter Eickholz
- Department of Periodontology, Goethe University Frankfurt, Frankfurt, Germany
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University, Tokyo, Japan
| | | | | | | | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | | | - Wiebke Sauter
- Boehringer Ingelheim International GmbH, Biberach, Germany
| |
Collapse
|
13
|
Hudock KM, Collins MS, Imbrogno MA, Kramer EL, Brewington JJ, Ziady A, Zhang N, Snowball J, Xu Y, Carey BC, Horio Y, O’Grady SM, Kopras EJ, Meeker J, Morgan H, Ostmann AJ, Skala E, Siefert ME, Na CL, Davidson CR, Gollomp K, Mangalmurti N, Trapnell BC, Clancy JP. Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function. Front Immunol 2023; 13:1023553. [PMID: 36703990 PMCID: PMC9872031 DOI: 10.3389/fimmu.2022.1023553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis. NETs selectively impact the expression of tight junction genes claudins 4, 8 and 11. Bronchial epithelia exposed to NETs demonstrate visible gaps in E-cadherin staining, a decrease in full-length E-cadherin protein and the appearance of cleaved E-cadherin peptides. Pretreatment of NETs with alpha-1 antitrypsin (A1AT) inhibits NET serine protease activity, limits E-cadherin cleavage, decreases bronchial cell apoptosis and preserves epithelial integrity. In conclusion, NETs disrupt human airway epithelial barrier function through bronchial cell death and degradation of E-cadherin, which are limited by exogenous A1AT.
Collapse
Affiliation(s)
- K. M. Hudock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: K. M. Hudock,
| | - M. S. Collins
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - M. A. Imbrogno
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - E. L. Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - J. J. Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - A. Ziady
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - N. Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - J. Snowball
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Y. Xu
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Divisions of Biomedical Informatics, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - B. C. Carey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Y. Horio
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto-shi, Kumamoto, Japan
| | - S. M. O’Grady
- Departments of Animal Science, University of Minnesota, St. Paul, MN, United States,Department of Integrative Biology and Physiology, University of Minnesota, St. Paul, MN, United States
| | - E. J. Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - J. Meeker
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - H. Morgan
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - A. J. Ostmann
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - E. Skala
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - M. E. Siefert
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - C. L. Na
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - C. R. Davidson
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - K. Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - N. Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States,Pennsylvania Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - B. C. Trapnell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - J. P. Clancy
- Cystic Fibrosis Foundation, Bethesda, MD, United States
| |
Collapse
|
14
|
Prendecki M, Lodge KM. Alpha 1 Antitrypsin Deficiency: Does Increased Neutrophil Adhesion Contribute to Lung Damage? Am J Respir Cell Mol Biol 2022; 67:6-7. [PMID: 35522757 PMCID: PMC9273225 DOI: 10.1165/rcmb.2022-0100ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Maria Prendecki
- Imperial College London, 4615, Centre for Inflammatory Disease, Department of Immunology and Inflammation, London, United Kingdom of Great Britain and Northern Ireland.,Imperial College Healthcare NHS Trust, 8946, Imperial College Renal and Transplant Centre, London, United Kingdom of Great Britain and Northern Ireland
| | - Katharine M Lodge
- Imperial College London, 4615, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|