1
|
Shlobin OA, Adir Y, Barbera JA, Cottin V, Harari S, Jutant EM, Pepke-Zaba J, Ghofrani HA, Channick R. Pulmonary hypertension associated with lung diseases. Eur Respir J 2024; 64:2401200. [PMID: 39209469 PMCID: PMC11525344 DOI: 10.1183/13993003.01200-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) associated with chronic lung disease (CLD) is both common and underrecognised. The presence of PH in the setting of lung disease has been consistently shown to be associated with worse outcomes. Recent epidemiological studies have advanced understanding of the heterogeneity of this patient population and shown that defining both the specific type of CLD as well as the severity of PH (i.e. deeper phenotyping) is necessary to inform natural history and prognosis. A systematic diagnostic approach to screening and confirmation of suspected PH in CLD is recommended. Numerous uncontrolled studies and one phase 3 randomised, controlled trial have suggested a benefit in treating PH in some patients with CLD, specifically those with fibrotic interstitial lung disease (ILD). However, other studies in diseases such as COPD-PH showed adverse outcomes with some therapies. Given the expanding list of approved pharmacological treatments for pulmonary arterial hypertension, developing a treatment algorithm for specific phenotypes of CLD-PH is required. This article will summarise existing data in COPD, ILD and other chronic lung diseases, and provide recommendations for classification of CLD-PH and approach to the diagnosis and management of these challenging patients.
Collapse
Affiliation(s)
- Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Schar Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Yochai Adir
- Pulmonary Division, Lady Davis Carmel Medical Center, Faculty of Medicine Technion Institute of Technology, Haifa, Israel
| | - Joan A Barbera
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases, ERN-LUNG, Louis Pradel Hospital, Hospices Civils de Lyon and UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Sergio Harari
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, MultiMedica IRCCS, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Etienne-Marie Jutant
- Respiratory Department, Centre Hospitalier Universitaire de Poitiers, INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Royal Papworth Hospital, University of Cambridge, Cambridge, UK
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig University Giessen, ECCPS, Kerckhoff-Klinik Bad Nauheim, Giessen, Germany
- Imperial College London, London, UK
| | - Richard Channick
- Pulmonary Vascular Disease Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Cereser L, Zussino G, Cicciò C, Tullio A, Montanaro C, Driussi M, Di Poi E, Patruno V, Zuiani C, Girometti R. Impact of an expert-derived, quick hands-on tool on classifying pulmonary hypertension in chest computed tomography: a study on inexperienced readers using RAPID-CT-PH. LA RADIOLOGIA MEDICA 2024; 129:1313-1328. [PMID: 39048761 PMCID: PMC11379776 DOI: 10.1007/s11547-024-01852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To test the inter-reader agreement in classifying pulmonary hypertension (PH) on chest contrast-enhanced computed tomography (CECT) between a consensus of two cardio-pulmonary-devoted radiologists (CRc) and inexperienced readers (radiology residents, RRs) when using a CECT-based quick hands-on tool built upon PH imaging literature, i.e., the "Rapid Access and Practical Information Digest on Computed Tomography for PH-RAPID-CT-PH". MATERIAL AND METHODS The observational study retrospectively included 60 PH patients who underwent CECT between 2015 and 2022. Four RRs independently reviewed all CECTs and classified each case into one of the five PH groups per the 2022 ESC/ERS guidelines. While RR3 and RR4 (RAPID-CT-PH group) used RAPID-CT-PH, RR1 and RR2 (control group) did not. RAPID-CT-PH and control groups' reports were compared with CRc using unweighted Cohen's Kappa (k) statistics. RRs' report completeness and reporting time were also compared using the Wilcoxon-Mann-Whitney test. RESULTS The inter-reader agreement in classifying PH between the RAPID-CT-PH group and CRc was substantial (k = 0.75 for RR3 and k = 0.65 for RR4); while, it was only moderate for the control group (k = 0.57 for RR1 and k = 0.49 for RR2). Using RAPID-CT-PH resulted in significantly higher report completeness (all p < 0.0001) and significantly lower reporting time (p < 0.0001) compared to the control group. CONCLUSION RRs using RAPID-CT-PH showed a substantial agreement with CRc on CECT-based PH classification. RAPID-CT-PH improved report completeness and reduced reporting time. A quick hands-on tool for classifying PH on chest CECT may help inexperienced radiologists effectively contribute to the PH multidisciplinary team.
Collapse
Affiliation(s)
- Lorenzo Cereser
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy.
| | - Gaia Zussino
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Carmelo Cicciò
- Department of Diagnostic Imaging and Interventional Radiology, IRCCS Sacro Cuore Don Calabria Hospital, via don A. Sempreboni, 5, 37024, Negrar di Valpolicella, Verona, Italy
| | - Annarita Tullio
- Department of Medicine, Institute of Hygiene and Clinical Epidemiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Chiara Montanaro
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Mauro Driussi
- Cardiology, Cardiothoracic Department, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Emma Di Poi
- Department of Medicine, Rheumatology Clinic, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Vincenzo Patruno
- Pulmonology Department, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Chiara Zuiani
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Rossano Girometti
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| |
Collapse
|
3
|
Harder EM, Abtin F, Nardelli P, Brownstein A, Channick RN, Washko GR, Goldin J, San José Estépar R, Rahaghi FN, Saggar R. Pulmonary Hypertension in Idiopathic Interstitial Pneumonia Is Associated with Small Vessel Pruning. Am J Respir Crit Care Med 2024; 209:1170-1173. [PMID: 38502314 PMCID: PMC11092950 DOI: 10.1164/rccm.202312-2343le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Eileen M. Harder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Pietro Nardelli
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Adam Brownstein
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - Richard N. Channick
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | | | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Rajan Saggar
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Dwivedi K, Sharkey M, Alabed S, Langlotz CP, Swift AJ, Bluethgen C. External validation, radiological evaluation, and development of deep learning automatic lung segmentation in contrast-enhanced chest CT. Eur Radiol 2024; 34:2727-2737. [PMID: 37775589 PMCID: PMC10957646 DOI: 10.1007/s00330-023-10235-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES There is a need for CT pulmonary angiography (CTPA) lung segmentation models. Clinical translation requires radiological evaluation of model outputs, understanding of limitations, and identification of failure points. This multicentre study aims to develop an accurate CTPA lung segmentation model, with evaluation of outputs in two diverse patient cohorts with pulmonary hypertension (PH) and interstitial lung disease (ILD). METHODS This retrospective study develops an nnU-Net-based segmentation model using data from two specialist centres (UK and USA). Model was trained (n = 37), tested (n = 12), and clinically evaluated (n = 176) on a diverse 'real-world' cohort of 225 PH patients with volumetric CTPAs. Dice score coefficient (DSC) and normalised surface distance (NSD) were used for testing. Clinical evaluation of outputs was performed by two radiologists who assessed clinical significance of errors. External validation was performed on heterogenous contrast and non-contrast scans from 28 ILD patients. RESULTS A total of 225 PH and 28 ILD patients with diverse demographic and clinical characteristics were evaluated. Mean accuracy, DSC, and NSD scores were 0.998 (95% CI 0.9976, 0.9989), 0.990 (0.9840, 0.9962), and 0.983 (0.9686, 0.9972) respectively. There were no segmentation failures. On radiological review, 82% and 71% of internal and external cases respectively had no errors. Eighteen percent and 25% respectively had clinically insignificant errors. Peripheral atelectasis and consolidation were common causes for suboptimal segmentation. One external case (0.5%) with patulous oesophagus had a clinically significant error. CONCLUSION State-of-the-art CTPA lung segmentation model provides accurate outputs with minimal clinical errors on evaluation across two diverse cohorts with PH and ILD. CLINICAL RELEVANCE Clinical translation of artificial intelligence models requires radiological review and understanding of model limitations. This study develops an externally validated state-of-the-art model with robust radiological review. Intended clinical use is in techniques such as lung volume or parenchymal disease quantification. KEY POINTS • Accurate, externally validated CT pulmonary angiography (CTPA) lung segmentation model tested in two large heterogeneous clinical cohorts (pulmonary hypertension and interstitial lung disease). • No segmentation failures and robust review of model outputs by radiologists found 1 (0.5%) clinically significant segmentation error. • Intended clinical use of this model is a necessary step in techniques such as lung volume, parenchymal disease quantification, or pulmonary vessel analysis.
Collapse
Affiliation(s)
- Krit Dwivedi
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.
- Academic Department of Radiology, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, USA.
| | - Michael Sharkey
- 3DLab, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Curtis P Langlotz
- Stanford Center for Artificial Intelligence in Medicine and Imaging (AIMI), Stanford University, Sheffield, USA
| | - Andy J Swift
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Christian Bluethgen
- Stanford Center for Artificial Intelligence in Medicine and Imaging (AIMI), Stanford University, Sheffield, USA
| |
Collapse
|
5
|
Dwivedi K, Sharkey M, Delaney L, Alabed S, Rajaram S, Hill C, Johns C, Rothman A, Mamalakis M, Thompson AAR, Wild J, Condliffe R, Kiely DG, Swift AJ. Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT. Radiology 2024; 310:e231718. [PMID: 38319169 PMCID: PMC10902594 DOI: 10.1148/radiol.231718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Background There is clinical need to better quantify lung disease severity in pulmonary hypertension (PH), particularly in idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-LD). Purpose To quantify fibrosis on CT pulmonary angiograms using an artificial intelligence (AI) model and to assess whether this approach can be used in combination with radiologic scoring to predict survival. Materials and Methods This retrospective multicenter study included adult patients with IPAH or PH-LD who underwent incidental CT imaging between February 2007 and January 2019. Patients were divided into training and test cohorts based on the institution of imaging. The test cohort included imaging examinations performed in 37 external hospitals. Fibrosis was quantified using an established AI model and radiologically scored by radiologists. Multivariable Cox regression adjusted for age, sex, World Health Organization functional class, pulmonary vascular resistance, and diffusing capacity of the lungs for carbon monoxide was performed. The performance of predictive models with or without AI-quantified fibrosis was assessed using the concordance index (C index). Results The training and test cohorts included 275 (median age, 68 years [IQR, 60-75 years]; 128 women) and 246 (median age, 65 years [IQR, 51-72 years]; 142 women) patients, respectively. Multivariable analysis showed that AI-quantified percentage of fibrosis was associated with an increased risk of patient mortality in the training cohort (hazard ratio, 1.01 [95% CI: 1.00, 1.02]; P = .04). This finding was validated in the external test cohort (C index, 0.76). The model combining AI-quantified fibrosis and radiologic scoring showed improved performance for predicting patient mortality compared with a model including radiologic scoring alone (C index, 0.67 vs 0.61; P < .001). Conclusion Percentage of lung fibrosis quantified on CT pulmonary angiograms by an AI model was associated with increased risk of mortality and showed improved performance for predicting patient survival when used in combination with radiologic severity scoring compared with radiologic scoring alone. © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Krit Dwivedi
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Michael Sharkey
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Liam Delaney
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Samer Alabed
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Smitha Rajaram
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Catherine Hill
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Christopher Johns
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Alexander Rothman
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Michail Mamalakis
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - A. A. Roger Thompson
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Jim Wild
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Robin Condliffe
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - David G. Kiely
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Andrew J. Swift
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| |
Collapse
|
6
|
Olsson KM, Corte TJ, Kamp JC, Montani D, Nathan SD, Neubert L, Price LC, Kiely DG. Pulmonary hypertension associated with lung disease: new insights into pathomechanisms, diagnosis, and management. THE LANCET. RESPIRATORY MEDICINE 2023; 11:820-835. [PMID: 37591300 DOI: 10.1016/s2213-2600(23)00259-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023]
Abstract
Patients with chronic lung diseases, particularly interstitial lung disease and chronic obstructive pulmonary disease, frequently develop pulmonary hypertension, which results in clinical deterioration, worsening of oxygen uptake, and an increased mortality risk. Pulmonary hypertension can develop and progress independently from the underlying lung disease. The pulmonary vasculopathy is distinct from that of other forms of pulmonary hypertension, with vascular ablation due to loss of small pulmonary vessels being a key feature. Long-term tobacco exposure might contribute to this type of pulmonary vascular remodelling. The distinct pathomechanisms together with the underlying lung disease might explain why treatment options for this condition remain scarce. Most drugs approved for pulmonary arterial hypertension have shown no or sometimes harmful effects in pulmonary hypertension associated with lung disease. An exception is inhaled treprostinil, which improves exercise capacity in patients with interstitial lung disease and pulmonary hypertension. There is a pressing need for safe, effective treatment options and for reliable, non-invasive diagnostic tools to detect and characterise pulmonary hypertension in patients with chronic lung disease.
Collapse
Affiliation(s)
- Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany.
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - David Montani
- Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche 999, Université Paris-Saclay, Paris, France
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Laura C Price
- National Heart and Lung Institute, Imperial College London, London, UK; National Pulmonary Hypertension Service, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; NIHR Biomedical Research Centre, Sheffield, UK
| |
Collapse
|
7
|
Ni H, Wei Y, Yang L, Wang Q. An increased risk of pulmonary hypertension in patients with combined pulmonary fibrosis and emphysema: a meta-analysis. BMC Pulm Med 2023; 23:221. [PMID: 37344866 DOI: 10.1186/s12890-023-02425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/07/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND AND AIM Pulmonary hypertension (PH) is a common complication of combined pulmonary fibrosis and emphysema (CPFE). Whether the incidence of PH is increased in CPFE compared with pure pulmonary fibrosis or emphysema remains unclear. This meta-analysis aimed to evaluate the risk of PH in patients with CPFE compared to those with IPF or COPD/emphysema. METHODS We searched the PubMed, Embase, Cochrane Library, and CNKI databases for relevant studies focusing on the incidence of PH in patients with CPFE and IPF or emphysema. Pooled odds ratios (ORs) and standard mean differences (SMD) with 95% confidence intervals (95% CIs) were used to evaluate the differences in the clinical characteristics presence and severity of PH between patients with CPFE, IPF, or emphysema. The survival impact of PH in patients with CPFE was assessed using hazard ratios (HRs). RESULTS A total of 13 eligible studies were included in the meta-analysis, involving 560, 720, and 316 patients with CPFE, IPF, and emphysema, respectively. Patients with CPFE had an increased PH risk with a higher frequency of pulmonary hypertension and higher estimated systolic pulmonary artery pressure (esPAP), compared with those with IPF (OR: 2.66; 95% CI: 1.55-4.57; P < 0.01; SMD: 0.86; 95% CI: 0.52-1.19; P < 0.01) or emphysema (OR: 3.19; 95% CI: 1.42-7.14; P < 0.01; SMD: 0.73; 95% CI: 0.50-0.96; P < 0.01). In addition, the patients with CPFE combined with PH had a poor prognosis than patients with CPFE without PH (HR: 6.16; 95% CI: 2.53-15.03; P < 0.01). CONCLUSIONS Our meta-analysis showed that patients with CPFE were associated with a significantly higher risk of PH compared with those with IPF or emphysema alone. The presence of PH was a poor predictor of mortality.
Collapse
Affiliation(s)
- Hangqi Ni
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuying Wei
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Liuqing Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
8
|
Valentini A, Franchi P, Cicchetti G, Messana G, Chiffi G, Strappa C, Calandriello L, Del Ciello A, Farchione A, Preda L, Larici AR. Pulmonary Hypertension in Chronic Lung Diseases: What Role Do Radiologists Play? Diagnostics (Basel) 2023; 13:diagnostics13091607. [PMID: 37174998 PMCID: PMC10178805 DOI: 10.3390/diagnostics13091607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological disorder, defined by a mean pulmonary arterial pressure (mPAP) > 20 mmHg at rest, as assessed by right heart catheterization (RHC). PH is not a specific disease, as it may be observed in multiple clinical conditions and may complicate a variety of thoracic diseases. Conditions associated with the risk of developing PH are categorized into five different groups, according to similar clinical presentations, pathological findings, hemodynamic characteristics, and treatment strategy. Most chronic lung diseases that may be complicated by PH belong to group 3 (interstitial lung diseases, chronic obstructive pulmonary disease, combined pulmonary fibrosis, and emphysema) and are associated with the lowest overall survival among all groups. However, some of the chronic pulmonary diseases may develop PH with unclear/multifactorial mechanisms and are included in group 5 PH (sarcoidosis, pulmonary Langerhans' cell histiocytosis, and neurofibromatosis type 1). This paper focuses on PH associated with chronic lung diseases, in which radiological imaging-particularly computed tomography (CT)-plays a crucial role in diagnosis and classification. Radiologists should become familiar with the hemodynamical, physiological, and radiological aspects of PH and chronic lung diseases in patients at risk of developing PH, whose prognosis and treatment depend on the underlying disease.
Collapse
Affiliation(s)
- Adele Valentini
- Division of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paola Franchi
- Department of Diagnostic Radiology, G. Mazzini Hospital, 64100 Teramo, Italy
| | - Giuseppe Cicchetti
- Advanced Radiodiagnostic Center, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gaia Messana
- Diagnostic Imaging Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Greta Chiffi
- Secton of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cecilia Strappa
- Secton of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucio Calandriello
- Advanced Radiodiagnostic Center, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Annemilia Del Ciello
- Advanced Radiodiagnostic Center, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Alessandra Farchione
- Advanced Radiodiagnostic Center, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Lorenzo Preda
- Division of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Diagnostic Imaging Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Anna Rita Larici
- Advanced Radiodiagnostic Center, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
- Secton of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
9
|
Mamalakis M, Dwivedi K, Sharkey M, Alabed S, Kiely D, Swift AJ. A transparent artificial intelligence framework to assess lung disease in pulmonary hypertension. Sci Rep 2023; 13:3812. [PMID: 36882484 PMCID: PMC9990015 DOI: 10.1038/s41598-023-30503-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Recent studies have recognized the importance of characterizing the extent of lung disease in pulmonary hypertension patients by using Computed Tomography. The trustworthiness of an artificial intelligence system is linked with the depth of the evaluation in functional, operational, usability, safety and validation dimensions. The safety and validation of an artificial tool is linked to the uncertainty estimation of the model's prediction. On the other hand, the functionality, operation and usability can be achieved by explainable deep learning approaches which can verify the learning patterns and use of the network from a generalized point of view. We developed an artificial intelligence framework to map the 3D anatomical models of patients with lung disease in pulmonary hypertension. To verify the trustworthiness of the framework we studied the uncertainty estimation of the network's prediction, and we explained the learning patterns of the network. Therefore, a new generalized technique combining local explainable and interpretable dimensionality reduction approaches (PCA-GradCam, PCA-Shape) was developed. Our open-source software framework was evaluated in unbiased validation datasets achieving accurate, robust and generalized results.
Collapse
Affiliation(s)
- Michail Mamalakis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK.
- Department of Computer Science, University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK.
- Insigneo Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield, S1 3JD, UK
| | - Michael Sharkey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield, S1 3JD, UK
| | - David Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK
- Department of Cardiology, University of Sheffield, Sheffield Teaching Hospitals Sheffield, Sheffield, S5 7AU, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK.
- Insigneo Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
10
|
Hoeper MM, Dwivedi K, Pausch C, Lewis RA, Olsson KM, Huscher D, Pittrow D, Grünig E, Staehler G, Vizza CD, Gall H, Distler O, Opitz C, Gibbs JSR, Delcroix M, Park DH, Ghofrani HA, Ewert R, Kaemmerer H, Kabitz HJ, Skowasch D, Behr J, Milger K, Lange TJ, Wilkens H, Seyfarth HJ, Held M, Dumitrescu D, Tsangaris I, Vonk-Noordegraaf A, Ulrich S, Klose H, Claussen M, Eisenmann S, Schmidt KH, Swift AJ, Thompson AAR, Elliot CA, Rosenkranz S, Condliffe R, Kiely DG, Halank M. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. THE LANCET. RESPIRATORY MEDICINE 2022; 10:937-948. [PMID: 35777416 PMCID: PMC9514996 DOI: 10.1016/s2213-2600(22)00097-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Among patients meeting diagnostic criteria for idiopathic pulmonary arterial hypertension (IPAH), there is an emerging lung phenotype characterised by a low diffusion capacity for carbon monoxide (DLCO) and a smoking history. The present study aimed at a detailed characterisation of these patients. METHODS We analysed data from two European pulmonary hypertension registries, COMPERA (launched in 2007) and ASPIRE (from 2001 onwards), to identify patients diagnosed with IPAH and a lung phenotype defined by a DLCO of less than 45% predicted and a smoking history. We compared patient characteristics, response to therapy, and survival of these patients to patients with classical IPAH (defined by the absence of cardiopulmonary comorbidities and a DLCO of 45% or more predicted) and patients with pulmonary hypertension due to lung disease (group 3 pulmonary hypertension). FINDINGS The analysis included 128 (COMPERA) and 185 (ASPIRE) patients with classical IPAH, 268 (COMPERA) and 139 (ASPIRE) patients with IPAH and a lung phenotype, and 910 (COMPERA) and 375 (ASPIRE) patients with pulmonary hypertension due to lung disease. Most patients with IPAH and a lung phenotype had normal or near normal spirometry, a severe reduction in DLCO, with the majority having no or a mild degree of parenchymal lung involvement on chest computed tomography. Patients with IPAH and a lung phenotype (median age, 72 years [IQR 65-78] in COMPERA and 71 years [65-76] in ASPIRE) and patients with group 3 pulmonary hypertension (median age 71 years [65-77] in COMPERA and 69 years [63-74] in ASPIRE) were older than those with classical IPAH (median age, 45 years [32-60] in COMPERA and 52 years [38-64] in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). While 99 (77%) patients in COMPERA and 133 (72%) patients in ASPIRE with classical IPAH were female, there was a lower proportion of female patients in the IPAH and a lung phenotype cohort (95 [35%] COMPERA; 75 [54%] ASPIRE), which was similar to group 3 pulmonary hypertension (336 [37%] COMPERA; 148 [39%] ASPIRE]). Response to pulmonary arterial hypertension therapies at first follow-up was available from COMPERA. Improvements in WHO functional class were observed in 54% of patients with classical IPAH, 26% of patients with IPAH with a lung phenotype, and 22% of patients with group 3 pulmonary hypertension (p<0·0001 for classical IPAH vs IPAH and a lung phenotype, and p=0·194 for IPAH and a lung phenotype vs group 3 pulmonary hypertension); median improvements in 6 min walking distance were 63 m, 25 m, and 23 m for these cohorts respectively (p=0·0015 for classical IPAH vs IPAH and a lung phenotype, and p=0·64 for IPAH and a lung phenotype vs group 3 pulmonary hypertension), and median reductions in N-terminal-pro-brain-natriuretic-peptide were 58%, 27%, and 16% respectively (p=0·0043 for classical IPAH vs IPAH and a lung phenotype, and p=0·14 for IPAH and a lung phenotype vs group 3 pulmonary hypertension). In both registries, survival of patients with IPAH and a lung phenotype (1 year, 89% in COMPERA and 79% in ASPIRE; 5 years, 31% in COMPERA and 21% in ASPIRE) and group 3 pulmonary hypertension (1 year, 78% in COMPERA and 64% in ASPIRE; 5 years, 26% in COMPERA and 18% in ASPIRE) was worse than survival of patients with classical IPAH (1 year, 95% in COMPERA and 98% in ASPIRE; 5 years, 84% in COMPERA and 80% in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). INTERPRETATION A cohort of patients meeting diagnostic criteria for IPAH with a distinct, presumably smoking-related form of pulmonary hypertension accompanied by a low DLCO, resemble patients with pulmonary hypertension due to lung disease rather than classical IPAH. These observations have pathogenetic, diagnostic, and therapeutic implications, which require further exploration. FUNDING COMPERA is funded by unrestricted grants from Acceleron, Bayer, GlaxoSmithKline, Janssen, and OMT. The ASPIRE Registry is supported by Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
Collapse
Affiliation(s)
- Marius M Hoeper
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Germany.
| | - Krit Dwivedi
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Christine Pausch
- GWT-TUD, Epidemiological Centre, Technical University Dresden, Dresden, Germany
| | - Robert A Lewis
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Karen M Olsson
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Germany
| | - Doerte Huscher
- Institute of Biometry and Clinical Epidemiology, and Berlin Insitute of Health, Charité-Universitätsmedizin, Berlin, Germany
| | - David Pittrow
- GWT-TUD, Epidemiological Centre, Technical University Dresden, Dresden, Germany; Institute for Clinical Pharmacology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Translational Lung Research Center Heidelberg, member of the German Center for Lung Research (DZL), Germany
| | | | - Carmine Dario Vizza
- Dipartimento di Scienze Cliniche Internistiche, Anestiologiche e Cardiolohiche, Sapienza, University of Rome, Rome, Italy
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Opitz
- Department of Cardiology, DRK Kliniken Berlin Westend, Berlin, Germany
| | - John Simon R Gibbs
- Department of Cardiology, National Heart & Lung Institute, Imperial College London, London, UK
| | - Marion Delcroix
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven and Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, Katholieke Universiteit Leuven University of Leuven, Leuven, Belgium
| | - Da-Hee Park
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Germany
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, Giessen, Germany; Department of Medicine, Imperial College London, London, UK
| | - Ralf Ewert
- Clinic of Internal Medicine, Department of Respiratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Harald Kaemmerer
- Deutsches Herzzentrum München, Klinik für angeborene Herzfehler und Kinderkardiologie; TU München, Munich, Germany
| | - Hans-Joachim Kabitz
- Gemeinnützige Krankenhausbetriebsgesellschaft Konstanz, Medizinische Klinik II, Konstanz, Germany
| | - Dirk Skowasch
- Universitätsklinikum Bonn, Medizinische Klinik und Poliklinik II, Innere Medizin - Kardiologie/Pneumologie, Bonn, Germany
| | - Juergen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Germany
| | - Tobias J Lange
- University Medical Center Regensburg, Department of Internal Medicine II, Regensburg, Germany
| | - Heinrike Wilkens
- Klinik für Innere Medizin V, Pneumologie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Hans-Jürgen Seyfarth
- Universitätsklinikum Leipzig, Medizinische Klinik und Poliklinik II, Abteilung für Pneumologie, Leipzig, Germany
| | - Matthias Held
- Department of Internal Medicine, Respiratory Medicine and Ventilatory Support, Medical Mission Hospital, Central Clinic Würzburg, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology and Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Iraklis Tsangaris
- Attikon University Hospital, 2nd Critical Care Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Anton Vonk-Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, dept of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Silvia Ulrich
- Clinic of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hans Klose
- Department of Respiratory Medicine, Eppendorf University Hospital, Hamburg, Germany
| | - Martin Claussen
- LungenClinic Grosshansdorf, Fachabteilung Pneumologie, Großhansdorf, Germany
| | - Stephan Eisenmann
- Universitätsklinikum Halle, Klinik für Innere Medizin I, Department of Respiratory Medicine, Halle, Germany
| | - Kai-Helge Schmidt
- Department of Cardiology and Center of Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andrew J Swift
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alfred A Roger Thompson
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Charlie A Elliot
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology) and Center for Molecular Medicine, and the Cologne Cardiovascular Research Center, University of Cologne, Germany
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Michael Halank
- Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Dresden, Germany
| |
Collapse
|