1
|
Han Y, Wang Y, Zou X, Guo H. The serum proteomic profile in patients with migraine. Front Mol Neurosci 2025; 18:1460403. [PMID: 40196050 PMCID: PMC11973291 DOI: 10.3389/fnmol.2025.1460403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Background Migraine is a paroxysmal headache disorder, which seriously affects the patients' quality of life. However, the pathogenesis of migraine is not clear yet. Proteomics is an emerging technology for studying small molecules and protein components in biological systems. This study aimed to analyze the serum proteome of migraine patients and healthy controls and identify differentially expressed proteins, which could provide a reference for the study of biomarkers and pathophysiological mechanisms of migraine. Methods Fasting venous blood was collected, and serum was separated. Liquid chromatography-mass spectrometry was used to detect the proteome of the two groups, and MaxQuant was used to analyze the protein profile and identify the differentially expressed proteins. Results Twenty-seven migraine patients and 20 healthy people matching the age and sex ratio of the migraine group were collected. A total of 27 differentially expressed proteins were identified between migraine and control groups, which were mainly related to immune response, inflammation, glycolysis, lipid metabolism, neurotrophy and development, and so on. Subgroup analysis also identified several differentially expressed proteins between the migraine with aura and the migraine without aura groups and between the ictal and interictal migraine groups. Moreover, the signal pathways that may be related to migraine include the glycolysis/gluconeogenesis pathway and the hypoxia-inducible factor-1 signal pathway. Differentially expressed proteins are mainly distributed in the extracellular area. Related biological processes include complement activation, immunoglobulin receptor binding, and phagocytosis. Discussion The research screened out several differentially expressed proteins of migraine patients, which may be potential biomarkers, but it still needs verification in further studies with larger sample sizes. Various proteins related to inflammation, immune response, and energy metabolism are differentially expressed between the migraine group and the control group, suggesting that the pathogenesis of migraine may be related to inflammation, immunity, and energy metabolism disorders. In the future, we can further explore the therapeutic targets of migraine in terms of these biological processes.
Collapse
Affiliation(s)
- Yating Han
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Yuan Wang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiajuan Zou
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - Huailian Guo
- Department of Neurology, Peking University People’s Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China
| |
Collapse
|
2
|
Liu L, Li W, Wang L, Gong P, Lyu T, Liu D, Zhang Y, Guo Y, Liu X, Tang M, Hu H, Liu C, Li B. Proteomic and metabolomic profiling of acupuncture for migraine reveals a correlative link via energy metabolism. Front Neurosci 2022; 16:1013328. [PMID: 36248663 PMCID: PMC9557737 DOI: 10.3389/fnins.2022.1013328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a neurovascular disease with a high disability rate. Acupuncture treatment has emerged as a safe and viable alternative prophylactic therapy that can effectively alleviate the duration and frequency of migraine attacks. However, the therapeutic mechanisms underlying the effects of acupuncture are yet to be systematically elucidated. In this study, we enrolled female patients with migraine without aura (n = 20) and healthy controls (n = 10). Patients received acupuncture treatment on DU20, DU24, bilateral GB13, GB8, and GB20, applied three times per week over the course of 4 weeks for 12 sessions in total. Blood samples were collected from the median cubital vein before and after acupuncture treatment. Proteomic and metabolomic profiling was performed using liquid chromatography-mass spectrometry to determine the characteristics of differentially expressed molecules and expression of their corresponding biological pathways as well as to elucidate the pathogenesis of migraine and the biological effects underlying the treatment of migraine with acupuncture. Proteomic and metabolomic profiling of plasma samples from patients with migraine without aura before and after acupuncture treatment revealed enrichment of immune-related pathway functions and the arginine synthesis pathway. Joint pathway analyses revealed significant enrichment of the pentose phosphate and glycolysis/gluconeogenesis pathways in patients with migraine. The glycolysis/gluconeogenesis and riboflavin metabolism pathways were significantly enriched after acupuncture treatment. The expression levels of various key proteins and metabolites, including α-D-glucose, flavin adenine dinucleotide, biliverdin reductase B, and L-glutamate, were significantly differentially expressed before and after acupuncture treatment in patients with migraine without aura. Treatment of migraine with acupuncture was associated with significant changes in key molecules and pathways, indicative of physiological changes in the trigeminovascular system, glutamate neurotoxicity, and other migraine-related physiological changes. Overall, our comprehensive analysis using proteomic and metabolomic profiling demonstrates that energy metabolism may serve as a key correlative link in the occurrence of migraine and the therapeutic effects of acupuncture treatment. Our findings may facilitate the identification of diagnostic and therapeutic modalities in the ongoing search for effective treatments for migraine attacks.
Collapse
Affiliation(s)
- Lu Liu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weizheng Li
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Linpeng Wang
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Pengyun Gong
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Tianli Lyu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dapeng Liu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Zhang
- Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan, China
| | - Yijie Guo
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Xiang Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Min Tang
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Hongke Hu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Chao Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- *Correspondence: Chao Liu,
| | - Bin Li
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Bin Li,
| |
Collapse
|
3
|
Urinary Proteomics Reveals Promising Biomarkers in Menstrually Related and Post-Menopause Migraine. J Clin Med 2021; 10:jcm10091854. [PMID: 33923220 PMCID: PMC8123166 DOI: 10.3390/jcm10091854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Migraine is an invalidating neuro-vascular disorder largely spread in the world population. Currently, its pathophysiology is not yet completely understood. The purpose of this study was to investigate the urinary proteome of women suffering from menstrually related migraine (MM) and post-menopause migraine (PM) in comparison with non-headache women as controls, to search potential biomarkers of these migraine sub-types. Urine samples were analyzed by mono-dimensional gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis (2DE) coupled to liquid chromatography-mass spectrometry (LC-MS/MS). Twenty-one urinary proteins were found significantly dysregulated in MM and PM (p < 0.05). The STRING Analysis database revealed interaction between 15 proteins, which were mainly involved in the immune and inflammatory response. Seven of the most considerable proteins were further quantified by western blot: protein S100A8 (S10A8), up-regulated in MM, uromodulin (UROM), alpha-1-microglobulin (AMBP), gelsolin (GELS), prostaglandin-H2 D-isomerase (PTGDS), over-expressed in PM, apolipoprotein A-I (APOA1), and transthyretin (TTHY), respectively down- and up-regulated in both migraineur groups vs controls. These candidate biomarkers might be involved in the neurophysiological network of MM and PM, thus helping to better understand the pathophysiology of these migraine forms. If validated in large-scale studies, this protein cluster could become a distinctive target for clinical applications in migraine diagnosis and treatment.
Collapse
|
4
|
Kaytser V, Zhang P. Non-interacting, Non-opioid, and Non-barbiturate Containing Acute Medication Combinations in Headache: A Pilot Combinatorics Approach Based on DrugBank Database. Front Neurol 2021; 12:632830. [PMID: 33679591 PMCID: PMC7925628 DOI: 10.3389/fneur.2021.632830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Polypharmacy in abortive medications is often inevitable for patients with refractory headaches. Objective: We seek to enumerate an exhaustive list of headaches abortive medications that are without drug-drug interactions. Methods: We updated a list of acute medications based on the widely used Jefferson Headache Manual with novel abortive medications including ubrogepant, lasmiditan, and rimegepant. Opioids and barbiturate-containing products are excluded. From this resultant list of medications, we then conducted an exhaustive search of all pair-wise interactions via DrugBank's API. Using this interaction list, we filtered all possible two, three, and four drug combinations of abortive medications. The list of medications was then reapplied to DrugBank to verify the lack of known drug-drug interactions. Results: There are 192 medication combinations that do not contain any drug-drug interactions. Most common elements in these combinations are ubrogepant, prochlorperazine, followed by tizanidine. There are 67 three-drug combinations that do not contain interactions. Only two of the four-drug combinations do not yield some form of drug-drug interactions. Conclusion: This list of headaches abortive medications without drug-drug interactions is a useful tool for clinicians seeking to more effectively manage refractory headaches by implementing a rational polypharmacy.
Collapse
Affiliation(s)
- Victor Kaytser
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Pengfei Zhang
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
5
|
The Mechanisms of Improving IVF Outcomes of Liu-Wei-Di-Huang Pill Acting on DOR Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5183017. [PMID: 33178317 PMCID: PMC7648682 DOI: 10.1155/2020/5183017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
Diminished ovarian reserve (DOR) is the weakening of ovarian oocyte production and quality. It will further become premature ovarian failure without timely cure. However, disease pathology and diagnostic markers are still incompletely understood. Liu-Wei-Di-Huang (LWDH) pill, a traditional Chinese medicine formula, is commonly used in the treatment of DOR in China. To explore the mechanism of the effect of LWDH on in vitro fertilization (IVF) outcomes in patients with DOR, a pseudotargeted metabolomics study combined with multivariate data processing strategy was carried out. A liquid chromatography tandem mass spectrometry-based metabolomics approach was applied to characterize metabolic biomarker candidates. Multiple pattern recognition was used to determine groups and confirm important variables. A total of 21 potential biomarkers were characterized, and related metabolic pathways were identified. The study displayed that the established pseudotargeted metabolomics strategy is a powerful approach for investigating the mechanism of DOR and LWDH. In addition, the approach may highlight biomarkers and metabolic pathways and can capture subtle metabolite changes from headache, which may lead to an improved mechanism understanding of DOR diseases and LWDH treatment.
Collapse
|
6
|
Miller JS, Rodriguez-Saona L, Hackshaw KV. Metabolomics in Central Sensitivity Syndromes. Metabolites 2020; 10:E164. [PMID: 32344505 PMCID: PMC7240948 DOI: 10.3390/metabo10040164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 01/09/2023] Open
Abstract
Central sensitization syndromes are a collection of frequently painful disorders that contribute to decreased quality of life and increased risk of opiate abuse. Although these disorders cause significant morbidity, they frequently lack reliable diagnostic tests. As such, technologies that can identify key moieties in central sensitization disorders may contribute to the identification of novel therapeutic targets and more precise treatment options. The analysis of small molecules in biological samples through metabolomics has improved greatly and may be the technology needed to identify key moieties in difficult to diagnose diseases. In this review, we discuss the current state of metabolomics as it relates to central sensitization disorders. From initial literature review until Feb 2020, PubMed, Embase, and Scopus were searched for applicable studies. We included cohort studies, case series, and interventional studies of both adults and children affected by central sensitivity syndromes. The majority of metabolomic studies addressing a CSS found significantly altered metabolites that allowed for differentiation of CSS patients from healthy controls. Therefore, the published literature overwhelmingly supports the use of metabolomics in CSS. Further research into these altered metabolites and their respective metabolic pathways may provide more reliable and effective therapeutics for these syndromes.
Collapse
Affiliation(s)
- Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA;
| | - Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1701 Trinity St, Austin, TX 78712, USA
| |
Collapse
|
7
|
Wen Z, He M, Peng C, Rao Y, Li J, Li Z, Du L, Li Y, Zhou M, Hui O, Feng Y, Yang S. Metabolomics and 16S rRNA Gene Sequencing Analyses of Changes in the Intestinal Flora and Biomarkers Induced by Gastrodia-Uncaria Treatment in a Rat Model of Chronic Migraine. Front Pharmacol 2019; 10:1425. [PMID: 31920639 PMCID: PMC6929670 DOI: 10.3389/fphar.2019.01425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that natural medicines have notable curative effects on neurological conditions, such as migraine, that are mediated by regulating the gut microbial flora. A natural medicine pair used in traditional Chinese medicine, Gastrodia elata Blume and Uncaria rhynchophylla (Miq.) Miq. ex Havil. (GU), have shown excellent effect in treating migraine, yet the role of gut microbes in the therapeutic effect of GU in chronic migraine (CMG) is unknown. Here, we performed a 16S rRNA gene sequencing and metabolomics study of the effects of GU in a nitroglycerin (NTG)-induced rat model of CMG. Our results showed that the gut microbial community structure changed significantly and was similar to that of control rats after GU administration in CMG rats. Specifically, GU increased the relative abundance of Bacteroides and Coprococcus and reduced the abundance of Prevotella_1 and Escherichia-Shigella in CMG rats. The metabolomics profiles of the plasma and ileum contents of CMG rats obtained with an ultra-performance liquid chromatography-mass spectrometer (UPLC-MS) revealed similar biomarkers in both samples, and GU treatment reduced 3-indoxyl sulfate, glutamic acid, L-tyrosine, and L-arginine levels, and increased 5-HIAA, L-tryptophan, and linoleic acid levels in plasma. Correlation analysis showed that the affected bacteria were closely related to amino acid metabolism. Most importantly, GU treatment hardly affected biomarkers in feces samples after inhibiting the activity of gut microbes. Collectively, these findings indicate that structural changes in gut flora are closely related to host metabolism and that regulating the gut microbial community structure and function may be one of the important mechanisms underlying the therapeutic effects of GU in migraine.
Collapse
Affiliation(s)
- Zhiqi Wen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mingzhen He
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chunyan Peng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yifei Rao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junmao Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhifeng Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lijun Du
- State Key Laboratory of Innovative Drug and Efficient Energy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Maofu Zhou
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ouyang Hui
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yulin Feng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,State Key Laboratory of Innovative Drug and Efficient Energy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shilin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Martelletti P, Ashina M, Edvinsson L. The changing faces of migraine. J Headache Pain 2019; 20:52. [PMID: 31077138 PMCID: PMC6734366 DOI: 10.1186/s10194-019-1006-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023] Open
Affiliation(s)
- Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.
| | - Messoud Ashina
- Department of Neurology, Copenhagen University, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Bayci AWL, Baker DA, Somerset AE, Turkoglu O, Hothem Z, Callahan RE, Mandal R, Han B, Bjorndahl T, Wishart D, Bahado-Singh R, Graham SF, Keidan R. Metabolomic identification of diagnostic serum-based biomarkers for advanced stage melanoma. Metabolomics 2018; 14:105. [PMID: 30830422 DOI: 10.1007/s11306-018-1398-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Melanoma is a highly aggressive malignancy and is currently one of the fastest growing cancers worldwide. While early stage (I and II) disease is highly curable with excellent prognosis, mortality rates rise dramatically after distant spread. We sought to identify differences in the metabolome of melanoma patients to further elucidate the pathophysiology of melanoma and identify potential biomarkers to aid in earlier detection of recurrence. METHODS Using 1H NMR and DI-LC-MS/MS, we profiled serum samples from 26 patients with stage III (nodal metastasis) or stage IV (distant metastasis) melanoma and compared their biochemical profiles with 46 age- and gender-matched controls. RESULTS We accurately quantified 181 metabolites in serum using a combination of 1H NMR and DI-LC-MS/MS. We observed significant separation between cases and controls in the PLS-DA scores plot (permutation test p-value = 0.002). Using the concentrations of PC-aa-C40:3, DL-carnitine, octanoyl-L-carnitine, ethanol, and methylmalonyl-L-carnitine we developed a diagnostic algorithm with an AUC (95% CI) = 0.822 (0.665-0.979) with sensitivity and specificity of 100 and 56%, respectively. Furthermore, we identified arginine, proline, tryptophan, glutamine, glutamate, glutathione and ornithine metabolism to be significantly perturbed due to disease (p < 0.05). CONCLUSION Targeted metabolomic analysis demonstrated significant differences in metabolic profiles of advanced stage (III and IV) melanoma patients as compared to controls. These differences may represent a potential avenue for the development of multi-marker serum-based assays for earlier detection of recurrences, allow for newer, more effective targeted therapy when tumor burden is less, and further elucidate the pathophysiologic changes that occur in melanoma.
Collapse
Affiliation(s)
- A W L Bayci
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - D A Baker
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA.
- Department of Surgery, Beaumont Health, 3601 W. 13 Mile Rd., Royal Oak, MI, 48073, USA.
| | - A E Somerset
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - O Turkoglu
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - Z Hothem
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - R E Callahan
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| | - R Mandal
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - B Han
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - T Bjorndahl
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - D Wishart
- Department of Biological and Computing Sciences, University of Alberta Edmonton, Edmonton, AB, Canada
| | - R Bahado-Singh
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - S F Graham
- Department of Obstetrics and Gynecology, Beaumont Health, Royal Oak, MI, USA
| | - R Keidan
- Department of General Surgery, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
10
|
Pomes LM, Gentile G, Simmaco M, Borro M, Martelletti P. Tailoring Treatment in Polymorbid Migraine Patients through Personalized Medicine. CNS Drugs 2018; 32:559-565. [PMID: 29926370 DOI: 10.1007/s40263-018-0532-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leda Marina Pomes
- Residency Program in Laboratory Medicine, Gabriele d'Annunzio University, Chieti, Italy
| | - Giovanna Gentile
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marina Borro
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,Internal Medicine and Emergency Medicine Unit, Sant'Andrea Hospital, Rome, Italy. .,Regional Referral Headache Center, Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
11
|
Martelletti P. The journey from genetic predisposition to medication overuse headache to its acquisition as sequela of chronic migraine. J Headache Pain 2018; 19:2. [PMID: 29322261 PMCID: PMC5762616 DOI: 10.1186/s10194-017-0830-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 12/12/2022] Open
Abstract
Migraine remains one of the biggest clinical case to be solved among the non-communicable diseases, second to low back pain for disability caused as reported by the Global Burden of Disease Study 2016. Despite this, its genetics roots are still unknown. Its evolution in chronic forms hits 2–4% of the population and causes a form so far defined Medication Overuse Headache (MOH), whose pathophysiological basis have not been explained by many dedicated studies. The Global Burden of Disease Study 2016 has not recognized MOH as independent entity, but as a sequela of Chronic Migraine. This concept, already reported in previous studies, has been confirmed by the efficacy of OnabotulinumtoxinA in Chronic Migraine independently from the presence of MOH. The consistency of the current definitions of both Medication Overuse Headache and Chronic Migraine itself might be re-read on the basis of new evidences.
Collapse
Affiliation(s)
- Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy. .,Regional Referral Headache Centre, Sant'Andrea Hospital, Via di Grottarossa, 1035, 00189, Rome, Italy.
| |
Collapse
|
12
|
Liu R, Xu H, Zhang X, Wang X, Yuan Z, Sui Z, Wang D, Bi K, Li Q. Metabolomics Strategy Using High Resolution Mass Spectrometry Reveals Novel Biomarkers and Pain-Relief Effect of Traditional Chinese Medicine Prescription Wu-Zhu-Yu Decoction Acting on Headache Modelling Rats. Molecules 2017; 22:E2110. [PMID: 29258229 PMCID: PMC6149820 DOI: 10.3390/molecules22122110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/26/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022] Open
Abstract
Headache is a common episodic or chronic neurologic disorder. Treatment options and diagnosis are restricted by an incomplete understanding of disease pathology and the lack of diagnostic markers. Wu-Zhu-Yu decoction (WZYD), a traditional Chinese medicine (TCM) formula containing four TCM herbs, is commonly used in the treatment of headache in China. To deeply understand more about headache and investigate the pain-relief mechanism of WZYD, a comprehensive metabolomics study combined with multivariate data processing strategy was carried out. An LC-high resolution mass spectrometry-based metabolomics approach was applied to characterize metabolic biomarker candidates. Multiple pattern recognition including principal component analysis-discriminant analysis, partial least squares-discriminant analysis and hierarchical cluster analysis were used to determine groups and confirm important variables. A total of 17 potential biomarkers were characterized and related metabolic pathways were identified. The study demonstrated that the established metabolomics strategy is a powerful approach for investigating the mechanism of headache attack and WZYD. In addition, the approach may highlight biomarkers and metabolic pathways and can capture subtle metabolite changes from headache, which may lead to an improved mechanism understanding of central nervous system diseases and TCM treatment.
Collapse
Affiliation(s)
- Ran Liu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China.
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China.
| | - Xiaowen Zhang
- Guangzhou Bristol Drug Delivery Co., Ltd., 11 Kaiyuan Ave, Guangzhou 510320, China.
| | - Xiaotong Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China.
| | - Ziyue Yuan
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China.
| | - Zhenyu Sui
- China Food and Drug Administration Institute of Executive Development, 16 Xi Zhan Nan Rd., Beijing 100073, China.
| | - Dong Wang
- Dalian Institute for Drug Control, 888a Huanghe Rd., Dalian 116000, China.
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China.
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China.
| |
Collapse
|
13
|
Hansen RD, Christensen AF, Olesen J. Family studies to find rare high risk variants in migraine. J Headache Pain 2017; 18:32. [PMID: 28255817 PMCID: PMC5334193 DOI: 10.1186/s10194-017-0729-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Migraine has long been known as a common complex disease caused by genetic and environmental factors. The pathophysiology and the specific genetic susceptibility are poorly understood. Common variants only explain a small part of the heritability of migraine. It is thought that rare genetic variants with bigger effect size may be involved in the disease. Since migraine has a tendency to cluster in families, a family approach might be the way to find these variants. This is also indicated by identification of migraine-associated loci in classical linkage-analyses in migraine families. A single migraine study using a candidate-gene approach was performed in 2010 identifying a rare mutation in the TRESK potassium channel segregating in a large family with migraine with aura, but this finding has later become questioned. The technologies of next-generation sequencing (NGS) now provides an affordable tool to investigate the genetic variation in the entire exome or genome. The family-based study design using NGS is described in this paper. We also review family studies using NGS that have been successful in finding rare variants in other common complex diseases in order to argue the promising application of a family approach to migraine. METHOD PubMed was searched to find studies that looked for rare genetic variants in common complex diseases through a family-based design using NGS, excluding studies looking for de-novo mutations, or using a candidate-gene approach and studies on cancer. All issues from Nature Genetics and PLOS genetics 2014, 2015 and 2016 (UTAI June) were screened for relevant papers. Reference lists from included and other relevant papers were also searched. For the description of the family-based study design using NGS an in-house protocol was used. RESULTS Thirty-two successful studies, which covered 16 different common complex diseases, were included in this paper. We also found a single migraine study. Twenty-three studies found one or a few family specific variants (less than five), while other studies found several possible variants. Not all of them were genome wide significant. Four studies performed follow-up analyses in unrelated cases and controls and calculated odds ratios that supported an association between detected variants and risk of disease. Studies of 11 diseases identified rare variants that segregated fully or to a large degree with the disease in the pedigrees. CONCLUSION It is possible to find rare high risk variants for common complex diseases through a family-based approach. One study using a family approach and NGS to find rare variants in migraine has already been published but with strong limitations. More studies are under way.
Collapse
Affiliation(s)
- Rikke Dyhr Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, DK-2600 Denmark
| | - Anne Francke Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, DK-2600 Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, DK-2600 Denmark
| |
Collapse
|
14
|
Abstract
Precision medicine is an emerging approach for prevention and treatment of diseases considering individuals’ uniqueness. Omics provide one step forward toward advanced precision medicine and include technologies such as genomics, proteomics and metabolomics generating valuable data through characterization of entire biological systems. With the aid of omics, a major shift has been started to occur in understanding of diseases followed by potential fundamental changes in medical care strategies. This short review aims at providing some examples of current omics that are applied in the field of pain in terms of new biomarkers for diagnosis of different pain types, stratification of patients and new therapeutic targets. Implementation of omics would most likely offer breakthrough in the future of pain management.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| | - Hye Sook Han Vinterhøj
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| |
Collapse
|
15
|
Affaitati G, Martelletti P, Lopopolo M, Tana C, Massimini F, Cipollone F, Lapenna D, Giamberardino MA, Costantini R. Use of Nonsteroidal Anti-Inflammatory Drugs for Symptomatic Treatment of Episodic Headache. Pain Pract 2016; 17:392-401. [PMID: 27207273 DOI: 10.1111/papr.12461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Primary headaches have high epidemiologic impact but their symptomatic treatment often remains problematic. Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used, but their modality of employment and efficacy/differential efficacy are highly variable. This study investigated current NSAID use for episodic headache at an Italian headache center (January 2000 to February 2013). METHODS A retrospective evaluation was performed on 6,443 patient records: migraine (n = 2,330), tension-type headache (TTH; n = 807), and migraine plus TTH (n = 3,306). RESULTS Among migraine patients, 80% had used NSAIDs in the past year. Preferences were: nimesulide (57%), ketoprofen (25%), and ibuprofen (24%); complete efficacy was significantly higher than incomplete/absent efficacy (P < 0.0001). NSAIDs were replaced with triptans in 53% of patients at first visit; after 1 year there was a spontaneous significant return to NSAIDs (56%; P < 0.0005). Among TTH patients, 90% were NSAID users; preferences were: nimesulide (48%), ketoprofen (47%), and diclofenac (19%), with significantly higher complete vs. incomplete/absent efficacy (nimesulide and ketoprofen, P < 0.02). Replacement with analgesics was performed in 24% of patients; after 1 year, there was a 29% return to NSAIDs. Among migraine plus TTH patients, 89% were NSAID users. Preferences were: nimesulide (44%), ibuprofen (42%), and ketoprofen (38%), with significantly higher complete vs. incomplete/absent efficacy (0.001 < P < 0.0001). Replacement with analgesics was performed in 31% of patients; after 1 year, there was a 37% return to NSAIDs. CONCLUSIONS Nonsteroidal anti-inflammatory drug use in headache was higher than could be hypothesized based on guidelines, with NSAID preferences not entirely coinciding with international recommendations. This outcome suggests the need for greater awareness of all treatment options in headache by both patients and physicians.
Collapse
Affiliation(s)
- Giannapia Affaitati
- Department of Medicine and Science of Aging, Headache Center, Geriatrics Clinic and Ce.S.I.-MeT, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Regional Referral Headache Centre, "Sant'Andrea" Hospital, "Sapienza" University, Rome, Italy
| | - Mariangela Lopopolo
- Department of Medicine and Science of Aging, Headache Center, Geriatrics Clinic and Ce.S.I.-MeT, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Claudio Tana
- Internal Medicine Unit, Guastalla Hospital, AUSL Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Massimini
- Institute of Clinical Pathology, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Science of Aging, Headache Center, Geriatrics Clinic and Ce.S.I.-MeT, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Domenico Lapenna
- Department of Medicine and Science of Aging, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Maria Adele Giamberardino
- Department of Medicine and Science of Aging, Headache Center, Geriatrics Clinic and Ce.S.I.-MeT, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Raffaele Costantini
- Institute of Surgical Pathology, "G. D'Annunzio" University of Chieti, Chieti, Italy
| |
Collapse
|
16
|
Karamanos Y, Pottiez G. Proteomics and the blood-brain barrier: how recent findings help drug development. Expert Rev Proteomics 2016; 13:251-8. [PMID: 26778576 DOI: 10.1586/14789450.2016.1143780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The drug discovery and development processes are divided into different stages separated by milestones to indicate that significant progress has been made and that certain criteria for target validation, hits, leads and candidate drugs have been met. Proteomics is a promising approach for the identification of protein targets and biochemical pathways involved in disease process and thus plays an important role in several stages of the drug development. The blood-brain barrier is considered as a major bottleneck when trying to target new compounds to treat neurodegenerative diseases. Based on the survey of recent findings and with a projection on expected improvements, this report attempt to address how proteomics participates in drug development.
Collapse
Affiliation(s)
- Yannis Karamanos
- a Laboratoire de la Barrière Hématoencéphalique (LBHE) , Univesrité d'Artois EA2465 , Lens , France
| | - Gwënaël Pottiez
- a Laboratoire de la Barrière Hématoencéphalique (LBHE) , Univesrité d'Artois EA2465 , Lens , France
| |
Collapse
|
17
|
Christensen AF, Esserlind AL, Werge T, Stefánsson H, Stefánsson K, Olesen J. The influence of genetic constitution on migraine drug responses. Cephalalgia 2015; 36:624-39. [DOI: 10.1177/0333102415610874] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
Objective Specific acute treatments of migraine are 5HT1B/D receptor agonists; triptans and ergotamine, but only two-thirds of patients respond well without side effects. No migraine-prophylactic drugs are specific to migraine. Prophylactic drugs are selected by time-consuming “trial and error.” Personalized treatment is therefore much needed. The objective of this study was to test the effect of 12 single nucleotide polymorphisms (SNPs) significantly associated with migraine on migraine drug responses. Methods Semi-structured migraine interviews including questions on drug responses, blood samples and genotyping were performed on 1806 unrelated migraine cases recruited from the Danish Headache Center. Association analyses were carried out using logistic regression, assuming an additive model for the genetic effect. The effect on drug responses was tested for a combined genetic score and for each of the 12 SNPs. Significant findings were subsequently tested in an independent replication sample of 392 unrelated Danish migraine cases. Results A single risk variant, rs2651899 in PRDM16, was significantly associated with efficacy of triptans with an odds ratio (OR) of treatment success of 1.3, and a higher combined genetic score was significantly associated with efficacy of triptans with an OR of success of up to 2.6. A number of SNPs showed nominal preferential association with the efficacy of triptans and others with prophylactic drugs. Analyses of triptans and ergotamine complemented each other and gave a stronger signal when analyzed together. The associations between response to triptans and genetic load and rs2651899 were partially confirmed in the independent sample. Conclusion We show for the first time an association between genetic constitution and migraine drug response. This is a first step toward future individualized medicine.
Collapse
Affiliation(s)
- Anne Francke Christensen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Glostrup Hospital, University of Copenhagen, Denmark
| | - Ann-Louise Esserlind
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Glostrup Hospital, University of Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, University of Copenhagen, Roskilde, Denmark
| | | | | | - Jes Olesen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Glostrup Hospital, University of Copenhagen, Denmark
| |
Collapse
|
18
|
Shyti R, Kohler I, Schoenmaker B, Derks RJE, Ferrari MD, Tolner EA, Mayboroda OA, van den Maagdenberg AMJM. Plasma metabolic profiling after cortical spreading depression in a transgenic mouse model of hemiplegic migraine by capillary electrophoresis – mass spectrometry. MOLECULAR BIOSYSTEMS 2015; 11:1462-71. [DOI: 10.1039/c5mb00049a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cortical spreading depression-induced brain metabolic changes have been captured in the plasma of a transgenic migraine mouse model using CE-MS.
Collapse
Affiliation(s)
- Reinald Shyti
- Department of Human Genetics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Isabelle Kohler
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Bart Schoenmaker
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Rico J. E. Derks
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Michel D. Ferrari
- Department of Neurology
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Else A. Tolner
- Department of Neurology
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | | |
Collapse
|