1
|
Stancheva SG, Frömbling J, Sassu EL, Hennig-Pauka I, Ladinig A, Gerner W, Grunert T, Ehling-Schulz M. Proteomic and immunoproteomic insights into the exoproteome of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. Microb Pathog 2022; 172:105759. [PMID: 36087692 DOI: 10.1016/j.micpath.2022.105759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae affects pig health status and the swine industry worldwide. Despite the extensive number of studies focused on A. pleuropneumoniae infection and vaccine development, a thorough analysis of the A. pleuropneumoniae exoproteome is still missing. Using a complementary approach of quantitative proteomics and immunoproteomics we gained an in-depth insight into the A. pleuropneumoniae serotype 2 exoproteome, which provides the basis for future functional studies. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 593 exoproteins, of which 104 were predicted to be virulence factors. The RTX toxins ApxIIA and ApxIIIA -were found to be the most abundant proteins in the A. pleuropneumoniae serotype 2 exoproteome. Furthermore, the ApxIVA toxin was one of the proteins showing the highest abundance, although ApxIVA is commonly assumed to be expressed exclusively in vivo. Our study revealed several antigens, including proteins with moonlight functions, such as the elongation factor (EF)-Tu, and proteins linked to specific metabolic traits, such as the maltodextrin-binding protein MalE, that warrant future functional characterization and might present potential targets for novel therapeutics and vaccines. Our Ig-classes specific serological proteome analysis (SERPA) approach allowed us to explore the development of the host humoral immune response over the course of the infection. These SERPAs pinpointed proteins that might play a key role in virulence and persistence and showed that the immune response to the different Apx toxins is distinct. For instance, our results indicate that the ApxIIIA toxin has properties of a thymus-independent antigen, which should be studied in more detail.
Collapse
Affiliation(s)
- Stelli G Stancheva
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Janna Frömbling
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Bakum, Germany
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tom Grunert
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
2
|
Jarosova R, Ondrackova P, Leva L, Nedbalcova K, Vicenova M, Masek J, Volf J, Gebauer J, Do T, Guran R, Sladek Z, Dominguez J, Faldyna M. Cytokine expression by CD163+ monocytes in healthy and Actinobacillus pleuropneumoniae-infected pigs. Res Vet Sci 2022; 152:1-9. [PMID: 35901636 DOI: 10.1016/j.rvsc.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Distinct monocyte subpopulations have been previously described in healthy pigs and pigs experimentally infected with Actinobacillus pleuropneumoniae (APP). The CD163+ subpopulation of bone marrow (BM), peripheral blood (PB) and lung monocytes was found to play an important role in the inflammatory process. The inflammation is accompanied by elevation of inflammatory cytokines. The aim of the study was to evaluate the contribution of CD163+ monocytes and macrophages to cytokine production during APP-induced lung inflammation. Cytokine production was assessed by flow cytometry (FC) and quantitative PCR (qPCR) in CD163+ monocytes and by qPCR, immunohistochemistry/fluorescence in lungs and tracheobronchial lymph nodes (TBLN). Despite the systemic inflammatory response after APP infection, BM and PB CD163+ monocytes did not express elevated levels of a wide range of cytokines compared to control pigs. In contrast, significant amounts of IL-1β, IL-6, IL-8 and TNF-α were produced in lung lesions and IL-1β in the TBLN. At the protein level, TNF-α was expressed by both CD163+ monocytes and macrophages in lung lesions, whereas IL-1β, IL-6 and IL-8 expression was found only in CD163+ monocytes; no CD163+ macrophages were found to produce these cytokines. Furthermore, the quantification of CD163+ monocytes expressing the two cytokines IL-1β and IL-8 that were most elevated was performed. In lung lesions, 36.5% IL-1β positive CD163+ monocytes but only 18.3% IL-8 positive CD163+ monocytes were found. In conclusion, PB and BM CD163+ monocytes do not appear to contribute to the elevated cytokine levels in plasma. On the other hand, CD163+ monocytes contribute to inflammatory cytokine expression, especially IL-1β at the site of inflammation during the inflammatory process.
Collapse
Affiliation(s)
- Rea Jarosova
- Veterinary Research Institute, Brno, Czech Republic; Department of Morphology, Physiology and Animal Genetics, The Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | | | - Lenka Leva
- Veterinary Research Institute, Brno, Czech Republic.
| | | | | | - Josef Masek
- Veterinary Research Institute, Brno, Czech Republic.
| | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic.
| | - Jan Gebauer
- Veterinary Research Institute, Brno, Czech Republic.
| | - Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbysek Sladek
- Department of Morphology, Physiology and Animal Genetics, The Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Javier Dominguez
- Departmento de Biotecnologia, Centro Nacional Instituto de Investigacion y Tecnologia Agraria y Alimentaria (CSIC-INIA), Madrid, Spain.
| | | |
Collapse
|
3
|
Hernandez‐Cuellar E, Guerrero‐Barrera AL, Avelar‐Gonzalez FJ, Díaz JM, Chávez‐Reyes J, Salazar de Santiago A. An in vitro study of ApxI from Actinobacillus pleuropneumoniae serotype 10 and induction of NLRP3 inflammasome-dependent cell death. Vet Rec Open 2021; 8:e20. [PMID: 34631111 PMCID: PMC8490337 DOI: 10.1002/vro2.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae (AP) is the causative agent of porcine pleuropneumonia. Apx exotoxins are the most important virulence factors associated with the induction of lesions. ApxI is highly cytotoxic on a wide range of cells. Besides the induction of necrosis and apoptosis of ApxI on porcine alveolar macrophages (PAMs), its role in pyroptosis, a caspase-1-dependent form of cell death, has not been reported. The aim of this study was to analyse if NLRP3 inflammasome participates in cell death induced by ApxI. METHODS PAMs, the porcine alveolar macrophage cell line 3D4/21 and a porcine aortic endothelial cell line were used in this study. We used Z-VAD-FMK and Ac-YVAD-cmk to inhibit caspase-1. Glyburide and MCC950 were used to inhibit the NLRP3 inflammasome. A lactate dehydrogenase release assay was used to measure the percentage of cell death. Caspase-1 expression was analysed by immunofluorescence. End-point RT-PCR was used to analyse the expression of NLRP3 mRNA. RESULTS Rapid cell death in PAMs, 3D4/21 cells and the endothelial cell line were induced by ApxI. This cell death decreased by using caspase-1 and NLRP3 inflammasome inhibitors and by blocking the K+ efflux. Expression of NLRP3 mRNA was induced by ApxI in alveolar macrophages while it was constitutive in the endothelial cell line. Detection of caspase-1 in alveolar macrophages was higher after ApxI treatment and it was blocked by MCC950 or heat inactivation. CONCLUSIONS To the best of the authors' knowledge, we have described for the first time in vitro induction of ApxI associated pyroptosis in alveolar macrophages and endothelial cells, a rapid cell death that depends on the activation of caspase-1 via the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Eduardo Hernandez‐Cuellar
- Laboratorio de Biología Celular y TisularDepartamento de MorfologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
| | - Alma Lilián Guerrero‐Barrera
- Laboratorio de Biología Celular y TisularDepartamento de MorfologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
| | - Francisco Javier Avelar‐Gonzalez
- Laboratorio de Ciencias AmbientalesDepartamento de Fisiología y FarmacologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
| | - Juan Manuel Díaz
- Unidad Médico DidácticaCentro de Ciencias de la SaludUniversidad Autónoma de AguascalientesAguascalientesMéxico
| | - Jesús Chávez‐Reyes
- Laboratorio de Ciencias AmbientalesDepartamento de Fisiología y FarmacologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de MatamorosUniversidad Autónoma de TamaulipasTamaulipasMéxico
| | - Alfredo Salazar de Santiago
- Laboratorio de Biología Celular y TisularDepartamento de MorfologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
- Unidad Académica de OdontologíaÁrea de Ciencias de la SaludUniversidad Autónoma de ZacatecasZacatecasMéxico
| |
Collapse
|
4
|
Loera-Muro A, Ramírez-Castillo FY, Moreno-Flores AC, Martin EM, Avelar-González FJ, Guerrero-Barrera AL. Actinobacillus pleuropneumoniae Surviving on Environmental Multi-Species Biofilms in Swine Farms. Front Vet Sci 2021; 8:722683. [PMID: 34660763 PMCID: PMC8515031 DOI: 10.3389/fvets.2021.722683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, an important respiratory disease for the pig industry. A. pleuropneumoniae has traditionally been considered an obligate pig pathogen. However, its presence in the environment is starting to be known. Here, we report the A. pleuropneumoniae surviving in biofilms in samples of drinking water of swine farms from Mexico. Fourteen farms were studied. Twenty drinking water samples were positive to A. pleuropneumoniae distributed on three different farms. The bacteria in the drinking water samples showed the ability to form biofilms in vitro. Likewise, A. pleuropneumoniae biofilm formation in situ was observed on farm drinkers, where the biofilm formation was in the presence of other bacteria such as Escherichia coli, Stenotrophomonas maltophilia, and Acinetobacter schindleri. Our data suggest that A. pleuropneumoniae can inhabit aquatic environments using multi-species biofilms as a strategy to survive outside of their host.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONACYT-Centro de Investigaciones Biológicas del Noreste, La Paz, Mexico
| | - Flor Y Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Adriana C Moreno-Flores
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Eduardo M Martin
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J Avelar-González
- Laboratorio de Estudios Ambientales, Departamento Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
5
|
Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: an exemplar of a veterinary pathogen. Anim Health Res Rev 2021; 22:120-135. [PMID: 34275511 DOI: 10.1017/s1466252321000074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, the MISTEACHING (microbiome, immunity, sex, temperature, environment, age, chance, history, inoculum, nutrition, genetics) framework to describe the outcome of host-pathogen interaction, has been applied to human pathogens. Here, we show, using Actinobacillus pleuropneumoniae as an exemplar, that the MISTEACHING framework can be applied to a strict veterinary pathogen, enabling the identification of major research gaps, the formulation of hypotheses whose study will lead to a greater understanding of pathogenic mechanisms, and/or improved prevention/therapeutic measures. We also suggest that the MISTEACHING framework should be extended with the inclusion of a 'strain' category, to become MISTEACHINGS. We conclude that the MISTEACHINGS framework can be applied to veterinary pathogens, whether they be bacteria, fungi, viruses, or parasites, and hope to stimulate others to use it to identify research gaps and to formulate hypotheses worthy of study with their own pathogens.
Collapse
|
6
|
Nahar N, Turni C, Tram G, Blackall PJ, Atack JM. Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis. Adv Microb Physiol 2021; 78:179-216. [PMID: 34147185 DOI: 10.1016/bs.ampbs.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is responsible for high economic losses in swine herds across the globe. Pleuropneumonia is characterized by severe respiratory distress and high mortality. The knowledge about the interaction between bacterium and host within the porcine respiratory tract has improved significantly in recent years. A. pleuropneumoniae expresses multiple virulence factors, which are required for colonization, immune clearance, and tissue damage. Although vaccines are used to protect swine herds against A. pleuropneumoniae infection, they do not offer complete coverage, and often only protect against the serovar, or serovars, used to prepare the vaccine. This review will summarize the role of individual A. pleuropneumoniae virulence factors that are required during key stages of pathogenesis and disease progression, and highlight progress made toward developing effective and broadly protective vaccines against an organism of great importance to global agriculture and food production.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
7
|
Li SC, Cheng YT, Wang CY, Wu JY, Chen ZW, Wang JP, Lin JH, Hsuan SL. Actinobacillus pleuropneumoniae exotoxin ApxI induces cell death via attenuation of FAK through LFA-1. Sci Rep 2021; 11:1753. [PMID: 33462305 PMCID: PMC7813829 DOI: 10.1038/s41598-021-81290-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2021] [Indexed: 01/15/2023] Open
Abstract
ApxI exotoxin is an important virulence factor derived from Actinobacillus pleuropneumoniae that causes pleuropneumonia in swine. Here, we investigate the role of lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), a member of the β2 integrin family, and the involvement of the integrin signaling molecules focal adhesion kinase (FAK) and Akt in ApxI cytotoxicity. Using Western blot analysis, we found that ApxI downregulated the activity of FAK and Akt in porcine alveolar macrophages (AMs). Preincubation of porcine AMs with an antibody specific for porcine CD18 reduced ApxI-induced cytotoxicity as measured by a lactate dehydrogenase release assay and decreased ApxI-induced FAK and Akt attenuation, as shown by Western blot analysis. Pretreatment with the chemical compounds PMA and SC79, which activate FAK and Akt, respectively, failed to overcome the ApxI-induced attenuation of FAK and Akt and death of porcine AMs. Notably, the transfection experiments revealed that ectopic expression of porcine LFA-1 (pLFA-1) conferred susceptibility to ApxI in ApxI-insensitive cell lines, including human embryonic kidney 293T cells and FAK-deficient mouse embryonic fibroblasts (MEFs). Furthermore, ectopic expression of FAK significantly reduced ApxI cytotoxicity in pLFA-1-cotransfected FAK-deficient MEFs. These findings show for the first time that pLFA-1 renders cells susceptible to ApxI and ApxI-mediated attenuation of FAK activity via CD18, thereby contributing to subsequent cell death.
Collapse
Affiliation(s)
- Siou-Cen Li
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.,Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, 300, Taiwan
| | - Yu-Tsen Cheng
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Ching-Yang Wang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jia-Ying Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Zeng-Weng Chen
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, 300, Taiwan
| | - Jyh-Perng Wang
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, 300, Taiwan
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, 300, Taiwan
| | - Shih-Ling Hsuan
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
8
|
Respiratory viral infections drive different lung cytokine profiles in pigs. BMC Vet Res 2021; 17:5. [PMID: 33407470 PMCID: PMC7786461 DOI: 10.1186/s12917-020-02722-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Swine influenza A virus (IAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are considered key viral pathogens involved in the porcine respiratory disease complex. Concerning the effect of one virus on another with respect to local immune response is still very limited. Determination of presence and quantity of cytokines in the lung tissue and its relation to the lung pathology can lead to a better understanding of the host inflammatory response and its influence on the lung pathology during single or multi-virus infection. The aim of the present study was to explore and compare the patterns of lung cytokine protein response in pigs after single or dual infection with swine IAV and/or PRRSV. Results Inoculation with IAV alone causes an increase in lung concentration of IFN-α, IFN-ɣ, TNF-α, IL-6, IL-8 and IL-10, especially at 2 and 4 DPI. In PRRSV group, beyond early IFN-α, IFN-ɣ, IL-6, IL-8 and IL-10 induction, elevated levels of cytokines at 10 and 21 DPI have been found. In IAV+PRRSV inoculated pigs the lung concentrations of all cytokines were higher than in control pigs. Conclusions Current results indicate that experimental infection of pigs with IAV or PRRSV alone and co-infection with both pathogens induce different kinetics of local cytokine response. Due to strong positive correlation between local TNF-α and IL-10 concentration and lung pathology, we hypothesize that these cytokines are involved in the induction of lung lesions during investigates infection. Nevertheless, no apparent increase in lung cytokine response was seen in pigs co-inoculated simultaneously with both pathogens compared to single inoculated groups. It may also explain no significant effect of co-infection on the lung pathology and pathogen load, compared to single infections. Strong correlation between local concentration of TNF-α, IFN-ɣ, IL-8 and SwH1N1 load in the lung, as well as TNF-α, IL-8 and PRRSV lung titres suggested that local replication of both viruses also influenced the local cytokine response during infection.
Collapse
|
9
|
Tang B, Bojesen AM. Immune Suppression Induced by Gallibacterium anatis GtxA During Interaction with Chicken Macrophage-Like HD11 Cells. Toxins (Basel) 2020; 12:toxins12090536. [PMID: 32825511 PMCID: PMC7551249 DOI: 10.3390/toxins12090536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The RTX toxin GtxA expressed by Gallibacterium anatis biovar haemolytica has been proposed a major virulence factor during disease manifestations in the natural host, the chicken. To better understand the role of GtxA in the pathogenesis of G. anatis, we compared the GtxA expressing wildtype strain with its isogenic ∆gtxA mutant that was unable to express GtxA during exposure to chicken macrophage-like HD11 cells. From adhesion and invasion assays, we showed that GtxA appears to promote adhesion and invasion of HD11 cells. By using quantitative RT-PCR, we also demonstrated that the G. anatis expressing GtxA induced a mainly anti-inflammatory (IL-10) host cell response as opposed to the pro-inflammatory (IL-1β, IL-6 and TNF-α) response induced by the GtxA deletion mutant. Interestingly, these results, at least partly, resemble recent responses observed from spleen tissue of chickens infected with the same two bacterial strains. The effect of the GtxA toxin on the type of cell death was less clear. While GtxA clearly induced cell death, our efforts to characterize whether this was due to primarily necrosis or apoptosis through expression analysis of a broad range of apoptosis genes did not reveal clear answers.
Collapse
|
10
|
Tang B, Pors SE, Kristensen BM, Skjerning RBJ, Olsen RH, Bojesen AM. GtxA is a virulence factor that promotes a Th2-like response during Gallibacterium anatis infection in laying hens. Vet Res 2020; 51:40. [PMID: 32156313 PMCID: PMC7065373 DOI: 10.1186/s13567-020-00764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
GtxA, a leukotoxic RTX-toxin, has been proposed a main virulence factor of Gallibacterium anatis. To evaluate the impact of GtxA during infection, we experimentally infected laying hens with a G. anatis wild-type (WT) strain and its isogenic gtxA deletion mutant (ΔgtxA), respectively, and monitored the birds during a 6 day period. Birds inoculated with ΔgtxA had significantly reduced gross lesions and microscopic changes compared to the birds inoculated with the WT strain. To assess the host response further, we quantified the expression of pro-inflammatory cytokines and apoptosis genes by RT-qPCR. In the ovarian tissue, the expression levels of IL-4 and TNF-α were significantly lower in the ΔgtxA group compared to the WT group, while IL-6 and IL-10 levels appeared similar in the two groups. In the spleen tissue of ΔgtxA infected chickens, IL-4 expression was also lower compared to the WT infected chickens. The results indicated that GtxA plays a key role in an acute cytokine-mediated Th2-like response against G. anatis infection in the ovary tissue. The pro-inflammatory response in the ovary tissue of birds inoculated with ΔgtxA mutant was thus significantly lower than the wild-type response. This was, at least partly, supported by the apoptosis gene expression levels, which were significantly higher in the ΔgtxA mutant compared to the wild-type infected chickens. In conclusion, GtxA clearly plays an important role in the pathogenesis of G. anatis infections in laying hens. Further investigations into the specific factors regulating the host response is however needed to provide a more complete understanding of the bacteria-host interaction.
Collapse
Affiliation(s)
- Bo Tang
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Susanne E. Pors
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Bodil M. Kristensen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Ragnhild Bager J. Skjerning
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Rikke H. Olsen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Anders M. Bojesen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Zhang F, Zhao Q, Tian J, Chang YF, Wen X, Huang X, Wu R, Wen Y, Yan Q, Huang Y, Ma X, Han X, Miao C, Cao S. Effective Pro-Inflammatory Induced Activity of GALT, a Conserved Antigen in A. Pleuropneumoniae, Improves the Cytokines Secretion of Macrophage via p38, ERK1/2 and JNK MAPKs Signal Pathway. Front Cell Infect Microbiol 2018; 8:337. [PMID: 30319993 PMCID: PMC6167544 DOI: 10.3389/fcimb.2018.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
GALT is a highly conserved antigen in gram-negative bacteria, and has been shown to play a crucial role in the pathogenesis of many zoonoses. Actinobacillus pleuropneumoniae (APP) is a widespread respiratory system pathogen belonging to the Pasteuriaceae family. The functional mechanisms of GALT in the process of infection remain unclear. The aim of this study is to analyze roles of GALT in the pathogenesis of APP infection. Recombinant GALT was expressed in E. coli, purified, and was used to treat a Raw 264.7 macrophage line. Stimulation of Raw 264.7 macrophages with recombinant GALT protein induced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Compared with negative control, GALT led to increased production of pro-inflammatory cytokines in treated cells. Furthermore, specific inhibitors of the extracellular signal-regulated P38 and JNK MAPKs pathways significantly decreased GALT-induced pro-inflammatory cytokine production, and a western blot assay showed that GALT stimulation induced the activation of the MAPKs pathway. This process included cell-signaling pathways like P38, ERK1/2 and JNK MAPKs, and NF-κB. Both TLR2 and TLR4 were receptors of GALT antigens, whereas they played negative and positive roles (respectively) in the process of induction and expression of pro-inflammatory cytokines. Taken together, our data indicate that GALT is a novel pro-inflammatory mediator and induces TLR2 and TLR4-dependent pro-inflammatory activity in Raw 264.7 macrophages through P38, ERK1/2, and JNK MAPKs pathways.
Collapse
Affiliation(s)
- Fei Zhang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Qin Zhao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Jin Tian
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xintian Wen
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Rui Wu
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Research Center of Swine Disease, Sichuan Agricultural University, Chengdu, China.,National Teaching and Experimental Center of Animal, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
12
|
Jiang H, Zhu R, Liu H, Bao C, Liu J, Eltahir A, Langford PR, Sun D, Liu Z, Sun C, Gu J, Han W, Feng X, Lei L. Transcriptomic analysis of porcine PBMCs in response to Actinobacillus pleuropneumoniae reveals the dynamic changes of differentially expressed genes related to immuno-inflammatory responses. Antonie van Leeuwenhoek 2018; 111:2371-2384. [DOI: 10.1007/s10482-018-1126-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/06/2018] [Indexed: 01/23/2023]
|
13
|
Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development. Anim Health Res Rev 2017; 19:17-30. [DOI: 10.1017/s146625231700010x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractActinobacillus pleuropneumoniae is a Gram-negative bacterium that belongs to the family Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, a highly contagious respiratory disease that is responsible for major economic losses in the global pork industry. The disease may present itself as a chronic or an acute infection characterized by severe pathology, including hemorrhage, fibrinous and necrotic lung lesions, and, in the worst cases, rapid death. A. pleuropneumoniae is transmitted via aerosol route, direct contact with infected pigs, and by the farm environment. Many virulence factors associated with this bacterium are well characterized. However, much less is known about the role of biofilm, a sessile mode of growth that may have a critical impact on A. pleuropneumoniae pathogenicity. Here we review the current knowledge on A. pleuropneumoniae biofilm, factors associated with biofilm formation and dispersion, and the impact of biofilm on the pathogenesis A. pleuropneumoniae. We also provide an overview of current vaccination strategies against A. pleuropneumoniae and consider the possible role of biofilms vaccines for controlling the disease.
Collapse
|
14
|
Czyżewska-Dors E, Dors A, Kwit K, Stasiak E, Pomorska-Mól M. Pig Lung Immune Cytokine Response to the Swine Influenza Virus and the Actinobacillus Pleuropneumoniae Infection. J Vet Res 2017; 61:259-265. [PMID: 29978082 PMCID: PMC5894434 DOI: 10.1515/jvetres-2017-0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction The aim of this study was to evaluate and compare the local innate immune response to the swine influenza virus (SIV) and Actinobacillus pleuropneumoniae (App) infection in pigs. Material and Methods The study was performed on 37 seven-week-old pigs, divided into four groups: App-infected (n=11), App+SIV-infected (n=11), SIV-infected (n=11), and control (n=4). Lung samples were collected, following euthanasia, on the 2nd and 4th dpi (three piglets per inoculated group) and on the 10th dpi (remaining inoculated and control pigs). Lung concentrations of IL-1β, IL-6, IL-8, TNF-α, IL-10, IFN-α, and IFN-γ were analysed with the use of commercial porcine cytokine ELISA kits. Results Lung concentrations of IL-1β, IL-6, IL-8, TNF-α, IFN-α, and IFN-γ were induced in SIV-infected and App+SIV-infected pigs. In the lung tissue of App-infected pigs, only concentrations of IL-1β, IL-6, IL-8, and IFN-γ were elevated. Additionally, in App+SIV-infected pigs, significantly greater concentrations of IL-1β, IL-8, and IFN-α were found when compared with pigs infected with either SIV or App alone. In each tested group, the lung concentration of IL-10 remained unchanged during the entire study. Conclusion The results of the study indicate that the experimental infection of pigs with SIV or App alone and co-infection with both pathogens induced a local lung inflammatory response. However, the local cytokine response was considerably higher in co-infected pigs compared to single-infected pigs.
Collapse
Affiliation(s)
- Ewelina Czyżewska-Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Krzysztof Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Ewelina Stasiak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | | |
Collapse
|
15
|
Wang L, Zhao X, Zhu C, Xia X, Qin W, Li M, Wang T, Chen S, Xu Y, Hang B, Sun Y, Jiang J, Richard LP, Lei L, Zhang G, Hu J. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Vet Microbiol 2017; 203:202-210. [PMID: 28619145 DOI: 10.1016/j.vetmic.2017.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of the highly contagious and deadly respiratory infection porcine pleuropneumonia, resulting in serious losses to the pig industry worldwide. Alternative to antibiotics are urgently needed due to the serious increase in antimicrobial resistance. Thymol is a monoterpene phenol and efficiently kills a variety of bacteria. This study found that thymol has strong bactericidal effects on the A. pleuropneumoniae 5b serotype strain, an epidemic strain in China. Sterilization occurred rapidly, and the minimum inhibitory concentration (MIC) is 31.25μg/mL; the A. pleuropneumoniae density was reduced 1000 times within 10min following treatment with 1 MIC. Transmission electron microscopy (TEM) analysis revealed that thymol could rapidly disrupt the cell walls and cell membranes of A. pleuropneumoniae, causing leakage of cell contents and cell death. In addition, treatment with thymol at 0.5 MIC significantly reduced the biofilm formation of A. pleuropneumoniae. Quantitative RT-PCR results indicated that thymol treatment significantly increased the expression of the virulence genes purC, tbpB1 and clpP and down-regulated ApxI, ApxII and Apa1 expression in A. pleuropneumoniae. Therapeutic analysis of a murine model showed that thymol (20mg/kg) protected mice from a lethal dose of A. pleuropneumoniae, attenuated lung pathological lesions. This study is the first to report the use of thymol to treat A. pleuropneumoniae infection, establishing a foundation for the development of new antimicrobials.
Collapse
Affiliation(s)
- Lei Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R.China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaojing Xia
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanhai Qin
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongzhao Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanzhao Xu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | | | - Liancheng Lei
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R.China.
| | - Jianhe Hu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
16
|
Sassu EL, Frömbling J, Duvigneau JC, Miller I, Müllebner A, Gutiérrez AM, Grunert T, Patzl M, Saalmüller A, von Altrock A, Menzel A, Ganter M, Spergser J, Hewicker-Trautwein M, Verspohl J, Ehling-Schulz M, Hennig-Pauka I. Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae. BMC Vet Res 2017; 13:64. [PMID: 28245826 PMCID: PMC5329957 DOI: 10.1186/s12917-017-0979-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/16/2017] [Indexed: 01/06/2023] Open
Abstract
Background Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. Results Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. Conclusions In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression was detectable during the acute stage of infection. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-0979-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena L Sassu
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Janna Frömbling
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - J Catharina Duvigneau
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ingrid Miller
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Müllebner
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana M Gutiérrez
- Department of Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - Tom Grunert
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Patzl
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra von Altrock
- Forensic Medicine and Ambulatory Services, Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anne Menzel
- Forensic Medicine and Ambulatory Services, Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Ganter
- Forensic Medicine and Ambulatory Services, Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joachim Spergser
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Jutta Verspohl
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Monika Ehling-Schulz
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabel Hennig-Pauka
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Hsu CW, Li SC, Chang NY, Chen ZW, Liao JW, Chen TH, Wang JP, Lin JH, Hsuan SL. Involvement of NF-κB in regulation of Actinobacillus pleuropneumoniae exotoxin ApxI-induced proinflammatory cytokine production in porcine alveolar macrophages. Vet Microbiol 2016; 195:128-135. [PMID: 27771058 DOI: 10.1016/j.vetmic.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Actinobacillus pleuropneumoniae is a crucial respiratory pathogen that causes fibrinous, hemorrhagic, necrotizing pleuropneumonia in pigs. A. pleuropneumoniae exotoxins (ApxI to IV) are the major virulence factors contributing to A. pleuropneumoniae pathogenesis. Previously, we demonstrated that ApxI induces the expression of proinflammatory cytokines in porcine alveolar macrophages (PAMs) via the mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK). Nonetheless, the role of nuclear factor (NF)-κB-a transcription factor widely implicated in immune and inflammatory responses-in ApxI-elicited cytokine production has yet to be defined. In the present study, we examined the involvement of NF-κB in ApxI-elicited production of interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α in PAMs and investigated the correlation between NF-κB and MAPK (p38 and JNK) pathways in this event. The results of Western blot analysis, confocal microscopy, and a DNA binding activity assay revealed that the classical NF-κB pathway was activated by ApxI, as evidenced by the decreased levels of IκB and subsequent NF-κB translocation and activation in ApxI-stimulated PAMs. Moreover, the blocking of ApxI-induced NF-κB activation significantly attenuated the levels of mRNA and protein secretion of IL-1β, IL-8, and TNF-α in PAMs. Notably, the attenuation of JNK activation by a specific inhibitor (SP600125) reduced ApxI-induced NF-κB activation, whereas a p38 blocker (SB203580) had no effect on the NF-κB pathway. Further examination revealed that the level of phosphorylation at serine 536 on the NF-κB p65 subunit was dependent on JNK activity. Collectively, this study, for the first time, demonstrates a pivotal role of NF-κB in ApxI-induced IL-1β, IL-8, and TNF-α production; JNK, but not p38, may positively affect the activation of the classical NF-κB pathway.
Collapse
Affiliation(s)
- Chiung-Wen Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC; Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Siou-Cen Li
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC; Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Nai-Yun Chang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Zeng-Weng Chen
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Jyh-Perng Wang
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, 30093, Taiwan, ROC
| | - Shih-Ling Hsuan
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC.
| |
Collapse
|
18
|
Infection dynamics and acute phase response of an Actinobacillus pleuropneumoniae field isolate of moderate virulence in pigs. Vet Microbiol 2014; 173:332-9. [DOI: 10.1016/j.vetmic.2014.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 07/31/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022]
|
19
|
Lee SJ, Gebru Awji E, Kim MH, Park SC. BaeR protein from Salmonella enterica serovar Paratyphi A induces inflammatory response in murine and human cell lines. Microbes Infect 2013; 15:951-7. [PMID: 24055826 DOI: 10.1016/j.micinf.2013.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
BaeR is the response regulator of the two-component system, BaeSR, found in Escherichia coli (E. coli) and Salmonella. Several biological functions of BaeR, related to multidrug efflux and bacterial virulence, have been described. Herein, we report a putative function of BaeR during inflammatory response of the host by using BaeR protein of Salmonella enterica Paratyphi A (S. Paratyphi A) origin overexpressed in E. coli, and RAW 264.7 and THP-1 cells as in vitro models. BaeR (3 μg/ml) upregulated iNOS mRNA expression in both cell lines, and induced significant production of NO. Greater than ten-fold (TNF-α), 24-fold (IL-1β) and 156-fold (IL-6) increases in mRNA expression levels were observed in THP-1 cells treated with BaeR, compared to untreated controls. Furthermore, an eight-fold (IL-1β), 12-fold (IL-6) and 41-fold (TNF-α) higher protein concentrations were observed in RAW 264.7 cells stimulated with BaeR, compared to control cells. Immunoblot analysis showed BaeR-induced phosphorylation of the MAPKs (ERK 1/2, JNK and p38 MAPK) in RAW 264.7 cells. Pharmacological inhibition of the three MAPKs using specific inhibitors resulted in significant reduction of BaeR-induced NO production and iNOS mRNA expression by inhibitors of JNK and p38 MAPK. Also, all inhibitors of the MAPKs significantly attenuated BaeR-induced IL-1β, IL-6 and TNF-α at both transcript and protein levels with different degrees of inhibition. Taken together, our data suggest that BaeR is a putative inducer of inflammatory response and the MAPKs are involved in the process.
Collapse
Affiliation(s)
- Seung Jin Lee
- Laboratory of Veterinary Pharmacokinetics & Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Chang NY, Chen ZW, Chen TH, Liao JW, Lin CC, Chien MS, Lee WC, Lin JH, Hsuan SL. Elucidating the role of ApxI in hemolysis and cellular damage by using a novel apxIA mutant of Actinobacillus pleuropneumoniae serotype 10. J Vet Sci 2013; 15:81-9. [PMID: 23820218 PMCID: PMC3973769 DOI: 10.4142/jvs.2014.15.1.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/11/2013] [Indexed: 11/20/2022] Open
Abstract
Exotoxins produced by Actinobacillus (A.) pleuropneumoniae (Apx) play major roles in the pathogenesis of pleuropneumonia in swine. This study investigated the role of ApxI in hemolysis and cellular damage using a novel apxIA mutant, ApxIA336, which was developed from the parental strain A. pleuropneumoniae serotype 10 that produces only ApxI in vitro. The genotype of ApxIA336 was confirmed by PCR, Southern blotting, and gene sequencing. Exotoxin preparation derived from ApxIA336 was analyzed for its bioactivity towards porcine erythrocytes and alveolar macrophages. Analysis results indicated that ApxIA336 contained a kanamycin- resistant cassette inserted immediately after 1005 bp of the apxIA gene. Phenotype analysis of ApxIA336 revealed no difference in the growth rate as compared to the parental strain. Meanwhile, ApxI production was abolished in the bacterial culture supernatant, i.e. exotoxin preparation. The inability of ApxIA336 to produce ApxI corresponded to the loss of hemolytic and cytotoxic bioactivity in exotoxin preparation, as demonstrated by hemolysis, lactate dehydrogenase release, mitochondrial activity, and apoptosis assays. Additionally, the virulence of ApxIA336 appeared to be attenuated by 15-fold in BALB/c mice. Collectively, ApxI, but not other components in the exotoxin preparation of A. pleuropneumoniae serotype 10, was responsible for the hemolytic and cytotoxic effects on porcine erythrocytes and alveolar macrophages.
Collapse
Affiliation(s)
- Nai-Yun Chang
- Graduate Institutes of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | |
Collapse
|