1
|
Torres-Puig S, Crespo-Pomar S, Akarsu H, Yimthin T, Cippà V, Démoulins T, Posthaus H, Ruggli N, Kuhnert P, Labroussaa F, Jores J. Functional surface expression of immunoglobulin cleavage systems in a candidate Mycoplasma vaccine chassis. Commun Biol 2024; 7:779. [PMID: 38942984 PMCID: PMC11213901 DOI: 10.1038/s42003-024-06497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate 'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.
Collapse
Affiliation(s)
- Sergi Torres-Puig
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.
| | - Silvia Crespo-Pomar
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Hatice Akarsu
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Thatcha Yimthin
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Valentina Cippà
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Thomas Démoulins
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Horst Posthaus
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Nicolas Ruggli
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147, Mittelhäusern, Schweiz
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, 3001, Bern, Switzerland
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Lyon Laboratory, VetAgro Sup, UMR Animal Mycoplasmosis, University of Lyon, Lyon, France
| | - Jörg Jores
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, 3001, Bern, Switzerland.
| |
Collapse
|
2
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Zhao G, Lu D, Li M, Wang Y. Gene editing tools for mycoplasmas: references and future directions for efficient genome manipulation. Front Microbiol 2023; 14:1191812. [PMID: 37275127 PMCID: PMC10232828 DOI: 10.3389/fmicb.2023.1191812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mycoplasmas are successful pathogens that cause debilitating diseases in humans and various animal hosts. Despite the exceptionally streamlined genomes, mycoplasmas have evolved specific mechanisms to access essential nutrients from host cells. The paucity of genetic tools to manipulate mycoplasma genomes has impeded studies of the virulence factors of pathogenic species and mechanisms to access nutrients. This review summarizes several strategies for editing of mycoplasma genomes, including homologous recombination, transposons, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and synthetic biology. In addition, the mechanisms and features of different tools are discussed to provide references and future directions for efficient manipulation of mycoplasma genomes.
Collapse
Affiliation(s)
- Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Gene Silencing through CRISPR Interference in Mycoplasmas. Microorganisms 2022; 10:microorganisms10061159. [PMID: 35744677 PMCID: PMC9229473 DOI: 10.3390/microorganisms10061159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mycoplasmas are pathogenic, genome-reduced bacteria. The development of such fields of science as system and synthetic biology is closely associated with them. Despite intensive research of different representatives of this genus, genetic manipulations remain challenging in mycoplasmas. Here we demonstrate a single-plasmid transposon-based CRISPRi system for the repression of gene expression in mycoplasmas. We show that selected expression determinants provide a level of dCas9 that does not lead to a significant slow-down of mycoplasma growth. For the first time we describe the proteomic response of genome-reduced bacteria to the expression of exogenous dcas9. The functionality of the resulting vector is confirmed by targeting the three genes coding transcription factors-fur, essential spxA, whiA, and histone-like protein hup1 in Mycoplasma gallisepticum. As a result, the expression level of each gene was decreased tenfold and influenced the mRNA level of predicted targets of transcription factors. To illustrate the versatility of this vector, we performed a knockdown of metabolic genes in a representative member of another cluster of the Mycoplasma genus-Mycoplasma hominis. The developed CRISPRi system is a powerful tool to discover the functioning of genes that are essential, decipher regulatory networks and that can help to identify novel drug targets to control Mycoplasma infections.
Collapse
|
5
|
Bossé JT, Li Y, Leanse LG, Zhou L, Chaudhuri RR, Peters SE, Wang J, Maglennon GA, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Rationally designed mariner vectors for functional genomic analysis of Actinobacillus pleuropneumoniae and other Pasteurellaceae species by transposon-directed insertion-site sequencing (TraDIS). ANIMAL DISEASES 2021; 1:29. [PMID: 34870287 PMCID: PMC8616859 DOI: 10.1186/s44149-021-00026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Comprehensive identification of conditionally essential genes requires efficient tools for generating high-density transposon libraries that, ideally, can be analysed using next-generation sequencing methods such as Transposon Directed Insertion-site Sequencing (TraDIS). The Himar1 (mariner) transposon is ideal for generating near-saturating mutant libraries, especially in AT-rich chromosomes, as the requirement for integration is a TA dinucleotide, and this transposon has been used for mutagenesis of a wide variety of bacteria. However, plasmids for mariner delivery do not necessarily work well in all bacteria. In particular, there are limited tools for functional genomic analysis of Pasteurellaceae species of major veterinary importance, such as swine and cattle pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, respectively. Here, we developed plasmids, pTsodCPC9 and pTlacPC9 (differing only in the promoter driving expression of the transposase gene), that allow delivery of mariner into both these pathogens, but which should also be applicable to a wider range of bacteria. Using the pTlacPC9 vector, we have generated, for the first time, saturating mariner mutant libraries in both A. pleuropneumoniae and P. multocida that showed a near random distribution of insertions around the respective chromosomes as detected by TraDIS. A preliminary screen of 5000 mutants each identified 8 and 14 genes, respectively, that are required for growth under anaerobic conditions. Future high-throughput screening of the generated libraries will facilitate identification of mutants required for growth under different conditions, including in vivo, highlighting key virulence factors and pathways that can be exploited for development of novel therapeutics and vaccines.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK
| | - Leon G Leanse
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK.,Present Address: Wellman Center for Photomedicine, Harvard Medical School, Boston, USA
| | - Liqing Zhou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK.,Present Address: The Applied Diagnostic Research and Evaluation Unit, St George's University of London, London, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Present Address: Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Gareth A Maglennon
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Present Address: School of Medicine, University of St Andrews, St Andrews, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Present Address: The University of Melbourne, Parkville, Victoria Australia
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK
| | | |
Collapse
|
6
|
Li Z, Wang Y, Zhang Y, Tang X, Wang X, Liu W, Qian Y, Zhu Y, Chen H, Tan C. Attenuation of Mycoplasma hyopneumoniae Strain ES-2 and Comparative Genomic Analysis of ES-2 and Its Attenuated Form ES-2L. Front Vet Sci 2021; 8:696262. [PMID: 34235206 PMCID: PMC8255604 DOI: 10.3389/fvets.2021.696262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyopneumoniae causes swine respiratory disease worldwide. Due to the difficulty of isolating and cultivating M. hyopneumoniae, very few attenuated strains have been successfully isolated, which hampers the development of attenuated vaccines. In order to produce an attenuated M. hyopneumoniae strain, we used the highly virulent M. hyopneumoniae strain ES-2, which was serially passaged in vitro 200 times to produce the attenuated strain ES-2L, and its virulence was evidenced to be low in an animal experiment. In order to elucidate the mechanisms underlying virulence attenuation, we performed whole-genome sequencing of both strains and conducted comparative genomic analyses of strain ES-2 and its attenuated form ES-2L. Strain ES-2L showed three large fragment deletion regions including a total of 18 deleted genes, compared with strain ES-2. Analysis of single-nucleotide polymorphisms (SNPs) and indels indicated that 22 dels were located in 19 predicted coding sequences. In addition to these indels, 348 single-nucleotide variations (SNVs) were identified between strains ES-2L and ES-2. These SNVs mapped to 99 genes where they appeared to induce amino acid substitutions and translation stops. The deleted genes and SNVs may be associated with decreased virulence of strain ES-2L. Our work provides a foundation for further examining virulence factors of M. hyopneumoniae and for the development of attenuated vaccines.
Collapse
Affiliation(s)
- Zhenya Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yingxin Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xibiao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Wuhan Keqian Biology Co., Ltd., Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenhao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yulin Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Wuhan Keqian Biology Co., Ltd., Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
7
|
Clampitt JM, Madsen ML, Minion FC. Construction of Mycoplasma hyopneumoniae P97 Null Mutants. Front Microbiol 2021; 12:518791. [PMID: 33967967 PMCID: PMC8101707 DOI: 10.3389/fmicb.2021.518791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia, a world-wide problem in the pig industry. This disease is characterized by a dry, non-productive cough, labored breathing, and pneumonia. Despite years of research, vaccines are marginally effective, and none fully protect pigs in a production environment. A better understanding of the host-pathogen interactions of the M. hyopneumoniae-pig disease, which are complex and involve both host and pathogen components, is required. Among the surface proteins involved in virulence are members of two gene families called P97 and P102. These proteins are the adhesins directing attachment of the organism to the swine respiratory epithelium. P97 is the major ciliary binding adhesin and has been studied extensively. Monoclonal antibodies that block its binding to swine cilia have contributed extensively to its characterization. In this study we use recombination to construct null mutants of P97 in M. hyopneumoniae and characterize the resulting mutants in terms of loss of protein by immunoblot using monoclonal antibodies, ability to bind purified swine cilia, and adherence to PK15 cells. Various approaches to recombination with this fastidious mycoplasma were tested including intact plasmid DNA, single-stranded DNA, and linear DNA with and without a heterologous RecA protein. Our results indicate that recombination can be used to generate site-specific mutants in M. hyopneumoniae. P97 mutants are deficient in cilia binding and PK15 cell adherence, and lack the characteristic banding pattern seen in immunoblots developed with the anti-P97 monoclonal antibody.
Collapse
Affiliation(s)
- Jeannett M Clampitt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Li G, Obeng E, Shu J, Shu J, Chen J, Wu Y, He Y. Genomic Variability and Post-translational Protein Processing Enhance the Immune Evasion of Mycoplasma hyopneumoniae and Its Interaction With the Porcine Immune System. Front Immunol 2020; 11:510943. [PMID: 33117335 PMCID: PMC7575705 DOI: 10.3389/fimmu.2020.510943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is a geographically widespread and economically devastating pathogen that colonizes ciliated epithelium; the infection of Mhp can damnify the mucociliary functions as well as leading to Mycoplasma pneumonia of swine (MPS). MPS is a chronic respiratory infectious disease with high infectivity, and the mortality can be increased by secondary infections as the host immunity gets down-regulated during Mhp infection. The host immune responses are regarded as the main driving force for the disease development, while MPS is prone to attack repeatedly in farms even with vaccination or other treatments. As one of the smallest microorganisms with limited genome scale and metabolic pathways, Mhp can use several mechanisms to achieve immune evasion effect and derive enough nutrients from its host, indicating that there is a strong interaction between Mhp and porcine organism. In this review, we summarized the immune evasion mechanisms from genomic variability and post-translational protein processing. Besides, Mhp can induce the immune cells apoptosis by reactive oxygen species production, excessive nitric oxide (NO) release and caspase activation, and stimulate the release of cytokines to regulate inflammation. This article seeks to provide some new points to reveal the complicated interaction between the pathogen and host immune system with Mhp as a typical example, further providing some new strategies for the vaccine development against Mhp infection.
Collapse
Affiliation(s)
- Gaojian Li
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Enoch Obeng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinqi Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Hom-Sun Biosciences Co., Ltd., Shaoxing, China
| | - Jian Chen
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Deeney AS, Maglennon GA, Chapat L, Crussard S, Jolivet E, Rycroft AN. Mycoplasma hyopneumoniae evades phagocytic uptake by porcine alveolar macrophages in vitro. Vet Res 2019; 50:51. [PMID: 31234931 PMCID: PMC6591956 DOI: 10.1186/s13567-019-0667-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 01/24/2023] Open
Abstract
Mycoplasma hyopneumoniae, the agent of porcine enzootic pneumonia (EP), is able to persist in the lung tissue and evade destruction by the host for several weeks. To understand the mechanism of pathogen survival, phagocytic uptake of M. hyopneumoniae by primary porcine alveolar macrophages was investigated. Intracellular location and survival of the pathogen were explored using gentamicin survival assays, flow cytometry and confocal microscopy of M. hyopneumoniae 232 labelled with green fluorescent protein (GFP). Following 1 h and 16 h of co-incubation, few viable M. hyopneumoniae were recovered from inside macrophages. Flow cytometric analysis of macrophages incubated with M. hyopneumoniae expressing GFP indicated that the mycoplasmas became associated with macrophages, but were shown to be extracellular when actin-dependent phagocytosis was blocked with cytochalasin D. Confocal microscopy detected GFP-labelled M. hyopneumoniae inside macrophages and the numbers increased modestly with time of incubation. Neither the addition of porcine serum complement or convalescent serum from EP-recovered pigs was able to enhance engulfment of M. hyopneumoniae. This investigation suggests that M. hyopneumoniae evades significant uptake by porcine alveolar macrophages and this may be a mechanism of immune escape by M. hyopneumoniae in the porcine respiratory tract.
Collapse
Affiliation(s)
- Alannah S Deeney
- Department of Pathobiology and Population Science, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK.
| | - Gareth A Maglennon
- AstraZeneca UK Ltd., Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | | | | | | | - Andrew N Rycroft
- Department of Pathobiology and Population Science, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
| |
Collapse
|
10
|
Blötz C, Lartigue C, Valverde Timana Y, Ruiz E, Paetzold B, Busse J, Stülke J. Development of a replicating plasmid based on the native oriC in Mycoplasma pneumoniae. MICROBIOLOGY-SGM 2018; 164:1372-1382. [PMID: 30252643 DOI: 10.1099/mic.0.000711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria of the genus Mycoplasma have recently attracted considerable interest as model organisms in synthetic and systems biology. In particular, Mycoplasma pneumoniae is one of the most intensively studied organisms in the field of systems biology. However, the genetic manipulation of these bacteria is often difficult due to the lack of efficient genetic systems and some intrinsic peculiarities such as an aberrant genetic code. One major disadvantage in working with M. pneumoniae is the lack of replicating plasmids that can be used for the complementation of mutants and the expression of proteins. In this study, we have analysed the genomic region around the gene encoding the replication initiation protein, DnaA, and detected putative binding sites for DnaA (DnaA boxes) that are, however, less conserved than in other bacteria. The construction of several plasmids encompassing this region allowed the selection of plasmid pGP2756 that is stably inherited and that can be used for genetic experiments, as shown by the complementation assays with the glpQ gene encoding the glycerophosphoryl diester phosphodiesterase. Plasmid-borne complementation of the glpQ mutant restored the formation of hydrogen peroxide when bacteria were cultivated in the presence of glycerol phosphocholine. Interestingly, the replicating plasmid can also be used in the close relative, Mycoplasma genitalium but not in more distantly related members of the genus Mycoplasma. Thus, plasmid pGP2756 is a valuable tool for the genetic analysis of M. pneumoniae and M. genitalium.
Collapse
Affiliation(s)
- Cedric Blötz
- 1Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Carole Lartigue
- 2INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,3University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Yanina Valverde Timana
- 2INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,3University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Estelle Ruiz
- 2INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,3University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Bernhard Paetzold
- 4Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,†Present address: S-Biomedic N.V., Beerse, Belgium
| | - Julia Busse
- 1Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- 1Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Development of oriC-plasmids for use in Mycoplasma hyorhinis. Sci Rep 2017; 7:10596. [PMID: 28878274 PMCID: PMC5587638 DOI: 10.1038/s41598-017-10519-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pig pathogen, belonging to the class Mollicutes. It causes polyserositis, arthritis and cancers in vitro, increasing attention of the researchers. Currently, there is no available genetic tool to manipulate its genome. This study describes a development of oriC-plasmids harboring either large (pGEMT-LoriC) or minimum (pGEMT-MoriC) origin of replication (oriC) of M. hyorhinis along with tetracycline resistance marker.These plasmids were successfully transformed into M. hyorhinis with average transformation frequency of 1.5 × 10-4 and 2.0 × 10-5 transformants/CFU for pGEMT-LoriC and pGEMT-MoriC respectively, and were integrated at the chromosomal oriC as well as remained freely replicating. We also constructed a Mini-oriC-HT1 targeting plasmid by inclusion of hlyC arms and was used to inactivate hlyC at average frequency of 50%. The efficiency of hlyC inactivation was further improved (by 90%) when Mini-oriC-HT2 that contains E. coli recA was used. In both cases, hemolysin mutant bacteria diminished the ability to lyse mouse RBCs compared to wild-type (P < 0.001). OriC-plasmids described in this study may, therefore open the way for functional genomics in M. hyorhinis. Furthermore, this is a first study demonstrated the gene associated with a hemolytic phenotype in mycoplasmas.
Collapse
|
12
|
Development of oriC-Based Plasmids for Mesoplasma florum. Appl Environ Microbiol 2017; 83:AEM.03374-16. [PMID: 28115382 DOI: 10.1128/aem.03374-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/13/2017] [Indexed: 01/06/2023] Open
Abstract
The near-minimal bacterium Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. However, the lack of genetic engineering tools for this microorganism has limited our capacity to understand its basic biology and modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first generation of artificial plasmids able to replicate in this bacterium. Selected regions of the predicted M. florum chromosomal origin of replication (oriC) were used to create different plasmid versions that were tested for their transformation frequency and stability. Using polyethylene glycol-mediated transformation, we observed that plasmids harboring both rpmH-dnaA and dnaA-dnaN intergenic regions, interspaced or not with a copy of the dnaA gene, resulted in a frequency of ∼4.1 × 10-6 transformants per viable cell and were stably maintained throughout multiple generations. In contrast, plasmids containing only one M. florumoriC intergenic region or the heterologous oriC region of Mycoplasma capricolum, Mycoplasma mycoides, or Spiroplasma citri failed to produce any detectable transformants. We also developed alternative transformation procedures based on electroporation and conjugation from Escherichia coli, reaching frequencies up to 7.87 × 10-6 and 8.44 × 10-7 transformants per viable cell, respectively. Finally, we demonstrated the functionality of antibiotic resistance genes active against tetracycline, puromycin, and spectinomycin/streptomycin in M. florum Taken together, these valuable genetic tools will facilitate efforts toward building an M. florum-based near-minimal cellular chassis for synthetic biology.IMPORTANCEMesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. M. florum is closely related to the mycoides cluster of mycoplasmas, which has become a model for whole-genome cloning, genome transplantation, and genome minimization. However, M. florum shows higher growth rates than other Mollicutes, has no known pathogenic potential, and possesses a significantly smaller genome that positions this species among some of the simplest free-living organisms. So far, the lack of genetic engineering tools has limited our capacity to understand the basic biology of M. florum in order to modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first artificial plasmids and transformation methods for this bacterium. This represents a strong basis for ongoing genome engineering efforts using this near-minimal microorganism.
Collapse
|
13
|
Ishag HZA, Xiong Q, Liu M, Feng Z, Shao G. E. coli recA gene improves gene targeted homologous recombination in Mycoplasma hyorhinis. J Microbiol Methods 2017; 136:49-56. [PMID: 28285864 DOI: 10.1016/j.mimet.2017.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/01/2022]
Abstract
Mycoplasma hyorhinis is an opportunistic pathogen of pigs. Recently, it has been shown to transform cell cultures, increasing the attention of the researchers. Studies on the pathogenesis require specific genetic tool that is not yet available for the pathogen. To address this limitation, we constructed two suicide plasmids pGEMT-tetM/LR and pGEMT-recA-tetM/LR having a tetracycline resistance marker flanked by two hemolysin gene arms. The latter plasmid encodes an E. coli recA, a gene involved in DNA recombination, repair and maintenance of DNA. Using inactivation of the hemolysin gene, which results in a detectable and measurable phenotype, we found that each plasmid can disrupt the hemolysin gene of M. hyorhinis through a double cross-over homologous recombination. However, inclusion of the E. coli recA gene in the construct resulted in 9-fold increase in the frequency of hemolysin gene mutants among the screened tetracycline resistance colonies. The resultant hemolysin mutant strain lacks the ability to lyse mouse bed blood cells (RBC) when tested in vitro (p<0.001). The host-plasmid system described in this study, has applications for the genetic manipulation of this pathogen and potentially other mycoplasmas.
Collapse
Affiliation(s)
- Hassan Z A Ishag
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China; College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China.
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing 210014, China
| |
Collapse
|
14
|
Paes JA, Virginio VG, Cancela M, Leal FMA, Borges TJ, Jaeger N, Bonorino C, Schrank IS, Ferreira HB. Pro-apoptotic effect of a Mycoplasma hyopneumoniae putative type I signal peptidase on PK(15) swine cells. Vet Microbiol 2017; 201:170-176. [PMID: 28284605 DOI: 10.1016/j.vetmic.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Mycoplasma hyopneumoniae is an economically significant swine pathogen that causes porcine enzootic pneumonia (PEP). Important processes for swine infection by M. hyopneumoniae depend on cell surface proteins, many of which are secreted by secretion pathways not completely elucidated so far. A putative type I signal peptidase (SPase I), a possible component of a putative Sec-dependent pathway, was annotated as a product of the sipS gene in the pathogenic M. hyopneumoniae 7448 genome. This M. hyopneumoniae putative SPase I (MhSPase I) displays only 14% and 23% of sequence identity/similarity to Escherichia coli bona fide SPase I, and, in complementation assays performed with a conditional E. coli SPase I mutant, only a partial restoration of growth was achieved with the heterologous expression of a recombinant MhSPase I (rMhSPase I). Considering the putative surface location of MhSPase I and its previously demonstrated capacity to induce a strong humoral response, we then assessed its potential to elicit a cellular and possible immunomodulatory response. In assays for immunogenicity assessment, rMhSPase I unexpectedly showed a cytotoxic effect on murine splenocytes. This cytotoxic effect was further confirmed using the swine epithelial PK(15) cell line in MTT and annexin V-flow cytometry assays, which showed that rMhSPase I induces apoptosis in a dose dependent-way. It was also demonstrated that this pro-apoptotic effect of rMhSPase I involves activation of a caspase-3 cascade. The potential relevance of the rMhSPase I pro-apoptotic effect for M. hyopneumoniae-host interactions in the context of PEP is discussed.
Collapse
Affiliation(s)
- Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Veridiana G Virginio
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Martín Cancela
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda M A Leal
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Thiago J Borges
- Laboratório de Imunologia Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Natália Jaeger
- Laboratório de Imunologia Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Cristina Bonorino
- Laboratório de Imunologia Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Irene S Schrank
- Laboratório de Microrganismos Diazotróficos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Cook BS, Beddow JG, Manso-Silván L, Maglennon GA, Rycroft AN. Selective medium for culture of Mycoplasma hyopneumoniae. Vet Microbiol 2016; 195:158-164. [PMID: 27771062 PMCID: PMC5081061 DOI: 10.1016/j.vetmic.2016.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 11/30/2022]
Abstract
Systematic improvements to the medium for growth of Mycoplasma hyopneumoniae. Development of selective medium for M. hyopneumoniae inhibitory to M. hyorhinis. Improved colony size of M. hyopneumoniae. Improved reproducibility of culture for use in genetic manipulations.
The fastidious porcine respiratory pathogen Mycoplasma hyopneumoniae has proven difficult to culture since it was first isolated in 1965. A reliable solid medium has been particularly challenging. Moreover, clinical and pathological samples often contain the fast-growing M. hyorhinis which contaminates and overgrows M. hyopneumoniae in primary culture. The aim of this study was to optimise the culture medium for recovery of M. hyopneumoniae and to devise a medium for selection of M. hyopneumoniae from clinical samples also containing M. hyorhinis. The solid medium devised by Niels Friis was improved by use of Purified agar and incorporation of DEAE-dextran. Addition of glucose or neutralization of acidity in liquid medium with NaOH did not improve the final yield of viable organisms or alter the timing of peak viability. Analysis of the relative susceptibility of M. hyopneumoniae and M. hyorhinis strains to four antimicrobials showed that M. hyopneumoniae is less susceptible than M. hyorhinis to kanamycin. This was consistent in all UK and Danish strains tested. A concentration of 2 μg/ml of kanamycin selectively inhibited the growth of all M. hyorhinis tested, while M. hyopneumoniae was able to grow. This forms the basis of an effective selective culture medium for M. hyopneumoniae.
Collapse
Affiliation(s)
- Beth S Cook
- Department of Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Jessica G Beddow
- Department of Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Lucía Manso-Silván
- Department of Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Gareth A Maglennon
- Department of Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Andrew N Rycroft
- Department of Pathology & Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK.
| |
Collapse
|
16
|
Ishag HZA, Liu M, Yang R, Xiong Q, Feng Z, Shao G. GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis. SPRINGERPLUS 2016; 5:769. [PMID: 27386255 PMCID: PMC4912516 DOI: 10.1186/s40064-016-2358-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 11/10/2022]
Abstract
Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression.
Collapse
Affiliation(s)
- Hassan Z A Ishag
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China ; College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Ruosong Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| |
Collapse
|
17
|
Hegde S, Rosengarten R, Chopra-Dewasthaly R. Disruption of the pdhB pyruvate dehydrogenase [corrected] gene affects colony morphology, in vitro growth and cell invasiveness of Mycoplasma agalactiae. PLoS One 2015; 10:e0119706. [PMID: 25799063 PMCID: PMC4370745 DOI: 10.1371/journal.pone.0119706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
The utilization of available substrates, the metabolic potential and the growth rates of bacteria can play significant roles in their pathogenicity. This study concentrates on Mycoplasma agalactiae, which causes significant economic losses through its contribution to contagious agalactia in small ruminants by as yet unknown mechanisms. This lack of knowledge is primarily due to its fastidious growth requirements and the scarcity of genetic tools available for its manipulation and analysis. Transposon mutagenesis of M. agalactiae type strain PG2 resulted in several disruptions throughout the genome. A mutant defective in growth in vitro was found to have a transposon insertion in the pdhB gene, which encodes a component of the pyruvate dehydrogenase complex. This growth difference was quite significant during the actively dividing logarithmic phase but a gradual recovery was observed as the cells approached stationary phase. The mutant also exhibited a different and smaller colony morphology compared to the wild type strain PG2. For complementation, pdhAB was cloned downstream of a strong vpma promoter and upstream of a lacZ reporter gene in a newly constructed complementation vector. When transformed with this vector the pdhB mutant recovered its normal growth and colony morphology. Interestingly, the pdhB mutant also had significantly reduced invasiveness in HeLa cells, as revealed by double immunofluorescence staining. This deficiency was recovered in the complemented strain, which had invasiveness comparable to that of PG2. Taken together, these data indicate that pyruvate dehydrogenase might be an important player in infection with and colonization by M. agalactiae.
Collapse
Affiliation(s)
- Shivanand Hegde
- Division of Clinical Microbiology and Infection Biology, Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Renate Rosengarten
- Division of Clinical Microbiology and Infection Biology, Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rohini Chopra-Dewasthaly
- Division of Clinical Microbiology and Infection Biology, Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
18
|
Sharma S, Citti C, Sagné E, Marenda MS, Markham PF, Browning GF. Development and host compatibility of plasmids for two important ruminant pathogens, Mycoplasma bovis and Mycoplasma agalactiae. PLoS One 2015; 10:e0119000. [PMID: 25746296 PMCID: PMC4351888 DOI: 10.1371/journal.pone.0119000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/08/2015] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.
Collapse
Affiliation(s)
- Shukriti Sharma
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
19
|
Li J, Zhang J, Zhang N, Zhang Y, Wu W, Li J. Development of a replicative plasmid for gene expression in Mycoplasma bovis. J Microbiol Methods 2014; 108:12-8. [PMID: 25451459 DOI: 10.1016/j.mimet.2014.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 11/28/2022]
Abstract
Mycoplasma bovis (M. bovis) is a pathogen related to a variety of disease syndromes that result in significant economic losses in the cattle industry. Here, a stable replicative plasmid system is developed for use in M. bovis, utilizing an origin of replication (oriC) region. Additionally, the heterologous protein β-galactosidase and a FLAG tag-fused endogenous protein were successfully expressed by this plasmid system. These findings provide evidence that this oriC-based vector is applicable for the study of M. bovis.
Collapse
Affiliation(s)
- Jiahe Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuewei Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jinxiang Li
- Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
20
|
Shahid MA, Marenda MS, Markham PF, Noormohammadi AH. Development of an oriC vector for use in Mycoplasma synoviae. J Microbiol Methods 2014; 103:70-6. [DOI: 10.1016/j.mimet.2014.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 11/30/2022]
|
21
|
Maglennon GA, Cook BS, Deeney AS, Bossé JT, Peters SE, Langford PR, Maskell DJ, Tucker AW, Wren BW, Rycroft AN. Transposon mutagenesis in Mycoplasma hyopneumoniae using a novel mariner-based system for generating random mutations. Vet Res 2013; 44:124. [PMID: 24359443 PMCID: PMC4028751 DOI: 10.1186/1297-9716-44-124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma hyopneumoniae is the cause of enzootic pneumonia in pigs, a chronic respiratory disease associated with significant economic losses to swine producers worldwide. The molecular pathogenesis of infection is poorly understood due to the lack of genetic tools to allow manipulation of the organism and more generally for the Mycoplasma genus. The objective of this study was to develop a system for generating random transposon insertion mutants in M. hyopneumoniae that could prove a powerful tool in enabling the pathogenesis of infection to be unraveled. A novel delivery vector was constructed containing a hyperactive C9 mutant of the Himar1 transposase along with a mini transposon containing the tetracycline resistance cassette, tetM. M. hyopneumoniae strain 232 was electroporated with the construct and tetM-expressing transformants selected on agar containing tetracycline. Individual transformants contained single transposon insertions that were stable upon serial passages in broth medium. The insertion sites of 44 individual transformants were determined and confirmed disruption of several M. hyopneumoniae genes. A large pool of over 10 000 mutants was generated that should allow saturation of the M. hyopneumoniae strain 232 genome. This is the first time that transposon mutagenesis has been demonstrated in this important pathogen and could be generally applied for other Mycoplasma species that are intractable to genetic manipulation. The ability to generate random mutant libraries is a powerful tool in the further study of the pathogenesis of this important swine pathogen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK.
| | | |
Collapse
|