1
|
Rougé V, Nguyen PTTH, Allard S, Lee Y. Reaction of Amino Acids with Ferrate(VI): Impact of the Carboxylic Group on the Primary Amine Oxidation Kinetics and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18509-18518. [PMID: 36441566 DOI: 10.1021/acs.est.2c03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferrate (Fe(VI)) is a novel oxidant that can be used to mitigate disinfection byproduct (DBP) precursors. However, the reaction of Fe(VI) with organic nitrogen, which is a potential precursor of potent nitrogenous DBPs, remains largely unexplored. The present work aimed to identify the kinetics and products for the reaction of Fe(VI) with primary amines, notably amino acids. A new kinetic model involving ionizable intermediates was proposed and can describe the unusual pH effect on the Fe(VI) reactivity toward primary amines and amino acids. The Fe(VI) oxidation of phenylalanine produced a mixture of nitrile, nitrite/nitrate, amide, and ammonia, while nitroalkane was an additional product in the case of glycine. The product distribution for amino acids significantly differed from that of uncarboxylated primary amines that mainly generate nitriles. A general reaction pathway for primary amines and amino acids was proposed and notably involved the formation of imines, the degradation of which was affected by the presence of a carboxylic group. In comparison, ozonation led to higher yields of nitroalkanes that could be readily converted to potent halonitroalkanes during chlor(am)ination. Based on this study, Fe(VI) can effectively mitigate primary amine-based, nitrogenous DBP precursors with little formation of toxic halonitroalkanes.
Collapse
Affiliation(s)
- Valentin Rougé
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Pham Thi Thai Ha Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | | | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| |
Collapse
|
2
|
Kielb PJ, Teutloff C, Bittl R, Gray HB, Winkler JR. Does Tyrosine Protect S. coelicolor Laccase from Oxidative Degradation or Act as an Extended Catalytic Site? J Phys Chem B 2022; 126:7943-7949. [PMID: 36191240 PMCID: PMC10231039 DOI: 10.1021/acs.jpcb.2c04835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the roles of tyrosine (Tyr) and tryptophan (Trp) residues in the four-electron reduction of oxygen catalyzed by Streptomyces coelicolor laccase (SLAC). During normal enzymatic turnover in laccases, reducing equivalents are delivered to a type 1 Cu center (CuT1) and then are transferred over 13 Å to a trinuclear Cu site (TNC: (CuT3)2CuT2) where O2 reduction occurs. The TNC in SLAC is surrounded by a large cluster of Tyr and Trp residues that can provide reducing equivalents when the normal flow of electrons is disrupted. Prior studies by Canters and co-workers [J. Am. Chem. Soc. 2009, 131 (33), 11680-11682] have shown that when O2 reacts with a reduced SLAC variant lacking the CuT1 center, a Tyr108• radical near the TNC forms rapidly. We have found that the Tyr108• radical is reduced 10 times faster than CuT12+ by excess ascorbate, possibly because of radical transfer along Tyr/Trp chains.
Collapse
Affiliation(s)
- Patrycja J. Kielb
- Beckman Institute, California Institute of Technology, Pasadena CA 91125, United States
| | | | - Robert Bittl
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena CA 91125, United States
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena CA 91125, United States
| |
Collapse
|
3
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
4
|
Kinetic and Mechanistic Study on Catalytic Decomposition of Hydrogen Peroxide on Carbon-Nanodots/Graphitic Carbon Nitride Composite. Catalysts 2018. [DOI: 10.3390/catal8100445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The metal-free CDots/g-C3N4 composite, normally used as the photocatalyst in H2 generation and organic degradation, can also be applied as an environmental catalyst by in-situ production of strong oxidant hydroxyl radical (HO·) via catalytic decomposition of hydrogen peroxide (H2O2) without light irradiation. In this work, CDots/g-C3N4 composite was synthesized via an electrochemical method preparing CDots followed by the thermal polymerization of urea. Transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), N2 adsorption/desorption isotherm and pore width distribution were carried out for characterization. The intrinsic catalytic performance, including kinetics and thermodynamic, was studied in terms of catalytic decomposition of H2O2 without light irradiation. The second-order rate constant of the reaction was calculated to be (1.42 ± 0.07) × 10−9 m·s−1 and the activation energy was calculated to be (29.05 ± 0.80) kJ·mol−1. Tris(hydroxymethyl) aminomethane (Tris) was selected to probe the produced HO· during the decomposing of H2O2 as well as to buffer the pH of the solution. The composite was shown to be base-catalyzed and the optimal performance was achieved at pH 8.0. A detailed mechanism involving the adsorb-catalyze double reaction site was proposed. Overall, CDots/g-C3N4 composite can be further applied in advanced oxidation technology in the presence of H2O2 and the instinct dynamics and the mechanism can be referred to further applications in related fields.
Collapse
|
5
|
Massima Mouele ES, Fatoba OO, Babajide O, Badmus KO, Petrik LF. Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9265-9282. [PMID: 29446027 DOI: 10.1007/s11356-018-1392-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Advanced oxidation processes (AOPs) particularly non-thermal plasmas based on electrical discharges have been widely investigated for water and wastewater treatment. Dielectric barrier discharges (DBDs) generate large amounts of selective and non-selective reactive oxygen species (ROS) such as ozone, hydrogen peroxide, atomic oxygen, superoxide molecular anions and hydroxyl radicals, having been proved to be efficient for water decontamination among various forms of electrical discharge systems. The detection and quantification methods of these oxygen species in non-thermal plasmas have been reviewed. However, their application in dielectric barrier discharge has not been well studied. It is therefore imperative to summarise the various detection and quantification methods for oxygen-based species determination in AOPs, aqueous systems and non-thermal plasma processes. Thereafter, reviewed methods are suggested for the determination of ROS in DBD configurations to understand the consumption trend of these oxidants during treatment of water effluents and to evaluate the performance of the treatment reactor configuration towards the degradation of targeted pollutants.
Collapse
Affiliation(s)
- Emile S Massima Mouele
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa.
| | - Olanrewaju Ojo Fatoba
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Omotola Babajide
- Mechanical Engineering Department, Cape Peninsula University of Technology, Bellville, South Africa
| | - Kassim O Badmus
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Leslie F Petrik
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
6
|
Gil-Lozano C, Davila AF, Losa-Adams E, Fairén AG, Gago-Duport L. Quantifying Fenton reaction pathways driven by self-generated H 2O 2 on pyrite surfaces. Sci Rep 2017; 7:43703. [PMID: 28262831 PMCID: PMC5337962 DOI: 10.1038/srep43703] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.
Collapse
Affiliation(s)
- C. Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
| | - A. F. Davila
- Carl Sagan Center at the SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043, USA
| | - E. Losa-Adams
- Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
- Departamento de Geociencias Marinas, Universidad de Vigo, Lagoas Marcosende, 36310-Vigo, Spain
| | - A. G. Fairén
- Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, 14853 NY, USA
| | - L. Gago-Duport
- Departamento de Geociencias Marinas, Universidad de Vigo, Lagoas Marcosende, 36310-Vigo, Spain
| |
Collapse
|
7
|
An On-Column Enzyme Mediated Fluorescence-Amplification Method for Plasma Total Cholesterol Measurement by Capillary Electrophoresis with LIF Detection. Chromatographia 2016. [DOI: 10.1007/s10337-016-3023-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Molnár GA, Kun S, Sélley E, Kertész M, Szélig L, Csontos C, Böddi K, Bogár L, Miseta A, Wittmann I. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review. Curr Med Chem 2016; 23:667-85. [PMID: 26785996 PMCID: PMC4997921 DOI: 10.2174/0929867323666160119094516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 12/19/2022]
Abstract
Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - István Wittmann
- 2nd Department of Medicine and Nephrological Center, Medical School, University of Pécs, Pacsirta str. 1., H-7624 Pécs, Hungary.
| |
Collapse
|
9
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
10
|
Schoonen MA, Schoonen JM. Removal of crystal violet from aqueous solutions using coal. J Colloid Interface Sci 2014; 422:1-8. [DOI: 10.1016/j.jcis.2014.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|